
International
Virtual
Observatory

Alliance

Mapping Data Models to VOTable
Version 1.0-20170323

IVOA Working Draft 2017-03-23
Working group

This version
http://www.ivoa.net/documents/MappingDMtoVOTable/20170323

Latest version
http://www.ivoa.net/documents/MappingDMtoVOTable

Previous versions

Author(s)
Gerard Lemson, Omar Laurino, Tom Donaldson, Mark Cresitello-
Dittmar, Laurent Michel, Patrick Dowler, Markus Demleitner,
Matthew Graham, Jesus Salgado

Editor(s)
Omar Laurino, Gerard Lemson

Abstract
Data providers and curators provide a great deal of metadata with their

data files: this metadata is invaluable for users and for Virtual Observatory
software developers. In order to be interoperable, the metadata must refer
to common Data Models. This specification defines a scheme for annotating
VOTable instances in a standard, consistent, interoperable fashion, so that
each piece of metadata can unambiguously refer to the correct Data Model
element it expresses, assuming there is a suitable data model. With this
specification, data providers can unambiguously and completely represent
Data Model instances in the VOTable format, and clients can build faithful
representations of such instances. The mapping is operated through opaque,
portable strings.

http://www.ivoa.net/documents/MappingDMtoVOTable/20170323
http://www.ivoa.net/documents/MappingDMtoVOTable
http://www.ivoa.net/cgi-bin/twiki/bin/view/IVOA/GerardLemson
http://www.ivoa.net/cgi-bin/twiki/bin/view/IVOA/OmarLaurino
http://www.ivoa.net/cgi-bin/twiki/bin/view/IVOA/TomDonaldson
http://www.ivoa.net/cgi-bin/twiki/bin/view/IVOA/MarkCresitelloDittmar
http://www.ivoa.net/cgi-bin/twiki/bin/view/IVOA/MarkCresitelloDittmar
http://www.ivoa.net/cgi-bin/twiki/bin/view/IVOA/LaurentMichel
http://www.ivoa.net/cgi-bin/twiki/bin/view/IVOA/PatrickDowler
http://www.ivoa.net/cgi-bin/twiki/bin/view/IVOA/MarkusDemleitner
http://www.ivoa.net/cgi-bin/twiki/bin/view/IVOA/MatthewGraham
http://www.ivoa.net/cgi-bin/twiki/bin/view/IVOA/JesusSalgado


Status of This Document
This is an IVOA Working Draft for review by IVOA members and other

interested parties. It is a draft document and may be updated, replaced, or
obsoleted by other documents at any time. It is inappropriate to use IVOA
Working Drafts as reference materials or to cite them as other than “work
in progress”.

A list of current IVOA Recommendations and other technical documents
can be found at [http://www.ivoa.net/Documents/].

Contents
History of this document . . . . . . . . . . . . . . . . . . . . . . . . 4

1 Introduction 4

2 Use Cases 6
2.1 General Remarks . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Concrete Use Cases . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 STC clients . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.2 VO-enabled plotting and fitting applications . . . . . 7
2.2.3 Data discovery portals . . . . . . . . . . . . . . . . . . 8
2.2.4 Color-color diagrams . . . . . . . . . . . . . . . . . . . 8
2.2.5 Validators . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.6 VO Publishing Helper . . . . . . . . . . . . . . . . . . 9
2.2.7 VO Importer . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Generic Use Cases . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3.1 Serialize and de-serialize instances according to a data

model . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3.2 Annotate files according to multiple models . . . . . . 10
2.3.3 Representing cross matches and linking files together . 10
2.3.4 Mission-specific data model extensions . . . . . . . . . 11

2.4 Growing complexity: simple, advanced, and guru clients . . . 11
2.4.1 Simple clients . . . . . . . . . . . . . . . . . . . . . . . 11
2.4.2 Advanced clients . . . . . . . . . . . . . . . . . . . . . 12
2.4.3 Guru clients . . . . . . . . . . . . . . . . . . . . . . . . 13

2.5 Formats other than VOTable . . . . . . . . . . . . . . . . . . 13

3 The need for a mapping language 13

4 Mapping with the VODML element. 16
4.1 VODMLReference . . . . . . . . . . . . . . . . . . . . . . . . 17

2



5 General information about this spec 18
5.1 Sample model and instances . . . . . . . . . . . . . . . . . . . 18
5.2 Single-table representations and Object-Relational Mapping . 18

6 Patterns for annotating VOTable [NORMATIVE] 19
6.1 The VODML element . . . . . . . . . . . . . . . . . . . . . . . . 21

6.1.1 Example . . . . . . . . . . . . . . . . . . . . . . . . . . 22
6.1.2 Models Declaration: MODEL . . . . . . . . . . . . . . . 24
6.1.3 Instance Annotation: INSTANCE . . . . . . . . . . . . . 24
6.1.4 Global Instances: GLOBALS . . . . . . . . . . . . . . . . 25
6.1.5 Tabular Instances: TEMPLATES . . . . . . . . . . . . . 25
6.1.6 Direct vs Indirect Instances . . . . . . . . . . . . . . . 26
6.1.7 Schema Constraints . . . . . . . . . . . . . . . . . . . 28

6.2 Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6.2.1 Attributes: ATTRIBUTE . . . . . . . . . . . . . . . . . . 29
6.2.2 Attributes: LITERAL . . . . . . . . . . . . . . . . . . . 29
6.2.3 Attributes: CONSTANT . . . . . . . . . . . . . . . . . . 29
6.2.4 Template Attributes: COLUMN . . . . . . . . . . . . . . 29
6.2.5 References: REFERENCE . . . . . . . . . . . . . . . . . . 30
6.2.6 References: IDREF . . . . . . . . . . . . . . . . . . . . 30
6.2.7 References: REMOTEREFERENCE . . . . . . . . . . . . . . 30
6.2.8 References: FOREIGNKEY . . . . . . . . . . . . . . . . . 30
6.2.9 Composition: COMPOSITION . . . . . . . . . . . . . . . 30
6.2.10 Composition: EXTINTANCES . . . . . . . . . . . . . . . 31
6.2.11 Composition: CONTAINER . . . . . . . . . . . . . . . . 31
6.2.12 PRIMARYKEY . . . . . . . . . . . . . . . . . . . . . . . . 31
6.2.13 FOREIGNKEY . . . . . . . . . . . . . . . . . . . . . . . . 32

6.3 Representing Types . . . . . . . . . . . . . . . . . . . . . . . . 32
6.3.1 PrimitiveType . . . . . . . . . . . . . . . . . . . . . . 32
6.3.2 Enumeration and EnumerationLiteral . . . . . . . . 33
6.3.3 ObjectType . . . . . . . . . . . . . . . . . . . . . . . . 33
6.3.4 DataType . . . . . . . . . . . . . . . . . . . . . . . . . 34
6.3.5 Type Generalization and Inheritance . . . . . . . . . . 34
6.3.6 Quantities . . . . . . . . . . . . . . . . . . . . . . . . . 35
6.3.7 Comparison of EXTINSTANCES and INSTANCE . . . . . 35

6.4 Full Example . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

7 VO-DML XML schema [NORMATIVE] 42
7.1 Additions to VOTable . . . . . . . . . . . . . . . . . . . . . . 42
7.2 VODML-mapping shema . . . . . . . . . . . . . . . . . . . . . 43

3



References 52

Listings
1 Example VOTable with basic annotations. This VOTable il-

lustrates the basic annotation elements in the ‘VODML‘ sec-
tion. More complex examples will be provided in the following
sections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2 VOTable where all instances are direct rather than indirect. . 26
3 Example covering all of the XML elements and mapping pat-

terns, including multi-table Object Relational Mapping. . . . 35
4 VODML additions to the VOTable schema. . . . . . . . . . . 43

History of this document

TODO migrate document’s history

1 Introduction
Data providers put a lot of effort in organizing and maintaining metadata
that precisely describes their data files. This information is invaluable for
users and for software developers that provide users with user-friendly VO-
enabled applications. For example, such metadata can characterize the dif-
ferent axes of the reference system in which the data is expressed, or the
history of a measurement, like the publication where the measurement was
drawn from, the calibration type, and so forth. In order to be interoper-
able, this metadata must refer to some Data Model that is known to all
parties: the IVOA defines and maintains such standardized Data Models
that describe astronomical data in an abstract, interoperable way.

In order to enable such interoperable, extensible, portable annotation of
data files, one needs:

• A language to unambiguously and efficiently describe Data Models
and their elements’ identifiers (VO-DML, (Lemson 2015)).

• Pointers linking a specific piece of information (data or metadata) to
the Data Model element it represents1.

• A mapping specification that unambiguously describes the mapping
strategies that lead to faithful representations of Data Model instances
in a specific format.

1This used to be the assumed role of the @utype attribute in VOTable and for example
TAP. This document is based on the new VODML element in VOTable 1.4 (Ochsenbein
1900).

4



Without a consistent language for describing Data Models there can be
no interoperability among them, through reuse of models by models, or in
their use in other specifications. Such a language must be expressive and
formal enough to enable the serialization of data types of growing complex-
ity and the development of reusable, extensible software components and
libraries that can make the technological uptake of the VO standards seam-
less and scalable.

For serializations to non-standard representations one needs to map the
abstract Data Model to a particular format meta-model. For instance, the
VOTable format defines RESOURCEs, TABLEs, PARAMs, FIELDs, and so forth, and
provides explicit attributes such as units, UCDs, and utypes: in order to
represent instances of a Data Model, one needs to define an unambiguous
mapping between these meta-model elements and the Data Model language,
so to make it possible for software to be able to parse a file according to its
Data Model and to Data Providers to mark up their data products.

While one might argue that a standard for portable, interoperable Data
Model representation would have been required before one could think about
such a mapping, we are specifying it only at a later stage. In particular sev-
eral different interpretations of UTYPEs have been proposed and used (Gra-
ham 2013). This specification aims to resolve this ambiguity.

As a matter of fact, existing files and services can be made compliant
according to this specification by simply adding annotations and keeping the
old ones. So they do not need to change them in such a way that would
necessarily make them incompatible with existing software.

Several sections of this document are utterly informative: in particular,
the appendices provide more information about the impact of this specifi-
cation to the current and future IVOA practices.

This specification describes how to represent Data Model instances using
the VOTable schema. This representation uses the <VODML> element intro-
duced for this purpose in VOTable v1.4 (Ochsenbein 1900) and the structure
of the VOTable meta-model elements to indicate how instances of data mod-
els are stored in VOTable documents. We show many examples and give a
complete listing of allowed mapping patterns.

In sections 2 to 5 we give an introduction to why and how the VODML
elements can be used to hold pointers into the data models.

Section 6 is a rigorous listing of all valid annotations, and the normative
part of the specification.

The appendices contain additional material. Section 7 describes the
VODML annotation element that was added to the VOTable schema to
support this mapping specification. Section 2.4 describes different types of
client software and how they could deal with VOTables annotated according
to the current specification.

5



Throughout the document we will refer to some real or exam-
ple Data Models. Please remember that such models have been
designed to be fairly simple, yet complex enough to illustrate all
the possible constructs that this specification covers. They are
not to be intended as actual DMs, nor, by any means, this spec-
ification suggests their adoption by the IVOA or by users and or
Data Providers. In some cases we refer to actual DMs in order to
provide an idea of how this specification relates to real life cases
involving actual DMs.

2 Use Cases

2.1 General Remarks

This specification provides a standardized mechanism for annotating VOTa-
bles according to data models. Thus, it enables:

• Data providers to annotate VOTables so to faithfully map VOTable
contents to one or more data models, as long as such Data Models
are expressed according to the VO-DML standard (Lemson 2015). In
other terms, they can serialize data model instances in a standard,
interoperable way. Some examples are provided below as concrete use
cases.

• Service clients to faithfully reconstruct the semantics of the data model
instances they consume in VOTable format. Some concrete examples
are also provided below.

One of the main goals of this specification is also to alleviate data model-
ers from the burden of defining special serialization strategies for their data
models, at least in most cases. Specialized serializations might be defined
if there are special constraints in term of efficiency or effectiveness which
require specialized serialization schemes.

As a corollary to the above paragraph, client applications can also be
implemented on top of standardized Input/Output libraries that implement
the present specification, as the serialization mechanisms are standardized
across data models. Without this specification clients would need to be
coded against specialized serializations for each data model. Similarly, data
providers can now serialize instances of any data model to VOTable using
the same annotation mechanism.

As a result, this mapping specification should enable a large number of
concrete use cases to be implemented, by reducing the annotation burden
on both data providers and data consumers, improving the overall interop-
erability, at least for what VOTable is concerned.

6



This document also represents a template for mapping data model in-
stances to other formats (see sec. 2.5).

2.2 Concrete Use Cases

2.2.1 STC clients

A typical usage scenario may be a VOTable client that is sensitive to cer-
tain models only, say Space Time Coordinates (STC). Such a tool may be
written to understand annotations for instance of STC types, manipulate
such instances, and write them back to disk.

