
International
Virtual
Observatory

Alliance

IVOA TimeSeries data modelling and
representation

Version 1.0

IVOA Note 2018-05-22
Working group

TimeDomain
This version

http://www.ivoa.net/documents/TSSerializationNote/20180522
Latest version

http://www.ivoa.net/documents/TSSerializationNote
Previous versions

Author(s)
Francois Bonnarel, Mireille Louys, Ada Nebot, Laurent Michel,
Mark Cresitello-Dittmar

Editor(s)
Ada Nebot

Version Control
Revision 4724, 2018-01-29 15:20:52 +0100 (lun. 29 janv. 2018)
https://volute.g-vo.org/svn/trunk/projects/ivoapub/ivoatexDoc/ivoatexDoc.tex

Abstract
Purpose of the note

Status of this document
This is an IVOA Note expressing suggestions from and opinions of the

authors. It is intended to share best practices, possible approaches, or other
perspectives on interoperability