By finding an element mapped to a type definition from the STC model,
the application may infer for example that it represents a coordinate on the
sky and use this information according to its requirements. For example,
the client may convert all positions expressed in a certain coordinate frame
to a different coordinate frame through some specific transform.

Note that the client may never parse any VO-DML description files, as
the knowledge about the data model may be assumed when the client code
is developed.

Also, the STC annotations are the same in all the contexts in which an
STC type is used. So, for instance, if a VOTable describes catalogues of
sources, and each source has a position attribute describing its coordinates
in a specific reference frame, the instance describing the source’s position
would be annotated in the exact same way as, say, the central position of a
cone search query.

So, the STC tool may not necessarily understand other models where
STC types are used, but it may still be able to find the instances of those
types.

Note that the same file may contain multiple tables and in any case STC
model instances defined in multiple coordinate systems or frames.

2.2.2 VO-enabled plotting and fitting applications

An application whose main requirement is to display, plot, and/or fit data
cannot be required to be aware of all astronomical data models. However, if
these data models shared some common representation of quantities, their
errors, and their units, the application may discover these pieces of infor-
mation and structure a plot, or perform a fit, with minimal user input:
each point may be associated with an error bar, upper/lower limits, and
other metadata. The application remains mostly model-agnostic: it is not
required to understand high-level concepts like Spectrum, or Photometry.

Also, knowledge about the basic building-block types like quantities and
coordinates, may be hard-coded during development.

7



2.2.3 Data discovery portals

Data discovery portals allow users to query VO services, display metadata,
filter responses, and fetch datasets.

While these applications may not be particularly interested in specific
data models, standardized annotation mechanisms may allow their devel-
opers to dynamically capture the structure of the metadata, and provide
better exploratory tools rather than flat tables.

Consider for example filtering tables according to an arbitrary physical
quantity, say for instance the spectral coverage of a spectrum, the filter
with which an image was taken, or the luminosity of a source in a certain
band. The portal may provide a friendly interface that allows users to select
the physical quantities using standardized representations. It may do so
dynamically for all the pieces of metadata present in the dataset, rather
than limiting this functionality to a set of hard-coded metadata properties.

Also, the application may group data and metadata in a tree of concepts
the user is familiar with, rather than flattening the instrinsic structure of
the data.

By allowing such applications to faithfully represent data model in-
stances the way they were curated and annotated by data providers, and
according to the scientific domain with which users are familiar, this spec-
ification may enable users to easily make sense of the file contents, even if
the application lacks any knowledge of high-level data models.

Parsing VO-DML description files may be useful to provide the user with
even more, and more accurate, information.

2.2.4 Color-color diagrams

The creation of a color-color diagram requires knowledge of the semantics of
the rows and columns in a table, e.g. a source catalog. Also, some columns
may be grouped together in a structured way, e.g. a luminosity measure-
ment that goes with its error and a reference to the photometry filter it is
associated with, although such columns might not be adjacent in the file.

Usually, plotting applications are not aware of the semantics of the
columns in a table, and users may have to select all the relevant columns in
order to produce a meaningful plot. They may also have to convert between
units, and so on.

With a standardized annotation and knowledge of the annotations for
basic quantities a plotting application may find that there are luminosity
measurements in a VOTable and allow users to display color-color diagrams,
with error bars, and possibly with domain-specific actions like unit conver-
sions, seamlessly and requiring minimal input.

8



There are many examples of very specific use cases that may be imple-
mented by science applications that are aware of the semantics of specific
models and their annotations.

2.2.5 Validators

The existence of an explicit data model representation language and of a
precise, unambiguous mapping specification enables the creation of universal
validators, just as it happens for XML and XSD: the validator may parse
the data model descriptions imported by the VOTable and check that the
file represents valid instances of one or more data models.

2.2.6 VO Publishing Helper

There is some complexity involved in understanding how to publish data in
the Virtual Observatory. The availability of a standard for serializing data
model instances can provide tools for publishers to build templates of their
responses.

Such application may help data providers in interactively mapping Data
Models elements to their files or DB tables, either producing a VOTable
template with the appropriate annotations, or by creating a DAL service on
the fly.

The application is not required to be model-aware, since it may get all
the information from the standardized description files and the mapping
specification.

2.2.7 VO Importer

Users and Data Providers may have non-compliant files that they want to
convert to a VO-compliant format according to some data models: a generic,
model-unaware importer application may allow them to do so for any stan-
dard data model with a proper description file.

2.3 Generic Use Cases

This section generalizes the previous one by stating the same use cases in
a more abstract, generic formulation. It also adds some more generic use
cases that this specification addresses or enables.

2.3.1 Serialize and de-serialize instances according to a data model

Data providers may want to serialize data and metadata in VOTable ac-
cording to a specific data model with a standardized description.

9



A client may build an in-memory faithful representation of that instance
according to the data provider’s annotations, assuming the knowledge of
a finite set of data model identifiers, of a full data model, or by parsing
standard VO-DML data model specifications.

2.3.2 Annotate files according to multiple models

Data providers may find it useful to annotate a file according to different
data models for different classes of data consumers. Also, they may decide to
provide annotations according to different versions of a specific data model,
to favor backward compatibility with older clients.

2.3.3 Representing cross matches and linking files together

It is often the case that two or more files or tables represent different pieces
of information regarding the same astronomical sources of objects. In these
cases, one or more columns usually are used as keys to identify instances in
such tables.

For instance, the output of a cross-matching service may provide the
IDs of the cross matched sources along with some data regarding the cross-
matching process, while most of the data about the sources themselves may
be stored in different tables.

This is a very common relational pattern. A standardized annotation
with Object-Relational Mapping capabilities may be used to connect differ-
ent tables and provide users with a unified view according to data models
the user is familiar with.

It is then possible to link different views of the datasets, with an addi-
tional layer of semantics. For instance, an application may display the image
of a region of the sky, and a catalogue may contain information about sources
in the catalogue.

A user may want to link the image to the catalogue. When no a-priori
link between the image coordinates and the positions in the catalogue is
known, users need to set such links themselves, by selecting the relevant
columns. With standardized annotations according to specific data models
applications can figure out the links themselves, and ask the user to intervene
only when there is ambiguity or lack of information, or when the user wants
to make a custom link.

Similarly, one may produce a color-color diagram from magnitudes stored
in different tables as long as there is a known mapping from source identifiers
among tables, and a standardized annotation of all the tables involved.

10



2.3.4 Mission-specific data model extensions

One may identify data and metadata features that are common to a certain
astronomical domain, e.g. catalogues of astronomical sources. These are the
models the IVOA sanctions in standards.

However, different missions, or archives, or applications will most cer-
tainly have specific additional features that are not captured by such com-
mon, standardized data models.

One may express such extensions and their instances in such a way that:
* data providers may easily annotate specialized instances, including the
additional information, in a standardized, interoperable fashion. * clients of
the common, standard data models may still find instances of these parent
models in files serializing specialized instanced. * a model annotation that
is valid according to a specialized data model is also valid according to the
parent model.

This use case can be formalized in terms of inheritance and polymor-
phism.

Inheritance allows models to specialize types defined in other data mod-
els. Polymorphism is the common object-oriented design concept that says
that the value of a property may be an instance of a subtype of the declared
type.

Typed languages such as Java support a casting operation, which pro-
vides more information to the interpreter about the type it may expect a
certain instance to be.

A client must be able to identify the information about a standard type,
even if the serialization includes instances of its subtypes. Similarly, a client
should have enough information to cast an instance from the declared type
to the actual subtype.

2.4 Growing complexity: simple, advanced, and guru clients

According to the use cases depicted above, we can classify clients in terms
of how they parse the VOTable in order to harvest its content. Of course,
in the real word such distinction is somewhat fuzzy, but this section tries
and describe the different levels of usage of this specification.

This classification is useful because it shows how implementations can be
based on different assumptions. Some clients can focus on few hard-coded
elements, while other clients can dynamically address complex tasks.

2.4.1 Simple clients

We say that a client is simple if:

• it does not parse the VO-DML description file

11



• it assumes the a priori knowledge of one or more data models

• it discovers information by looking for a set of predefined vodml-refs
in the VOTable

In other terms, a simple client has knowledge of the data model it is
sensitive to, and simply discovers information useful to its own use cases by
traversing the VODML element.

Examples of such clients are the DAL service clients that allow users to
discover and fetch datasets. They may just inspect the response of a service
and present the user with a subset of its metadata. They do not reason on
the content, and they are not interested in the structure of the serialized
objects.

If such clients allow users to download the files that they load into mem-
ory, they should make sure to preserve the structure of the metadata, so to
be interoperable with other applications that might ingest the same file at
a later stage.

2.4.2 Advanced clients

We say that a client is advanced if:

• it does not parse the VO-DML description file

• it is interested in the structure of the serialized instances

• can parse the elements defined in this specification

Examples of such clients are discovery portals or science applications
that display information to the user in a structured way, e.g. by plotting
it, or by displaying its metadata in a user-friendly format. Possibly, such
applications may allow users to save versions of the serialization after it has
been manipulated.

Such clients may not assume any knowledge of any specific data models.
In some cases they may assume knowledge of some types from some basic,
common data models, to perform additional tasks.

Even if such applications may be model-unaware, they may allow users
to build Boolean filters on a table, using a user-friendly tree representing
the whole metadata. This exposes all the metadata provided by the Data
Provider in a way that may not be meaningful for the application, but that
may be meaningful for the user.

12



2.4.3 Guru clients

We say that a client falls into this category if:

• it parses the VO-DML descriptions

• it does not assume any a priori knowledge of any data models.

Such applications can, for example, dynamically allow users and data
providers to map their files or databases to the IVOA data models in order to
make them compliant, or display the content of any file annotated according
to this standard.

This specification allows the creation of universal validators equivalent
to the XML/XSD ones.

It also allows the creation of VO-enabled frameworks and reusable li-
braries. For instance, a Python universal I/O library can parse any VOTable
according to the data models it uses, and dynamically build structured ob-
jects on the fly, so that users can directly interact with those objects or use
them in their scripts or in science applications, and then save the results in
a VO-compliant format.

Java and Python guru clients could automatically generate interfaces
for representing data models and dynamically implement those interfaces at
runtime, maybe building different views of the same file in different contexts.

Notice that guru frameworks and libraries can be used to build advanced
or even simple applications in a user-friendly way, abstracting the developers
from the technical details of the standards and using scientific concepts as
first class citizens instead.

2.5 Formats other than VOTable

We want to explicitly note that this specification covers the VOTable format
only.

Other mapping specifications can and will provide standardized strate-
gies for mapping Data Models to formats other than VOTable.

Part of the implementation efforts related to the present specification
was to validate the standard against prototype serializations in JSON and
YAML formats.

Mapping specifications targeting additional formats can use this docu-
ment as a template.

3 The need for a mapping language
When encountering a data container, i.e. a file or database containing data,
one may wish to interpret its contents according to some external, prede-
fined data model. That is, one may want to try to identify and extract

13



instances of the data model from amongst the information. For example
in the global as view approach to information integration, one identifies el-
ements (e.g. tables) defined in a global schema with views defined on the
distributed databases2.

If one is told that the data container is structured according to some
standard serialization format of the data model, one is done. I.e. if the
local database is an exact implementation of the global schema, one needs
no special annotation mechanism to identify these instances. An example of
this is an XML document conforming to an XML schema that is an exact
physical representation of the data model. We call such representations
faithful.

But in an information integration project like the IVOA, which aims to
homogenize access to many distributed heterogeneous data sets, databases
and documents are in general not structured according to a standard rep-
resentation of some predefined, global data model. The best one may hope
for is to obtain an interpretation of the data set, defining it as a custom
serialization of the result of a transformation of the global data model3. For
example, even if databases themselves are exact replications of a global data
model, results of general queries will be such custom serializations.

To interpret such a custom serialization one generally needs extra infor-
mation that can provide a mapping of the serialization to the original model.
If the serialization format is known, this mapping may be given in phrases
containing elements both from the serialization format and the data model.
For example if our serialization contains data stored in ‘rows’ in one or more
‘tables’ that each have a unique ‘name’ and contain ‘columns’ also with a
‘name’, you might be able to say things like:

• The rows in this table named SOURCE contain instances of object
type ‘Source’ as defined in data model ‘SourceDM’.

• The type’s ‘name’ attribute (having datatype ‘string’, a primitive type)
also acts as the identifier of the Source instances and is stored in the
single column with ID ‘name’.

• The type’s ‘classification’ attribute is stored in the table column CLAS-
SIFICATION (from the data model we know its datatype is an enu-
meration with certain values, e.g. ‘star’, ‘galaxy’, ‘agn’).

• The type’s ‘position’ attribute (being of structured data type ‘SkyCoor-
dinate’ defined in model ‘SourceDM’) is stored over the two columns
RA and DEC, where RA stores the SkyCoordinate’s attribute ‘longi-
tude’, DEC stores the ‘latitude‘ attribute. Both must be interpreted

2See, for example, http://logic.stanford.edu/dataintegration/chapters/chap01.html
3Or alternatively as a transformation of a (standard) serialization of the data model.

14



using an instance of the SkyCoordinateSystem type, This instance is
stored in 1) another document elsewhere, referenced by a reference to
a URI, or 2) in this document, by means of an identifier.

• Instances from the collection of luminosities of the Source instances
are stored in the same row as the source itself. Columns MAG_U and
ERR_U give the ‘magnitude’ and ‘error’ attributes of type Luminosi-
tyMeasurement in the “u band”, an instance of the Filter type. (stored
elsewhere in this document (‘a reference to this Filter instance is …’).
Columns MAG_G and ERR_G … etc.

• Luminosity instances also have a filter relation that points to instances
of the PhotometryFilter structured data type, defined in the IVOA
PhotDM model, whose package is imported by the SourceDM.

In this example the emphasized words refer to concepts defined in VO-
DML, a meta-model that is used as a formal language for expressing data
models. The use of such a modeling language lies in the fact that it pro-
vides formal, simple, and implementation neutral definitions of the possible
structure, the ‘type’ and ‘role’ of the elements from the actual data models
that one may encounter in the serialization (SourceDM). This can be used
to constrain or validate the serialization, but more importantly it allows us
to formulate mapping rules between the serialization format (itself a kind of
meta-model) and the meta-model, independent of the particular data models
used; for example rules like:

• An object type MUST be stored in an ‘INSTANCE’.

• A ‘primitive type’ MUST be stored in a ‘COLUMN’.

• A reference MUST identify an object type instance represented else-
where, possibly in another ‘table’, possibly in the same table, possibly
in another document.

• An attribute SHOULD be stored in the same table as its containing
object type.

• etc

Clearly free-form English sentences as the ones in the example are not
what we are after. If we want to be able to identify how a data model
is represented in some custom serialization we need a formal, computer
readable mapping language.

One part of the mapping language should be anchored in a formally
defined serialization language. After all, for some tool to interpret a serial-
ization, it MUST understand its format. A completely freeform serialization

15



is not under consideration here. This document assumes the target meta-
model is VOTable.

The mapping language must support the interpretation of elements from
the serialization language in terms of elements from the data model. If we
want to define a generic mapping mechanism, one by which we can describe
how a general data model is serialized inside a VOTable, it is necessary to
use a general data model language as the target for the mapping, such as the
one described above. This language can give formal and more explicit mean-
ing to data modeling concepts, possibly independent of specific languages
representation languages such as XML schema, Java, or the relational model.

This document uses VO-DML as the target language.
The final ingredient in the mapping language is a mechanism that ties

the components from the two different meta-models together into sentences.
This generally requires some kind of explicit annotation, some meta-data
elements that provide an identification of source to target structure. This
document uses an extension to VOTable with a VODML element which can
provide this link in a rather simple manner.

This solution is sufficient and it is in some sense the simplest and most ex-
plicit approach for annotating a VOTable. It may not be the most natural or
suitable approach for other meta-models such as FITS or TAP_SCHEMA.
We discuss this at the end of this document.

4 Mapping with the VODML element.
This section summarizes the technical basis of this reccomendation.

The present specification, in conjunction with with VO-DML recom-
mendation (Lemson 2015) provides a formal mechanism for using such data
model identifiers, although different from the original @utype attribute def-
inition and its usages (Graham 2013).

VOTable 1.2 introduced the @utype attribute, which was intended to
represent “pointers into a data model”. A precise and formal definition on
how this pointing was to be achieved and a description of its meaning was
missing though.

First, a formal definition of the target of the pointers was missing. To
solve this, data models were usually accompanied by a list of utypes (TODO
[TBD refer to STC, Characterization, Spectrum?]), and these could be used
as values for said @utype, be it in VOTable or for example in the Table
Access Protocol metadata. These were not linked in any formal, machine
readable way to the underlying data model.

Basically it means that the data model is represented solely by a list
of attributes, which does not do justice to the complexity of data models
describing complex data products like Data Cubes or the provenance of

16



Simulations. These contain complex object hierarchies organized in graphs
with various types of relations between individual objects. It also proved
difficult to express the relationship among different, but overlapping, data
models, with much discussion centred on the question how to reuse utypes
from one model in the definition of another.

The approach is basically not much more than another vocabulary, sim-
ilar to UCDs (“UCDs” 1900), or SKOS vocabularies (“PR on Use of SKOS
Vocabularies in IVOA” 1900), obtained by different means. Efforts were
made to provide some structure to these values that might provide some
hints of their location in a model, but there was no formal mechanism on
how to derive that structure and it was unclear whether it could truly repre-
sent the richness of the existing and future data models. In particular there
was no standard defined how this could be achieved and no common usage
patterns were discovered (Graham 2013).

VO-DML provides a formal target for these pointers in the data model
itself and formally defines how models can be reused in the definition of
other, dependent models. Precisely how to use these pointers in a VOTable
to provide a complete annotation useful for interoperability requires more
work though.

The current specification provides such a definition. It shows how data
publishers can identify also the more complex data model elements such as
structured types and relationships inside some published data source, be it
a VOTable or relational database published through the TAP protocol.

This specification defines various mapping patterns from VOTable to VO-
DML. Such a pattern identifies a VOTable element with a VO-DML element.
The VO-DML element is said to be represented by the VOTable element.
The mapping pattern indicates that instances of identified VO-DML types
are present in the VOTable. These may be atomic values (instances of VO-
DML ValueTypes (Lemson 2015)) or represented by cells in a table column
identified by a FIELD. Alternatively they may be instances of structured
types.

The extension to the VOTable schema is reproduced in sec. 7.

4.1 VODMLReference

This XML type represents a reference to a single element in a VO-
DML/XML document. It takea over the role of the @utype attribute in
this regards. Whenever we wish to refer to instances of the VODMLRefer-
ence type we will call them vodmlref-s. A vodmlref is a string with the
following syntax:

1 vodmlref ::= prefix ‘’: vodml-id

17



The prefix identifies the model in which the element identified by the
suffix is defined.

vodml-ids are always considered opaque, meaning that clients have no
reason to parse them. They are identifiers mapping VOTable elements to
VO-DML elements in the identified data model. Thus, they must follow the
same syntax rules defined in the VO-DML/Schema document.

Prefixes MUST be exactly the same as the name attribute of the model
in the VO-DML/XML document that defines it. They are sequences of
[A-Za-z0-9_-], and they are case sensitive.

For new models, that are not (yet) standardized or for custom data mod-
els used in a smaller community, it is recommended to form DM prefixes as
<author-acronym>_<dm-name>, where the <dm-name> is the name of a standard
data model; thus, NED’s derivation of spec could have ned_spec as a prefix,
CDS’s derivation cds_spec.

Prefixes correspond to major versions for the corresponding data models.
Thus, vodmlrefs remain constant over “compatible” changes in the sense of
(Lemson 2015). In consequence, clients must assume a compatible extension
when encountering an unknown vodmlref with a known prefix (and should
in general not fail).

Another consequence of this rule is that there may be several VO-DML
URLs for a given prefix. To identify a data model, use the prefix, not the
VO-DML URL, which is intended for retrieval of the data model definition
exclusively. In case a client requires the exact minor version of the data
model, it must inspect the models declarations as described in sec. 6

(TODO OL: This doesn’t feel right. I believe minor versions should
be uniquely identified by a URI and without having to parse the descrip-
tor, especially since we have started talking about registering models in the
Registry.)

How to look for a vodmlref in a document (TODO to fill out once the
syntax has settled)

5 General information about this spec

5.1 Sample model and instances

(TODO This needs to be filled with the designated sample model)

5.2 Single-table representations and Object-Relational Mapping

Broadly speaking, this specification is all about Object-Relational Mapping
(ORM). Data Models are represented in VO-DML according to an Entity-
Relationship paradigm, in a fashion that is implementable by relational

18



databases, object oriented languages, and possibly by certain document ori-
ented data bases as well.

As VOTable can represent several tables in the same file with rich meta-
data, one can look at VOTable as a data base that can store instances of
complex relational models.

Such models are usually defined in terms of entities, with each table
representing each entity, and relationships that can be expressed as tables
themselves or as constraints on the values in the tables, and most often with
a combination of tables and constraints. For instance, a Many-To-Many
relationship between two Entities is usually represented in the relational
model as a table holding IDs of instances from the tables representing the
Entities, with Foreign Keys constraints.

Astronomers mainly work with single tables that hold flattened repre-
sentations of relatively simple models, although in some cases complex data
models are serialized in several tables inside the same file.

This specification covers both requirements. Serializations of simple
models in a flattened table are easier to achieve than complex ORM map-
pings where information is normalized into different tables, but they are both
achievable in VOTable. Moreover, the hybrid case of partly de-normalized
representations, where the model is only partly normalized, is more chal-
lenging but should also be addressable in terms of this specification.

In any case, the examples in sec. 6 are focused on the single-table, flat-
tened representations of instances according to some data model. Some of
the patterns described in these sections are also applicable to simple ORM
cases. Especially the sections dealing with mapping reference and com-
position relations also deal with the more complex cases of proper ORM
mappings, where data is partly or completely normalized into different ta-
bles.

The simple and complex ORM patterns described by this specification
usually belong to very different concrete use cases, so it should be acceptable
in a broad range of cases that implementers, both on the server and on the
client side, focus on the single-table mappings. Data providers requiring
more complex patterns, more advanced applications, or applications built
on top of standard software libraries that implement this specification as a
whole will need to take advantage of the ORM mapping patterns.

6 Patterns for annotating VOTable [NORMATIVE]
In this section we list all legal mapping patterns that can be used to express
how instances of VO-DML-defined types are represented in a VOTable and
the possible roles they play. It defines the VOTable annotation syntax, what
restrictions there are, and how to interpret the annotation semantically.

19



The organization of the following sections is based on the XML types
introduced in the new VOTable schema. The entire VO-DML annotation is
included in a new VODML element and its descendents. The following sections
introduce each element and how it is used to map the VO-DML concepts to
VOTable documents.

In particular, secs. 6.1, 6.2 describe the schema elements that provide
data model annotations, while sec. 6.3 inverts this approach and shows how
to map VO-DML concepts to the VOTable elements that have been intro-
duced.

Some comments on how we refer to VOTable and VO-DML elements:

• When referring to VOTable elements we will use the notation by which
these elements will occur in VOTable documents, i.e. in general “all
caps”, E.g. GROUP, FIELD, (though FIELDref).

• When referring to an XML attribute on a VOTable element we will
prefix it with a ‘@’, e.g. @id, @ref.

• References to VO-DML elements will be CamelCase and in bold face
↪→ , using their VO-DML/XSD type definitions. E.g. ObjectType,
Attribute.

The following list defines some shorthand phrases (italicized), which we
use in the descriptions below:

• Generally when using the phrase meta-type we mean a “kind of” type as
defined in VO-DML. These are PrimitiveType, Enumeration, DataType
and ObjectType.

• With atomic type we will mean a PrimitiveType or an Enumeration as
defined in VO-DML.

• A structured type will refer to an ObjectType or DataType as defined in
VO-DML.

• With a property available on or defined on a (structured) type we will
mean an Attribute or Reference, or (in the case of ObjectTypes) a
Composition defined on that type itself, or inherited from one of its
base class ancestors.

• A VO-DML Type plays a role in the definition of another (structured)
type if the former is the declared data type of a property available on
the latter.

• When writing that a VOTable element represents a certain VO-DML
type, we mean that the VOTable element is mapped either directly
to the type, or that it identifies a role played by the type in another
type’s definition.

20



• A descendant of a VOTable element is an element contained in that
element, or in a descendant of that element. This is a standard recur-
sive definition and can go up the hierarchy as well: an ancestor of an
element is the direct container of that element, or an ancestor of that
container.

When we say this section is NORMATIVE we mean that:

1. when a client finds an annotation pattern conforming to one defined
here, that client is justified in interpreting it as described in the com-
ments for that pattern. It is an ANNOTATION ERROR if that were
to lead to inconsistencies4.

2. when a client encounters a pattern not in this list, the client SHOULD
ignore it. Interpreting it as a mapping to a data model MAY work,
but is not mandated and other clients need not conform to this.

6.1 The VODML element

This specification introduces a new VODML element to VOTABLE.
The element is a direct child of VOTABLE and only one VODML element is

allowed in each file. This element contains all the data model annotations
for the entire file.5

There are three sections making up the contents of the VODML annotation:

• model declarations (MODEL elements)
• global instances (GLOBALS elements)
• tabular instance templates (TEMPLATES).
4E.g. when interpreting an <INSTANCE> as a certain ObjectType, if one of its children

is not annotated or identifies a child element that is not available on the type, this is an
error. For each pattern there is a set of rules that, if broken, are annotation errors.
(TODO we better strive to make these comprehensive. OL thinks this is too strict of
a default rule. We should probably be more lenient by default and add strictness where
required. A lot is already mandated by the new schema.)

5Earlier versions of this specification had the VODML element defined as a potential child
of several existing elements, including RESOURCE and TABLE. While this achieved a form of
locality by bringing the annotations close to the elements it was annotating, it introduced
two different, valid ways of annotating files. Also, the locality it achieved was completely
lost in the more complex cases with multiple TABLE elements, where this kind of locality
matters the most. A single instance of VODML is much simpler to implement for data
providers and consumers alike, and it provides only one obvious way of annotating a file.
On the other hand, the single VODML element might pose challenges to providers streaming
VOTable instances without a knowledge of the semantics of the contents upfront. This
case seems more like a theoretical possibility than an actual implementation at this point,
so it was ignored. It could always be possible to add the VODML element as a child of other
elements in future versions of this specification, keeping into account actual requirements
from actual implementations rather than just a theoretical possibility.

21



The model declarations introduce the models used in the annotation.
Global instances are direct instances, i.e. instances whose values are com-
pletely determined by the annotation, as opposed to instance templates,
which annotates multiple instances that have some of their values repre-
sented in tabular format inside the annotated file, as described in more
detiail in the following sections.

6.1.1 Example

Listing 1: Example VOTable with basic annotations. This VOTable illus-
trates the basic annotation elements in the ‘VODML‘ section. More complex
examples will be provided in the following sections.

1 <?xml version="1.0" encoding="UTF-8"?><VOTABLE xmlns="http://www.
↪→ ivoa.net/xml/VOTable/v1.4" xmlns:xsi="http://www.w3.org/2001/
↪→ XMLSchema-instance">

2 <VODML>
3 <MODEL>
4 <NAME>ivoa</NAME>
5 <URL>http://volute.g-vo.org/svn/trunk/projects/dm/vo-dml/models

↪→ /ivoa/IVOA.vo-dml.xml</URL>
6 </MODEL>
7 <MODEL>
8 <NAME>filter</NAME>
9 <URL>http://volute.g-vo.org/svn/trunk/projects/dm/vo-dml/models

↪→ /sample/filter/Filter.vo-dml.xml</URL>
10 </MODEL>
11 <MODEL>
12 <NAME>sample</NAME>
13 <URL>https://raw.githubusercontent.com/olaurino/jovial/new-

↪→ mapping/src/test/resources/votable/Sample.vo-dml.xml</
↪→ URL>

14 </MODEL>
15 <GLOBALS>
16 <INSTANCE dmtype="sample:catalog.SkyCoordinateFrame" ID="_icrs"

↪→ >
17 <ATTRIBUTE dmrole="sample:catalog.SkyCoordinateFrame.name">
18 <LITERAL value="ICRS" dmtype="ivoa:string"/>
19 </ATTRIBUTE>
20 </INSTANCE>
21 </GLOBALS>
22 <TEMPLATES tableref="_table1">
23 <INSTANCE dmtype="sample:catalog.SDSSSource">
24 <ATTRIBUTE dmrole="sample:catalog.AbstractSource.position">
25 <INSTANCE dmtype="sample:catalog.SkyCoordinate">
26 <REFERENCE dmrole="sample:catalog.SkyCoordinate.frame">
27 <IDREF>_icrs</IDREF>
28 </REFERENCE>

22



29 <ATTRIBUTE dmrole="sample:catalog.SkyCoordinate.longitude"
↪→ >

30 <COLUMN dmtype="ivoa:RealQuantity" ref="_ra"/>
31 </ATTRIBUTE>
32 <ATTRIBUTE dmrole="sample:catalog.SkyCoordinate.latitude">
33 <COLUMN dmtype="ivoa:RealQuantity" ref="_dec"/>
34 </ATTRIBUTE>
35 </INSTANCE>
36 </ATTRIBUTE>
37 <ATTRIBUTE dmrole="sample:catalog.AbstractSource.name">
38 <COLUMN dmtype="ivoa:string" ref="_designation"/>
39 </ATTRIBUTE>
40 </INSTANCE>
41 </TEMPLATES>
42 </VODML>
43 <RESOURCE>
44 <TABLE ID="_table1">
45 <FIELD datatype="float" arraysize="1" ID="_ra"/>
46 <FIELD datatype="float" arraysize="1" ID="_dec"/>
47 <FIELD datatype="char" arraysize="16" ID="_designation"/>
48 <DATA>
49 <TABLEDATA>
50 <TR>
51 <TD>122.992773</TD>
52 <TD>-2.092676</TD>
53 <TD>08115826-0205336</TD>
54 </TR>
55 <TR>
56 <TD>122.986794</TD>
57 <TD>-2.095231</TD>
58 <TD>08115683-0205428</TD>
59 </TR>
60 <TR>
61 <TD>123.033734</TD>
62 <TD>-2.103671</TD>
63 <TD>08120809-0206132</TD>
64 </TR>
65 </TABLEDATA>
66 </DATA>
67 </TABLE>
68 </RESOURCE>
69 </VOTABLE>

The example in lst. 1 uses sample models that are simple enough to
be useful for exploring the mapping patterns, but also complete as they
exercise the entirety of the mapping schema. These models are not IVOA
standard models themselves, but were defined for illustrating the mapping
specification only.

23



6.1.2 Models Declaration: MODEL

A VOTable can provide serializations for an arbitrary number of data model
types. In order to declare which models are represented in the file, data
providers must declare them through the MODEL elements.

Only models that are used in the file must be declared. A model is
used if at least one element in the file has a vodml-ref with the model’s
prefix/name. In other terms, only models that define vodml-ids used in the
annotation (see sec. 4.1) must be declared.

A MODEL is uniquely and globally identified by its NAME, which refers to the
latest available minor version of a specific model. According to the VO-DML
specification (Lemson 2015), all minor versions of a model are compatible
with each other, and major versions have different names (e.g. stc vs stc2).

Clients should not be sensible to the specific minor version of a model
and can simply ignore vodml-refs they are not familiar with.

The NAME is also the prefix of the vodml-refs pointing to elements of a
specific model.

For clients that need to parse the model descriptions, i.e. the VODM-
L/XML file of a model, data providers must include the URL of the VODM-
L/XML document in the MODEL/URL element. if the model is defined in an
IVOA recommendation, then this URL must be persistent, and the same
URL that is registered for that model in the IVOA registries. If the model is
a custom extensions, it should also be registered in IVOA registries. How-
ever, since this is not a requirement, for custom extensions that are not
registered data providers must still provide the URL of the VODML/XML
description file, and care should be taken into ensuring that the URL is per-
sistent, otherwise clients will not be able to read the model definition. For
more information on registering and identifying data models, please refer to
the VO-DML specification ((Lemson 2015))

Note that because of the above procurements, clients are not required
to resolve the NAME of the model to its VODML/XML document, but can, if
necessary, rely on the URL element.

In lst. 1 three models are declared, with the names ivoa, filter, and
sample, which are the prefixes used in all the vodml-refs in the file.

6.1.3 Instance Annotation: INSTANCE

VO-DML structured types are annotated by using the new INSTANCE XML
element. Note that there is no difference, from a schema point of view,
between **ObjectType**s and **DataType**s. However, some restrictions
apply and are enforced through schematron rules. More details are provided
in secs. 6.3.3, 6.3.4.

Instances must a type (@dmtype attribute). Note that instances are not
annotated with a role, as roles are mapped to specific XML elements (see

24



sec. 6.2). This is compatible with the intuitive fact that the same instance
can have different roles in relationships with other instances.

Instances may be provided with an @ID value which allows other objects
to refer to the instance itself (see sec. 6.2.6).

Instances usually have a number of roles, which can be themselves in-
stances through a composition relationship (sec. 6.2.9), references to other
instances (sec. 6.2.5), or attributes (sec. 6.2.1).

As explained in more detail in sec. 6.2.9 and related sections, a compo-
sition relationship is annotated so that parents contain or refer to children
instances and children point to their parent instances through the CONTAINER
element (sec. 6.2.11).

6.1.4 Global Instances: GLOBALS

Some annotations may map the VOTable contents to instances of data model
types that are global in the file, possibly because such instances are refer-
enced by other intances that annotate specific tables. More generally, some
annotations will define instances that are completely defined in terms of
constant value, i.e. they are not represented in tabular form. Rather, they
are completely and directly represented by an XML element.

Such instances should be included in the GLOBALS element.
An annotation can have multiple GLOBALS sections so to group together

global instances that are related to each other.
In particular, GLOBALS sections can be identifier by an @ID attribute. This

is particularly useful when referencing global instances from table elements,
see for instance sec. 6.2.8.

GLOBALS must only contain direct representations of instances, i.e.
INSTANCE elements that do not have any COLUMN elements directly or in any
of their descendants. This rule is not enforces via the XSD schema but by
schematron rules.

Also, GLOBALS should not contain any INSTANCEs with REFERENCEs to
indirect INSTANCEs, unless the model allows for multiple references with the
same role, which is however deprecated by the VO-DML specification.

As an example, lst. 1 contains one GLOBALS section with one instance
representing a coordinate frame in the rather simplistic sample model. The
coordinate frame instance is completely determined by the global INSTANCE.

6.1.5 Tabular Instances: TEMPLATES

Most data in VOTable is expressed in tabular form, each row represent-
ing one individual instance. When this is the case, instances need to be
represented through templates in the TEMPLATES section of the annotation.
An INSTANCE in a template is identical to INSTANCEs in the GLOBALS section,

25



but they are also allowed to contain COLUMN elements (see sec. 6.2.4), which
are references to regular VOTable FIELDs. Rather than being directly and
completely represented by its INSTANCE annotation, instances are thus ma-
terialized for each row in a table, according to their annotation. Note that
a COLUMN may be present either directly in an INSTANCE or in any of its de-
scendent INSTANCEs.

TEMPLATES must refer to a TABLE through the tableref attribute. COLUMN
elements inside a template INSTANCE must be references to FIELDs in the
TABLE identified by tableref.

In lst. 1 table _table1 contains simple astronomical sources with columns
for the sources names, Right Ascension, and Declination in the ICRS ref-
erence frame. Thus, the sources are annotated using an INSTANCE element
inside the TEMPLATES section of the VODML element. The instance and its at-
tributes refer to the three columns in the table and map their contents to
the attributes of sources and positions defined in the respective data model.

6.1.6 Direct vs Indirect Instances

As an illustration of the difference between direct and indirect instances,
consider the following VOTable:

Listing 2: VOTable where all instances are direct rather than indirect.
1 <?xml version="1.0" encoding="UTF-8"?><VOTABLE xmlns="http://www.

↪→ ivoa.net/xml/VOTable/v1.4" xmlns:xsi="http://www.w3.org/2001/
↪→ XMLSchema-instance">

2 <VODML>
3 <MODEL>
4 <NAME>ivoa</NAME>
5 <URL>http://volute.g-vo.org/svn/trunk/projects/dm/vo-dml/models

↪→ /ivoa/IVOA.vo-dml.xml</URL>
6 </MODEL>
7 <MODEL>
8 <NAME>filter</NAME>
9 <URL>http://volute.g-vo.org/svn/trunk/projects/dm/vo-dml/models

↪→ /sample/filter/Filter.vo-dml.xml</URL>
10 </MODEL>
11 <MODEL>
12 <NAME>sample</NAME>
13 <URL>https://raw.githubusercontent.com/olaurino/jovial/new-

↪→ mapping/src/test/resources/votable/Sample.vo-dml.xml</
↪→ URL>

14 </MODEL>
15 <GLOBALS>
16 <INSTANCE dmtype="sample:catalog.SkyCoordinateFrame" ID="_icrs"

↪→ >
17 <ATTRIBUTE dmrole="sample:catalog.SkyCoordinateFrame.name">
18 <LITERAL value="ICRS" dmtype="ivoa:string"/>

26



19 </ATTRIBUTE>
20 </INSTANCE>
21 <INSTANCE dmtype="sample:catalog.SDSSSource">
22 <ATTRIBUTE dmrole="sample:catalog.AbstractSource.name">
23 <LITERAL value="08120809-0206132" dmtype="ivoa:string"/>
24 </ATTRIBUTE>
25 <ATTRIBUTE dmrole="sample:catalog.AbstractSource.position">
26 <INSTANCE dmtype="sample:catalog.SkyCoordinate">
27 <ATTRIBUTE dmrole="sample:catalog.SkyCoordinate.longitude"

↪→ >
28 <LITERAL value="123.033734" dmtype="ivoa:RealQuantity"/>
29 </ATTRIBUTE>
30 <ATTRIBUTE dmrole="sample:catalog.SkyCoordinate.latitude">
31 <LITERAL value="-2.103671" dmtype="ivoa:RealQuantity"/>
32 </ATTRIBUTE>
33 <REFERENCE dmrole="sample:catalog.SkyCoordinate.frame">
34 <IDREF>_icrs</IDREF>
35 </REFERENCE>
36 </INSTANCE>
37 </ATTRIBUTE>
38 </INSTANCE>
39 <INSTANCE dmtype="sample:catalog.SDSSSource">
40 <ATTRIBUTE dmrole="sample:catalog.AbstractSource.name">
41 <LITERAL value="08115683-0205428" dmtype="ivoa:string"/>
42 </ATTRIBUTE>
43 <ATTRIBUTE dmrole="sample:catalog.AbstractSource.position">
44 <INSTANCE dmtype="sample:catalog.SkyCoordinate">
45 <ATTRIBUTE dmrole="sample:catalog.SkyCoordinate.longitude"

↪→ >
46 <LITERAL value="122.986794" dmtype="ivoa:RealQuantity"/>
47 </ATTRIBUTE>
48 <ATTRIBUTE dmrole="sample:catalog.SkyCoordinate.latitude">
49 <LITERAL value="-2.095231" dmtype="ivoa:RealQuantity"/>
50 </ATTRIBUTE>
51 <REFERENCE dmrole="sample:catalog.SkyCoordinate.frame">
52 <IDREF>_icrs</IDREF>
53 </REFERENCE>
54 </INSTANCE>
55 </ATTRIBUTE>
56 </INSTANCE>
57 <INSTANCE dmtype="sample:catalog.SDSSSource">
58 <ATTRIBUTE dmrole="sample:catalog.AbstractSource.name">
59 <LITERAL value="08120809-0206132" dmtype="ivoa:string"/>
60 </ATTRIBUTE>
61 <ATTRIBUTE dmrole="sample:catalog.AbstractSource.position">
62 <INSTANCE dmtype="sample:catalog.SkyCoordinate">
63 <ATTRIBUTE dmrole="sample:catalog.SkyCoordinate.longitude"

↪→ >
64 <LITERAL value="122.992773" dmtype="ivoa:RealQuantity"/>

27



65 </ATTRIBUTE>
66 <ATTRIBUTE dmrole="sample:catalog.SkyCoordinate.latitude">
67 <LITERAL value="-2.092676" dmtype="ivoa:RealQuantity"/>
68 </ATTRIBUTE>
69 <REFERENCE dmrole="sample:catalog.SkyCoordinate.frame">
70 <IDREF>_icrs</IDREF>
71 </REFERENCE>
72 </INSTANCE>
73 </ATTRIBUTE>
74 </INSTANCE>
75 </GLOBALS>
76 </VODML>
77 </VOTABLE>

This is a representation of the very same instances as in lst. 1. However,
while lst. 1 uses template instances in TEMPLATES and a TABLE element to
represent the values of the sources, lst. 2 uses direct representations for all
three sources in the example.

Generally speaking, this specification is used to annotate data products
according to one or more data models. In this sense, the choice on whether to
use direct or indirect representations is driven by the data being produced.
In principle, for each indirect representation there is an equivalent indirect
representation where template instances and one or more tables are turned
into a number of explicit, direct instances.

6.1.7 Schema Constraints

In order to be valid, the VODML must contain at least one MODEL instance and
at least one of either GLOBALS or TEMPLATES, which in turn must contain at
least one INSTANCE.

6.2 Relations

All instances have a type, and some instances also play a role in another
instance. For example, if a Source has a position of type Coordinate,
then an instance of type Coordinate will also have the role of position in
the enclosing Source instance.

The role corresponds to a relationship between two types.
The following roles are mapped from VO-DML to VOTable:

• Attributes (sec. 6.2.1).
• Compositions (sec. 6.2.9).
• References (sec. 6.2.5).

28



6.2.1 Attributes: ATTRIBUTE

An attribute may be represented by another instance (sec. 6.1.3), by a prim-
itive or enumerated value (secs. 6.2.2, 6.2.3), or by a column (sec. 6.2.4) if
the parent instance is a template, i.e. an indirect representation.

An ATTRIBUTE must have a @dmrole attribute indicating the role of the
attribute, and such @dmrole must be a valid vodml-ref as defined in one
of the VO-DML models declared in the models section (sec. 6.1.2). The
vodml-ref must also identify a VO-DML Attribute.

6.2.2 Attributes: LITERAL

A LITERAL must represent an attribute with a primitive or enumerated type.
It must have a @value attribute and optionally a @unit. It must also have a
@dmrole attribute, whose value must be a valid vodml-ref defined in one of
the declared models (sec. 6.1.2) and identify a VO-DML role with a primitive
type.

6.2.3 Attributes: CONSTANT

A CONSTANT is a reference to a VOTable PARAM. This element can be used
in place of a LITERAL to point to an existing PARAM in the same VOTable,
avoiding duplicated values.

Note that the target of the reference must be a PARAM.6

6.2.4 Template Attributes: COLUMN

A COLUMN is a reference to a VOTable FIELD. Instances representing at-
tributes as COLUMNs must be defined inside a TEMPLATES element. A COLUMN
↪→ must have a @dmtype attribute whose value must be a valid vodml-ref
defined by one of the declared models (sec. 6.1.2). Such vodml-ref must
identify the VO-DML type corresponding to the enclosing attribute’s role.

6There are a few design considerations behind the choice of not including PARAMs,
PARAMrefs and FIELDrefs directly in this specification. One is that the VO-DML map-
ping schema might be used outside of is VOTable context to describe and map data model
instances in XML. The other is to keep the VOTable and VO-DML schemata as much
decoupled as possible, in order to facilitate future revisions. Also, PARAM is too rich of an
element with its own attributes and semantics. Such semantics are rather different than
the ones in VO-DML, in particular regarding the different kinds of types (@utype, @xtype,
@datatype) and annotations (@arraysize, @ucd) that a PARAM is composed of, which
do not have an equivalent in VO-DML.

29



6.2.5 References: REFERENCE

A reference is a relationship between a referring instance and a referred
instance. While the referring instance can be both an ObjectType and a
DataType the referred instance must be of an ObjectType.

The reference can be to an identified direct instance in the same file
(sec. 6.2.6), to a remote instance identified by a URI (sec. 6.2.7), or to an
instance indirectly represented by a template, through a foreign key pointing
at the referred instance’s primary key (sec. 6.2.8).

6.2.6 References: IDREF

In order to use IDREF the referred instance must be an instance of an
ObjectType, it must be serialized as a direct instance, and it must be lo-
cated in the same document as the referrer instance. Also, there must be a
correspondent relationship defined in the VO-DML description of the model
in which the referrer type is defined.

6.2.7 References: REMOTEREFERENCE

In order to use REMOTEREFERENCE the referred instance must be an instance
of an ObjectType, it must be serialized as a direct instance, and it must
be located in a different document than the referrer instance. Also, there
must be a correspondent relationship defined in the VO-DML description
of the model in which the referrer type is defined.

REMOTEREFERENCE is of type xs:anyURI an must identify a globally unique
instance through a specific URI (e.g. an IVOA Resource Name), or a URL
to the serialization of the instance, but the URL must be persistent.

6.2.8 References: FOREIGNKEY

The referred instance may be serialized as a row in a table different than the
one serializing the referrer (if any). In this case the reference is annotated
through a FOREIGNKEY (sec. 6.2.13).

6.2.9 Composition: COMPOSITION

A composition is a whole-part relationship between ObjectTypes, where one
instance is said to be the container, or parent, or whole, and the other is said
to be the contained, or child, or part. In a VOTable composed instances may
be serialized directly within the parent instance (sec. 6.1.3) if the parent is
directly representated or if the part is serialized in the same table as the
parent, or externally (sec. 6.2.10) if the part is indirectly represented and
serialized in a different table. Children refer back to their parent through
an implicit container relationship (sec. 6.2.11). The reference is achieved

30



through a foreign key (sec. 6.2.13) referencing the container’s primary key
(sec. 6.2.12).

In order to be valid, the composition must link two ObjectTypes and
there must be a correspondent relationship defined in the VO-DML descrip-
tion of the model. The number of contained instances must be compatible
with the relationship’s multiplicity.

The COMPOSITION element must have a @dmrole attribute, whose value
must be a valid vodml-ref identifying a composition relationship in one of
the models declared (sec. 6.1.2), and types of the parent and children must
be compatible with the relationship defined in that model.

6.2.10 Composition: EXTINTANCES

A composition relationship can delegate the definition of some of the children
to an external INSTANCE declaration elsewhere in the file, for example if the
instances are defined in a different table.

The EXTINSTANCES element is useful for clients in that it links instances
from the parent to the children. In relational data bases, the composition
relatioship is usually implementing by referencing objects from the parts
to the whole, not the other way around (see @[sec:norm-container]). This
specification provides a way for containers to declare where the contained
objects are located and described.

(TODO this leaves the door open to the possibility that children refer
to their parents but not the other way around. Should clients be prepared
to this possibility? If so, then the EXTINSTANCES element is redundant. Oth-
erwise what seems to be redundant is the CONTAINER element).

6.2.11 Composition: CONTAINER

On the part side of a composition relationship, especially in complex Object
Relational Mapping applications, parts include a reference to their contain-
ers. This is consistent with the relational implementation of the composition
relationship. For more details see sec. 6.2.13.

6.2.12 PRIMARYKEY

Instances may be identified by an object identifier through the PRIMARYKEY
element.

An object identifier can have any number of PKFIELD fields. Each PKFIELD
is a choice among a LITERAL, i.e. a local value (sec. 6.2.2), a COLUMN, i.e. a
reference to a cell value (sec. 6.2.4), or a CONSTANT, i.e. a reference to a PARAM
(sec. 6.2.3).

31



Fields are values that make up the object identifier. Generally only one
value is used, but it is not uncommon for objects to be identified by a tuple
of values.

Primary keys must be unique within object types. In other terms there
can be no two instances with the same primary key in a single file. If two
instances appear to have the same primary key then client’s behavior is
undefined.

6.2.13 FOREIGNKEY

In Object Relational Mapping a foreign key is the mechanism by which
instances in a table identify other instances in many-to-one and many-to-
many relationships with itself.

In a simple model where a source can be observed in an arbitrary num-
ber of photometric filters, one would usually have a table for sources, with
IDs and general metadata, a table for photometric filters, and a table for
luminosity measurements of a source. In this implementation, the Lumi-
nosity entity is in a many-to-one relationship with both the Source and the
Filter tables. This relationship is implemented by providing the Luminosity
table with two foreign key columns to the Source and Luminosity tables.
The value of the foreign keys is the ID of the Source and Filter instances to
which each luminosity measurements refer to.

A query might query the data base for “all the luminosity measurements
of Source 3c273”, implying the ownership relationship of a Source with its
Luminosities, although there is no actual reference from the Source table to
the Luminosity table.

Providing the parent table with a column for each reference to an arbi-
trary number of potential children is clearly unsustainable, if at all possible.

A FOREIGNKEY can provide a TARGETID to point to an identified element
in the same file. (TODO Be more specific here on how to use TARGETID)

A FOREIGNKEY must contain at least one PKFIELD, and the structure of
the key fields must be compatible with the one of the primary keys of the
referenced instance.

6.3 Representing Types

6.3.1 PrimitiveType

Primitive Types are types without structure, and so instances are repre-
sented by a simple value. They can be mapped to:

• a LITERAL element if the value is provided in the file’s header
(sec. 6.2.2);

32



• a CONSTANT, i.e. a reference to a PARAM, if the value is mapped to the
value of an existing PARAM (sec. 6.2.3);

• a COLUMN, i.e. a reference to a FIELD, if the value is in a table cell. In
this case we say that the enclosing instance is indirectly represented
by an INSTANCE template, with actual instances serialized in tabular
format (sec. 6.2.4).

6.3.2 Enumeration and EnumerationLiteral

Enumerations are primitive types with a limited number of possible, enumer-
ated values. Enumerations are mapped to the same elements as primitive
types (sec. 6.3.1), with the limitation that values must be valid enumera-
tion literals compatible with the type declared by the enclosing ATTRIBUTE
element.

6.3.3 ObjectType

Object types are mapped to the INSTANCE element (sec. 6.1.3). Object types
can have DataTyped attributes, which are mapped to the ATTRIBUTE ele-
ment (sec. 6.2.1). The ATTRIBUTE must have a @dmrole corresponding to
the model-defined role identifier. In turn, the ATTRIBUTE must contain an
INSTANCE with a type compatible with the attribute’s role. Note that the
type can be the type declared directly in the model or any specialization of
that type defined in any model declared via the MODEL element.

Object types can also have attributes with a PrimitiveType type or with
an Enumeration type. In this case attributes are mapped following the pat-
terns described in sec. 6.3.1 and sec. 6.3.2 respectively.

Object types can hold references to instances of other object types. This
roles are mapped to the REFERENCE element (sec. 6.2.5). In this case the
REFERENCE must have a @dmrole corresponding to the model-defined refer-
ence relationship.

Finally, object types can be in composition relationships with other ob-
ject types. An object type can be both the parent, or whole, and contain its
children, or parts (sec. 6.2.9).

A parent INSTANCE will have a COMPOSITION element with the @dmrole of
the composition relationship defined in the model.

In addition to INSTANCEs, parents can also point to instances described
elsewhere in the document through the EXTINSTANCE elements.

For each composition relationship an arbitrary number of instances may
be present, with two limitations:

• the number of instances must be compatible with the multiplicity of
the relationship;

33



• the instances must have @dmtypes compatible with the data type of the
relationship defined in the model, i.e. the exact type declared there or
any of its subtypes.

A children INSTANCE will have a CONTAINER element pointing at the
As described in sec. 6.1.4 and sec. 6.1.5 an ObjectType can be repre-

sented both directly or indirectly through standalone instances or instance
templates respectively.

6.3.4 DataType

Data types are mostly mapped like object types. This removes a lot of
burden from data providers and clients that do not need to validate datasets,
simplifying the syntax.

Some constaints apply to DataTypes. They are not enforced through XSD
but datasets must meet such constraints in order to validate.

VO-DML DataTypes cannot be in composition relationship with any
other types, so COMPOSITION and CONTAINER cannot be used inside an
INSTANCE representing a DataType. Similarly, DataTypes cannot have a
PRIMARYKEY.

Also, there cannot be references pointing to a DataType instance.

6.3.5 Type Generalization and Inheritance

(**TODO This needs to be expanded and completed with examples)
VO-DML allows types to extend or specialize other types. As it happens

in object oriented languages, an instance of a specialization, or subtype of
a more general type, or supertype, is also a valid instance of the supertype,
and can be used wherever an instance of a supertype is expected.

This means that clients of the supertype must be able to recognize in-
stances of the supertype even though a specialized subtype might have been
instantiated. This case includes all kinds of clients discussed in sec. 2.4.
What we called guru clients can read the VO-DML description files and
can figure out the generalization relationships. Advanced clients might or
might not care about generalizations, but generalization must be mapped
with particular care so that simple clients can find the information they are
seeking, even when a type they are interested in is present as an instance of
one of its subtypes.

Since we currently provide only one @dmtype per INSTANCE, only one type
can be expressed for each instance. This type must always be the actual
type of the instance. This means that clients cannot rely on the instance’s
type in order to recognize instances, unless they rely on VO-DML-aware
specialized software libraries.

34



In VO-DML specialized types inherit all of the supertype’s vodml-id
descriptors, including the prefix. This means that @dmroles can always be
matched, whether or not an instance represents a supertype or one of its
subtypes.

6.3.6 Quantities

(TODO This is a placeholder for specific mapping of ivoa quantities, but
we need the ivoa model to settle)

6.3.7 Comparison of EXTINSTANCES and INSTANCE

The distinction between INSTANCE and EXTINSTANCE as children of the
COMPOSITION element allows for common object relational mappings to be
used. In a completely normalized implementation each type may be se-
rialized in its own table. However, in practice astronomical archives and
datasets show some form of flattening, i.e. some types are serialized as part
of the table that represent the parent type, or multiple instances of the part
type are serialized in the same table. This is the case, for instance, of sources
and their luminosities.

In a mission’s archive, and in the data sets they serve, usually a single
table represents a number of photometric measurements in different filters.
This corresponds to a VO-DML annotation with an indirect INSTANCE for
the Source type with a COMPOSITION element containing a number of indirect
INSTANCEs for the luminosity measurements. Such instances correpond to
the finite set of filters (and errors, and other kinds of metadata) specific
to a particular mission. All the INSTANCEs, in this example, would point to
columns in the same table.

However, consider now the case of a data set that contains a number
of sources, each with an arbitrary number of photometric measurements
coming from different missions and archives. In this case a single flattened
table is not an efficient or effective way of serializing such instances, and
multiple tables can be used for sources and luminosities. The EXTINSTANCES
mechanism provides a mechanism for representing this pattern. (TODO
However, the safest and most efficient way is to just have children refer to
their containers.)

6.4 Full Example

Listing 3: Example covering all of the XML elements and mapping patterns,
including multi-table Object Relational Mapping.

1 <?xml version="1.0" encoding="UTF-8"?><VOTABLE xmlns="http://www.
↪→ ivoa.net/xml/VOTable/v1.4" xmlns:xsi="http://www.w3.org/2001/
↪→ XMLSchema-instance">

35



2 <VODML>
3 <MODEL>
4 <NAME>ivoa</NAME>
5 <URL>http://volute.g-vo.org/svn/trunk/projects/dm/vo-dml/models

↪→ /ivoa/IVOA.vo-dml.xml</URL>
6 </MODEL>
7 <MODEL>
8 <NAME>filter</NAME>
9 <URL>http://volute.g-vo.org/svn/trunk/projects/dm/vo-dml/models

↪→ /sample/filter/Filter.vo-dml.xml</URL>
10 </MODEL>
11 <MODEL>
12 <NAME>sample</NAME>
13 <URL>https://raw.githubusercontent.com/olaurino/jovial/new-

↪→ mapping/src/test/resources/votable/Sample.vo-dml.xml</
↪→ URL>

14 </MODEL>
15 <GLOBALS>
16 <INSTANCE dmtype="sample:catalog.SkyCoordinateFrame" ID="_icrs"

↪→ >
17 <ATTRIBUTE dmrole="sample:catalog.SkyCoordinateFrame.name">
18 <LITERAL value="ICRS" dmtype="ivoa:string"/>
19 </ATTRIBUTE>
20 </INSTANCE>
21 <INSTANCE dmtype="filter:PhotometryFilter" ID="_2massH">
22 <PRIMARYKEY>
23 <PKFIELD>
24 <LITERAL dmtype="ivoa:string" value="_2massH"/>
25 </PKFIELD>
26 </PRIMARYKEY>
27 <ATTRIBUTE dmrole="filter:PhotometryFilter.name">
28 <LITERAL value="2mass:H" dmtype="ivoa:string"/>
29 </ATTRIBUTE>
30 </INSTANCE>
31 <INSTANCE dmtype="filter:PhotometryFilter" ID="_2massJ">
32 <PRIMARYKEY>
33 <PKFIELD>
34 <LITERAL dmtype="ivoa:string" value="_2massJ"/>
35 </PKFIELD>
36 </PRIMARYKEY>
37 <ATTRIBUTE dmrole="filter:PhotometryFilter.name">
38 <LITERAL value="2mass:J" dmtype="ivoa:string"/>
39 </ATTRIBUTE>
40 </INSTANCE>
41 <INSTANCE dmtype="filter:PhotometryFilter" ID="_2massK">
42 <PRIMARYKEY>
43 <PKFIELD>
44 <LITERAL dmtype="ivoa:string" value="_2massK"/>
45 </PKFIELD>

36



46 </PRIMARYKEY>
47 <ATTRIBUTE dmrole="filter:PhotometryFilter.name">
48 <LITERAL value="2mass:K" dmtype="ivoa:string"/>
49 </ATTRIBUTE>
50 </INSTANCE>
51 </GLOBALS>
52 <GLOBALS ID="_SDSS_FILTERS">
53 <INSTANCE dmtype="filter:PhotometryFilter">
54 <PRIMARYKEY>
55 <PKFIELD>
56 <LITERAL dmtype="ivoa:string" value="sdss:g"/>
57 </PKFIELD>
58 </PRIMARYKEY>
59 <ATTRIBUTE dmrole="filter:PhotometryFilter.name">
60 <LITERAL value="sdss:g" dmtype="ivoa:string"/>
61 </ATTRIBUTE>
62 </INSTANCE>
63 <INSTANCE dmtype="filter:PhotometryFilter">
64 <PRIMARYKEY>
65 <PKFIELD>
66 <LITERAL dmtype="ivoa:string" value="sdss:r"/>
67 </PKFIELD>
68 </PRIMARYKEY>
69 <ATTRIBUTE dmrole="filter:PhotometryFilter.name">
70 <LITERAL value="sdss:r" dmtype="ivoa:string"/>
71 </ATTRIBUTE>
72 </INSTANCE>
73 <INSTANCE dmtype="filter:PhotometryFilter">
74 <PRIMARYKEY>
75 <PKFIELD>
76 <LITERAL dmtype="ivoa:string" value="sdss:u"/>
77 </PKFIELD>
78 </PRIMARYKEY>
79 <ATTRIBUTE dmrole="filter:PhotometryFilter.name">
80 <LITERAL value="sdss:u" dmtype="ivoa:string"/>
81 </ATTRIBUTE>
82 </INSTANCE>
83 </GLOBALS>
84 <TEMPLATES tableref="_table1">
85 <INSTANCE dmtype="sample:catalog.SDSSSource" ID="_source">
86 <PRIMARYKEY>
87 <PKFIELD>
88 <COLUMN dmtype="ivoa:string" ref="_designation"/>
89 </PKFIELD>
90 </PRIMARYKEY>
91 <ATTRIBUTE dmrole="sample:catalog.AbstractSource.name">
92 <COLUMN dmtype="ivoa:string" ref="_designation"/>
93 </ATTRIBUTE>
94 <ATTRIBUTE dmrole="sample:catalog.AbstractSource.position">

37



95 <INSTANCE dmtype="sample:catalog.SkyCoordinate">
96 <REFERENCE dmrole="sample:catalog.SkyCoordinate.frame">
97 <IDREF>_icrs</IDREF>
98 </REFERENCE>
99 <ATTRIBUTE dmrole="sample:catalog.SkyCoordinate.longitude"

↪→ >
100 <COLUMN dmtype="ivoa:RealQuantity" ref="_ra"/>
101 </ATTRIBUTE>
102 <ATTRIBUTE dmrole="sample:catalog.SkyCoordinate.latitude">
103 <COLUMN dmtype="ivoa:RealQuantity" ref="_dec"/>
104 </ATTRIBUTE>
105 </INSTANCE>
106 </ATTRIBUTE>
107 <ATTRIBUTE dmrole="sample:catalog.AbstractSource.

↪→ positionError">
108 <INSTANCE dmtype="sample:catalog.AlignedEllipse">
109 <ATTRIBUTE dmrole="sample:catalog.AlignedEllipse.longError

↪→ ">
110 <LITERAL value="0.1" dmtype="ivoa:real"/>
111 </ATTRIBUTE>
112 <ATTRIBUTE dmrole="sample:catalog.AlignedEllipse.latError"

↪→ >
113 <LITERAL value="0.1" dmtype="ivoa:real"/>
114 </ATTRIBUTE>
115 </INSTANCE>
116 </ATTRIBUTE>
117 <COMPOSITION dmrole="sample:catalog.AbstractSource.luminosity

↪→ ">
118 <INSTANCE dmtype="sample:catalog.LuminosityMeasurement">
119 <ATTRIBUTE dmrole="sample:catalog.LuminosityMeasurement.

↪→ type">
120 <LITERAL value="magnitude" dmtype="sample:catalog.

↪→ LuminosityType"/>
121 </ATTRIBUTE>
122 <REFERENCE dmrole="sample:catalog.LuminosityMeasurement.

↪→ filter">
123 <IDREF>_2massH</IDREF>
124 </REFERENCE>
125 <ATTRIBUTE dmrole="sample:catalog.LuminosityMeasurement.

↪→ value">
126 <COLUMN dmtype="ivoa:RealQuantity" ref="_magH"/>
127 </ATTRIBUTE>
128 <ATTRIBUTE dmrole="sample:catalog.LuminosityMeasurement.

↪→ error">
129 <COLUMN dmtype="ivoa:RealQuantity" ref="_errH"/>
130 </ATTRIBUTE>
131 </INSTANCE>
132 <INSTANCE dmtype="sample:catalog.LuminosityMeasurement">

38



133 <ATTRIBUTE dmrole="sample:catalog.LuminosityMeasurement.
↪→ type">

134 <LITERAL value="magnitude" dmtype="sample:catalog.
↪→ LuminosityType"/>

135 </ATTRIBUTE>
136 <REFERENCE dmrole="sample:catalog.LuminosityMeasurement.

↪→ filter">
137 <IDREF>_2massK</IDREF>
138 </REFERENCE>
139 <ATTRIBUTE dmrole="sample:catalog.LuminosityMeasurement.

↪→ value">
140 <COLUMN dmtype="ivoa:RealQuantity" ref="_magK"/>
141 </ATTRIBUTE>
142 <ATTRIBUTE dmrole="sample:catalog.LuminosityMeasurement.

↪→ error">
143 <COLUMN dmtype="ivoa:RealQuantity" ref="_errK"/>
144 </ATTRIBUTE>
145 </INSTANCE>
146 <INSTANCE dmtype="sample:catalog.LuminosityMeasurement">
147 <ATTRIBUTE dmrole="sample:catalog.LuminosityMeasurement.

↪→ type">
148 <LITERAL value="magnitude" dmtype="sample:catalog.

↪→ LuminosityType"/>
149 </ATTRIBUTE>
150 <REFERENCE dmrole="sample:catalog.LuminosityMeasurement.

↪→ filter">
151 <IDREF>_2massJ</IDREF>
152 </REFERENCE>
153 <ATTRIBUTE dmrole="sample:catalog.LuminosityMeasurement.

↪→ error">
154 <COLUMN dmtype="ivoa:RealQuantity" ref="_errJ"/>
155 </ATTRIBUTE>
156 <ATTRIBUTE dmrole="sample:catalog.LuminosityMeasurement.

↪→ value">
157 <COLUMN dmtype="ivoa:RealQuantity" ref="_magJ"/>
158 </ATTRIBUTE>
159 </INSTANCE>
160 <EXTINSTANCES>SDSS_MAGS</EXTINSTANCES>
161 </COMPOSITION>
162 </INSTANCE>
163 </TEMPLATES>
164 <TEMPLATES tableref="_sdss_mags">
165 <INSTANCE dmtype="sample:catalog.LuminosityMeasurement" ID="

↪→ SDSS_MAGS">
166 <CONTAINER>
167 <FOREIGNKEY>
168 <PKFIELD>
169 <COLUMN dmtype="ivoa:string" ref="_container"/>
170 </PKFIELD>

39



171 <TARGETID>_source</TARGETID>
172 </FOREIGNKEY>
173 </CONTAINER>
174 <REFERENCE dmrole="sample:catalog.LuminosityMeasurement.

↪→ filter">
175 <FOREIGNKEY>
176 <PKFIELD>
177 <COLUMN dmtype="ivoa:string" ref="_filter"/>
178 </PKFIELD>
179 <TARGETID>_SDSS_FILTERS</TARGETID>
180 </FOREIGNKEY>
181 </REFERENCE>
182 <ATTRIBUTE dmrole="sample:catalog.LuminosityMeasurement.value

↪→ ">
183 <COLUMN dmtype="ivoa:RealQuantity" ref="_mag"/>
184 </ATTRIBUTE>
185 <ATTRIBUTE dmrole="sample:catalog.LuminosityMeasurement.error

↪→ ">
186 <COLUMN dmtype="ivoa:RealQuantity" ref="_eMag"/>
187 </ATTRIBUTE>
188 </INSTANCE>
189 </TEMPLATES>
190 </VODML>
191 <RESOURCE ID="table_objects">
192 <TABLE ID="_table1">
193 <FIELD datatype="char" arraysize="16" ID="_designation"/>
194 <FIELD datatype="float" arraysize="1" ID="_ra"/>
195 <FIELD datatype="float" arraysize="1" ID="_dec"/>
196 <FIELD datatype="float" arraysize="1" ID="_magH"/>
197 <FIELD datatype="float" arraysize="1" ID="_errH"/>
198 <FIELD datatype="float" arraysize="1" ID="_magK"/>
199 <FIELD datatype="float" arraysize="1" ID="_errK"/>
200 <FIELD datatype="float" arraysize="1" ID="_errJ"/>
201 <FIELD datatype="float" arraysize="1" ID="_magJ"/>
202 <DATA>
203 <TABLEDATA>
204 <TR>
205 <TD>08115826-0205336</TD>
206 <TD>122.992773</TD>
207 <TD>-2.092676</TD>
208 <TD>15.718</TD>
209 <TD>0.112</TD>
210 <TD>15.460</TD>
211 <TD>0.212</TD>
212 <TD>0.096</TD>
213 <TD>16.273</TD>
214 </TR>
215 <TR>
216 <TD>08115683-0205428</TD>

40



217 <TD>122.986794</TD>
218 <TD>-2.095231</TD>
219 <TD>15.103</TD>
220 <TD>0.077</TD>
221 <TD>14.847</TD>
222 <TD>0.127</TD>
223 <TD>0.060</TD>
224 <TD>15.860</TD>
225 </TR>
226 <TR>
227 <TD>08120809-0206132</TD>
228 <TD>123.033734</TD>
229 <TD>-2.103671</TD>
230 <TD>13.681</TD>
231 <TD>0.027</TD>
232 <TD>13.675</TD>
233 <TD>0.048</TD>
234 <TD>0.025</TD>
235 <TD>14.161</TD>
236 </TR>
237 </TABLEDATA>
238 </DATA>
239 </TABLE>
240 <TABLE ID="_sdss_mags">
241 <FIELD datatype="char" arraysize="6" ID="_filter"/>
242 <FIELD datatype="char" arraysize="16" ID="_container"/>
243 <FIELD datatype="float" arraysize="1" ID="_mag"/>
244 <FIELD datatype="float" arraysize="1" ID="_eMag"/>
245 <DATA>
246 <TABLEDATA>
247 <TR>
248 <TD>sdss:r</TD>
249 <TD>08120809-0206132</TD>
250 <TD>23.0</TD>
251 <TD>0.03</TD>
252 </TR>
253 <TR>
254 <TD>sdss:g</TD>
255 <TD>08120809-0206132</TD>
256 <TD>23.2</TD>
257 <TD>0.04</TD>
258 </TR>
259 </TABLEDATA>
260 </DATA>
261 </TABLE>
262 </RESOURCE>
263 </VOTABLE>

41



7 VO-DML XML schema [NORMATIVE]
In order to keep the VOTable standard as stable as possible and to bet-
ter separate the concerns of the different documents, the elements used for
mapping data model instances are defined in a standalone schema, that is
then imported by the VOTable 1.4 schema itself.

7.1 Additions to VOTable

The new VOTable 1.4 VOTable schema (Ochsenbein 1900) simply imports
the mapping schema through xs:import:

1 <xs:import namespace="http://www.ivoa.net/xml/VODML_Mapping/v1.0"
2 schemaLocation="VODML-mapping.xsd"/>

And then defines a new element VODML as a direct child of VOTABLE (line
5):

1 <!-- VOTable is the root element -->
2 <xs:element name="VOTABLE">
3 <xs:complexType>
4 <xs:sequence>
5 <xs:element name="VODML" type="vodml:VODML" minOccurs=

↪→ "0" />
6 <xs:element name="DESCRIPTION" type="anyTEXT"

↪→ minOccurs="0" />
7 <xs:element name="DEFINITIONS" type="Definitions"

↪→ minOccurs="0" />
8 <!-- Deprecated -->
9 <xs:choice minOccurs="0" maxOccurs="unbounded">
10 <xs:element name="COOSYS" type="CoordinateSystem" /

↪→ >
11 <!-- Deprecated in V1.2 -->
12 <xs:element name="GROUP" type="Group" />
13 <xs:element name="PARAM" type="Param" />
14 <xs:element name="INFO" type="Info" minOccurs="0"

↪→ maxOccurs="unbounded" />
15 </xs:choice>
16 <xs:element name="RESOURCE" type="Resource" minOccurs=

↪→ "1" maxOccurs="unbounded" />
17 <xs:element name="INFO" type="Info" minOccurs="0"

↪→ maxOccurs="unbounded" />
18 </xs:sequence>
19 <xs:attribute name="ID" type="xs:ID" />
20 <xs:attribute name="version">
21 <xs:simpleType>
22 <xs:restriction base="xs:NMTOKEN">
23 <xs:enumeration value="1.3" />
24 </xs:restriction>

42



25 </xs:simpleType>
26 </xs:attribute>
27 </xs:complexType>
28 </xs:element>

7.2 VODML-mapping shema

Listing 4: VODML additions to the VOTable schema.
1 <?xml version="1.0" encoding="UTF-8"?>
2 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

↪→ elementFormDefault="qualified"
3 xmlns="http://www.ivoa.net/xml/VODML_Mapping/v1.0" targetNamespace

↪→ ="http://www.ivoa.net/xml/VODML_Mapping/v1.0"
4 >
5 <!-- VODML types -->
6
7 <xs:complexType name="VODML">
8 <xs:annotation>
9 <xs:documentation>
10 A VODML element MUST have at least one model and at least on

↪→ globals or templates.
11 </xs:documentation>
12 </xs:annotation>
13 <xs:sequence>
14 <xs:element name="MODEL" type="Model" minOccurs="1" maxOccurs="

↪→ unbounded" />
15 <xs:choice minOccurs="1" maxOccurs="unbounded">
16 <xs:element name="GLOBALS" type="VODMLGlobals"/>
17 <xs:element name="TEMPLATES" type="VODMLInstanceTemplates"/>
18 </xs:choice>
19 </xs:sequence>
20 </xs:complexType>
21
22 <xs:complexType name="VODMLGlobals">
23 <xs:annotation>
24 <xs:documentation>
25 This section will describe all global instances, that is,

↪→ instances that are not created once per row of a table
↪→ .

26 It starts with a list of all the MODELs, then has all the
↪→ GLOBAL instances.

27 </xs:documentation>
28 </xs:annotation>
29 <xs:sequence>
30 <xs:element name="INSTANCE" type="VODMLObject" minOccurs="1"

↪→ maxOccurs="unbounded" />
31 </xs:sequence>

43



32 <xs:attribute name="ID" type="xs:ID" use="optional"/>
33 </xs:complexType>
34
35 <xs:complexType name="VODMLInstanceTemplates">
36 <xs:annotation>
37 <xs:documentation>
38 This section will describe all the instance, that is,

↪→ instances created once per row of a table.
39 The instances can have FIELDrefs describing how to fill

↪→ individual primtive valuesthe templates from TABLEDATA
↪→ values.

40 </xs:documentation>
41 </xs:annotation>
42 <xs:sequence>
43 <xs:element name="INSTANCE" type="VODMLObject" minOccurs="1"

↪→ maxOccurs="unbounded" />
44 </xs:sequence>
45 <xs:attribute name="tableref" type="xs:IDREF" use="required"/>
46 </xs:complexType>
47
48 <xs:complexType name="Model">
49 <xs:sequence>
50 <xs:element name="NAME">
51 <xs:simpleType>
52 <xs:restriction base="xs:string" > <!-- xsd:NCName ? -->
53 <xs:pattern value="[a-zA-Z][a-zA-Z0-9_\-]*">
54 <xs:annotation>
55 <xs:documentation>
56 The name fof the model that is to be used as prefix

↪→ when referring to its elements in a VODMLRef.
57 </xs:documentation>
58 </xs:annotation>
59 </xs:pattern>
60 </xs:restriction>
61 </xs:simpleType>
62 </xs:element>
63 <xs:element name="URL" type="xs:anyURI" />
64 <xs:element name="IDENTIFIER" type="xs:string" minOccurs="0" >
65 <xs:annotation>
66 <xs:documentation>
67 The IVOA Identifier by which the model is registered in an IVOA

↪→ registry.
68 </xs:documentation>
69 </xs:annotation>
70 </xs:element>
71 </xs:sequence>
72 <xs:attribute name="ID" type="xs:ID" />
73 </xs:complexType>
74

44



75 <xs:complexType name="VODMLInstance" abstract="true">
76 <xs:attribute name="dmtype" type="VODMLRef" use="required" />
77 <xs:attribute name="ID" type="xs:ID">
78 <xs:annotation>
79 <xs:documentation>
80 Can be used by references as identifier for an object or

↪→ template.
81 </xs:documentation>
82 </xs:annotation>
83 </xs:attribute>
84 </xs:complexType>
85
86 <xs:complexType name="VODMLObject">
87 <xs:complexContent>
88 <xs:extension base="VODMLInstance">
89 <xs:sequence>
90 <!-- lets be explicit -->
91 <xs:element name="PRIMARYKEY" type="VODMLObjectIdentifier"

↪→ minOccurs="0" >
92 <xs:annotation>
93 <xs:documentation>
94 Objects, i.e. ObjectType instances, can have a unique

↪→ identifier which can be used in ORM-like
↪→ references.

95 </xs:documentation>
96 </xs:annotation>
97 </xs:element>
98 <xs:element name="CONTAINER" type="VODMLReference" minOccurs

↪→ ="0" maxOccurs="1" >
99 <xs:annotation>
100 <xs:documentation>
101 Possible reference to a parent container of the object.

↪→ May be given when the objects is not already
102 contained in a colleciton on the parent object.
103 Note, a VODMLReference can have multiple instances, but

↪→ a CONTAINER MUST have only 1 instance.
104 </xs:documentation>
105 </xs:annotation>
106 </xs:element>
107 <xs:element name="ATTRIBUTE" type="VODMLAttribute" minOccurs

↪→ ="0" maxOccurs="unbounded" />
108 <xs:element name="COMPOSITION" type="VODMLComposition"

↪→ minOccurs="0" maxOccurs="unbounded" />
109 <xs:element name="REFERENCE" type="VODMLReference" minOccurs

↪→ ="0" maxOccurs="unbounded" />
110 </xs:sequence>
111 </xs:extension>
112 </xs:complexContent>
113 </xs:complexType>

45



114
115 <xs:complexType name="VODMLPrimitive"> <!-- in place of PARAM -->
116 <xs:complexContent>
117 <xs:extension base="VODMLInstance">
118 <xs:sequence>
119 <xs:element name="OPTIONMAPPING" type="VODMLOptionMapping"

↪→ minOccurs="0" maxOccurs="unbounded">
120 <xs:annotation>
121 <xs:documentation>
122 Allows one to map OPTION values in VOTABLE to either

↪→ EnumLiterals in data model (if TYPE identifies VO
↪→ -DML/ Enumeration),

123 or SKOSConcept in external SKOS vocabulary (if ROLE is a
↪→ VO-DML/Attribute containing a skosconcept
↪→ declaration).

124 NB: IF the datatype of the ROLE is an Enumeration, and
↪→ there is NO optionmapping it implies that the
↪→ values ARE the enum literals, or the concepts.

125 </xs:documentation>
126 </xs:annotation>
127 </xs:element>
128 </xs:sequence>
129 </xs:extension>
130 </xs:complexContent>
131 </xs:complexType>
132
133
134 <xs:complexType name="VODMLLiteral"> <!-- in place of PARAM -->
135 <xs:complexContent>
136 <xs:extension base="VODMLPrimitive">
137 <xs:attribute name="value" type="xs:string" use="required"/>
138 <xs:attribute name="unit" type="xs:string" />
139 </xs:extension>
140 </xs:complexContent>
141 </xs:complexType>
142
143
144 <xs:complexType name="VODMLOptionMapping">
145 <xs:annotation>
146 <xs:documentation>
147 Allows one to map particular values defined in a VALUES/OPTION

↪→ list to enumeration literals
148 in the VO-DML model or to a concept in a SKOS vocabulary.
149 </xs:documentation>
150 </xs:annotation>
151 <xs:sequence>
152 <xs:element name="OPTION" type="xs:string" minOccurs="1"

↪→ maxOccurs="1" >
153 <xs:annotation>

46



154 <xs:documentation>
155 The VOTable OPTION value that is being maped to enum literal

↪→ or semantic concept.
156 </xs:documentation>
157 </xs:annotation>
158 </xs:element>
159 <xs:choice>
160 <xs:element name="ENUMLITERAL" type="VODMLRef" minOccurs="1"

↪→ maxOccurs="1" />
161 <xs:element name="SEMANTICCONCEPT" type="xs:anyURI" minOccurs

↪→ ="1" maxOccurs="1" >
162 <xs:annotation>
163 <xs:documentation>
164 TBD anyURI as an identifier of concepts made sense for

↪→ SKOS vocabularies. How about general semantic
↪→ vocabularies?

165 I.e. is it ok for the type be xs:string iso xs:anyURI?
166 </xs:documentation>
167 </xs:annotation>
168 </xs:element>
169 </xs:choice>
170 </xs:sequence>
171 </xs:complexType>
172
173 <xs:complexType name="VODMLFieldOrParamRef">
174 <xs:complexContent>
175 <xs:extension base="VODMLPrimitive">
176 <xs:attribute name="ref" type="xs:IDREF" use="required" />
177 </xs:extension>
178 </xs:complexContent>
179 </xs:complexType>
180
181
182 <xs:complexType name="VODMLRole">
183 <xs:attribute name="dmrole" type="VODMLRef" use="optional">
184 <xs:annotation>
185 <xs:documentation>
186 NB: ROLE has minOccurs=0 , at the moment only because

↪→ VODMLObject::CONTAINER (a VODMLReferece) needs no
↪→ role.

187 ATTRIBUTE, COMPOSITION and REFERENCE MUST have a ROLE.
188 Hard to model in XML schema, could be done in Schematron.
189 </xs:documentation>
190 </xs:annotation>
191 </xs:attribute>
192 </xs:complexType>
193
194 <xs:complexType name="VODMLAttribute">
195 <xs:complexContent>

47



196 <xs:extension base="VODMLRole">
197 <xs:choice>
198 <xs:choice maxOccurs="unbounded">
199 <xs:element name="COLUMN" type="VODMLFieldOrParamRef">
200 <xs:annotation>
201 <xs:documentation>
202 When used inside a "template" structured type, i.e.

↪→ one defined inside a TABLE element,
203 this allows one to indicate a FIELD representing

↪→ the attribute.
204 </xs:documentation>
205 </xs:annotation>
206 </xs:element>
207 <xs:element name="CONSTANT" type="VODMLFieldOrParamRef">
208 <xs:annotation>
209 <xs:documentation>
210 Ref to a predefined PARAM.
211 </xs:documentation>
212 </xs:annotation>
213 </xs:element>
214 <xs:element name="LITERAL" type="VODMLLiteral">
215 <xs:annotation>
216 <xs:documentation>
217 Simple, primitive value, possibly with extra

↪→ attributes.
218 Similar to PARAM, but restricted attribute set.
219 </xs:documentation>
220 </xs:annotation>
221 </xs:element>
222 </xs:choice>
223 <xs:element name="INSTANCE" type="VODMLObject" maxOccurs="

↪→ unbounded">
224 <xs:annotation>
225 <xs:documentation>
226 Structured value, must be instance of DataType
227 </xs:documentation>
228 </xs:annotation>
229 </xs:element>
230 </xs:choice>
231 </xs:extension>
232 </xs:complexContent>
233 </xs:complexType>
234
235 <xs:complexType name="VODMLComposition">
236 <xs:annotation>
237 <xs:documentation>
238 A VODMLCollection represents collection of child objects in a

↪→ VO-DML Composition relationship.

48



239 The collection receives the VO-DML ref to the composition
↪→ relation, the member objects inside the

240 collection do *not* have a ROLE.
241 </xs:documentation>
242 </xs:annotation>
243 <xs:complexContent>
244 <xs:extension base="VODMLRole">
245 <xs:sequence>
246 <xs:element name="INSTANCE" type="VODMLObject" maxOccurs="

↪→ unbounded" minOccurs="0">
247 <xs:annotation>
248 <xs:documentation>
249 An object in the collection. It type must conform to the

↪→ declared type of the VO-DML Collection.
250 I.e. it must be that exact type or a sub-type.
251 </xs:documentation>
252 </xs:annotation>
253 </xs:element>
254 <xs:element name="EXTINSTANCES" type="xs:IDREF" maxOccurs="

↪→ unbounded" minOccurs="0">
255 <xs:annotation>
256 <xs:documentation>
257 Reference to a VODMLOBJECT declaration possibly

↪→ containing child objects for this composition
↪→ relation.

258 </xs:documentation>
259 </xs:annotation>
260 </xs:element>
261 </xs:sequence>
262 </xs:extension>
263 </xs:complexContent>
264 </xs:complexType>
265
266
267
268
269 <xs:complexType name="VODMLReference">
270 <xs:annotation>
271 <xs:documentation>
272 Provides a reference to an ObjectType instance. Must allow

↪→ that instance to be identified exactly.
273 VArious different modes depending on how that instance is

↪→ serialized.
274 - If as a Standalone instance in same VOTable document, an

↪→ IDREF can point to its ID (use IDREF).
275 - If as a row in a TABLE a relational foreign key can be used

↪→ (use ORMREFERENCE)
276 - if a remote document contains the serialized instance, a

↪→ URI must be used that MUST be able to identify that

49



↪→ object
277 inside its remote serialization (a REMOTEREFERENCE must be

↪→ used).
278 </xs:documentation>
279 </xs:annotation>
280 <xs:complexContent>
281 <xs:extension base="VODMLRole">
282 <xs:sequence>
283 <xs:choice maxOccurs="unbounded">
284 <xs:element name="IDREF" type="xs:IDREF">
285 <xs:annotation>
286 <xs:documentation>
287 MUST identify an individual/standalone object defined

↪→ in the same XML document.
288 </xs:documentation>
289 </xs:annotation>
290 </xs:element>
291 <xs:element name="REMOTEREFERENCE" type="xs:anyURI" />
292 <xs:element name="FOREIGNKEY" type="VODMLORMReference" />
293 </xs:choice>
294 </xs:sequence>
295 </xs:extension>
296 </xs:complexContent>
297 </xs:complexType>
298
299 <xs:complexType name="VODMLORMReference">
300 <xs:annotation>
301 <xs:documentation>
302 A reference to an object identified by that object's

↪→ identifier.
303 The referenced object must be stored in a TABLE and must have

↪→ been annotated with an explicit identifier.
304 </xs:documentation>
305 </xs:annotation>
306 <xs:complexContent>
307 <xs:extension base="VODMLObjectIdentifier">
308 <xs:sequence>
309 <xs:element name="TARGETID" type="xs:IDREF" minOccurs="0">
310 <xs:annotation>
311 <xs:documentation>
312 This element MAY be used to provide a IDREF to the (ID

↪→ of a) VODMLObject template annotating
313 the TABLE containing the referenced object.
314 </xs:documentation>
315 </xs:annotation>
316 </xs:element>
317 </xs:sequence>
318 </xs:extension>
319 </xs:complexContent>

50



320 </xs:complexType>
321
322 <xs:complexType name="VODMLObjectIdentifierField">
323 <xs:choice>
324 <xs:element name="LITERAL" type="VODMLLiteral"/>
325 <xs:element name="COLUMN" type="VODMLFieldOrParamRef"/>
326 <xs:element name="CONSTANT" type="VODMLFieldOrParamRef"/>
327 </xs:choice>
328 </xs:complexType>
329
330 <xs:complexType name="VODMLObjectIdentifier">
331 <xs:annotation>
332 <xs:documentation>
333 This type allows a generic identifier to be assigned to an

↪→ object. The identifier consists of one or more IDFIELD
↪→ -s.

334 This way of identifying an object is equivalent to using one
↪→ or more columns in a table as primary key.

335 </xs:documentation>
336 </xs:annotation>
337 <xs:sequence>
338 <xs:element name="PKFIELD" maxOccurs="unbounded" type="

↪→ VODMLObjectIdentifierField">
339 <xs:annotation>
340 <xs:documentation>
341 A field in an identifier. The identifier may contain 1 or

↪→ more such fields. Their order
342 is important, ORM references to the object must use the

↪→ same order for their foreign key.
343 </xs:documentation>
344 </xs:annotation>
345 </xs:element>
346 </xs:sequence>
347 </xs:complexType>
348
349 <xs:simpleType name="VODMLRef">
350 <xs:annotation>
351 <xs:documentation>
352 The valid format of a reference to a VO-DML element. (Used to

↪→ be 'UTYPE').
353 MUST have a prefix that elsewhere in the VOTable is defined

↪→ to correspond to a VO-DML model defining the
↪→ referenced

354 element.
355 See "mapping document", https://volute.g-vo.org/svn/trunk/

↪→ projects/dm/vo-dml/doc/MappingDMtoVOTable-v1.0-201607
↪→ xx.docx.

356 Suffix, separated from the prefix by a ':', MUST correspond
↪→ to the vodml-id of the referenced element in the

51



357 VO-DML/XML representation
358 of that model.
359 </xs:documentation>
360 </xs:annotation>
361 <xs:restriction base="xs:string">
362 <xs:pattern value="[a-zA-Z][a-zA-Z0-9_\-]*:[a-zA-Z][a-zA-Z0-9\.

↪→ _]*" />
363 </xs:restriction>
364 </xs:simpleType>
365
366 </xs:schema>

References
Graham, Matthew. 2013. “UTypes: Current Usages and Practices in the
IVOA.” http://www.ivoa.net/documents/Notes/UTypesUsage/index.html.

Lemson, Gerard. 2015. “VO - DML: A Consistent Modeling Lan-
guage for IVOA Data Models.” http://www.ivoa.net/documents/VODML/
20151010/index.html.

Ochsenbein, Francois. 1900. “VOTable Format Definition.” http://
www.ivoa.net/documents/xxxx.

“PR on Use of SKOS Vocabularies in IVOA.” 1900.
“UCDs.” 1900.

52

http://www.ivoa.net/documents/Notes/UTypesUsage/index.html
http://www.ivoa.net/documents/VODML/20151010/index.html
http://www.ivoa.net/documents/VODML/20151010/index.html
http://www.ivoa.net/documents/xxxx
http://www.ivoa.net/documents/xxxx

	History of this document
	Introduction
	Use Cases
	General Remarks
	Concrete Use Cases
	STC clients
	VO-enabled plotting and fitting applications
	Data discovery portals
	Color-color diagrams
	Validators
	VO Publishing Helper
	VO Importer

	Generic Use Cases
	Serialize and de-serialize instances according to a data model
	Annotate files according to multiple models
	Representing cross matches and linking files together
	Mission-specific data model extensions

	Growing complexity: simple, advanced, and guru clients
	Simple clients
	Advanced clients
	Guru clients

	Formats other than VOTable

	The need for a mapping language
	Mapping with the VODML element.
	VODMLReference

	General information about this spec
	Sample model and instances
	Single-table representations and Object-Relational Mapping

	Patterns for annotating VOTable [NORMATIVE]
	The VODML element
	Example
	Models Declaration: MODEL
	Instance Annotation: INSTANCE
	Global Instances: GLOBALS
	Tabular Instances: TEMPLATES
	Direct vs Indirect Instances
	Schema Constraints

	Relations
	Attributes: ATTRIBUTE
	Attributes: LITERAL
	Attributes: CONSTANT
	Template Attributes: COLUMN
	References: REFERENCE
	References: IDREF
	References: REMOTEREFERENCE
	References: FOREIGNKEY
	Composition: COMPOSITION
	Composition: EXTINTANCES
	Composition: CONTAINER
	PRIMARYKEY
	FOREIGNKEY

	Representing Types
	PrimitiveType
	Enumeration and EnumerationLiteral
	ObjectType
	DataType
	Type Generalization and Inheritance
	Quantities
	Comparison of EXTINSTANCES and INSTANCE

	Full Example

	VO-DML XML schema [NORMATIVE]
	Additions to VOTable
	VODML-mapping shema

	References

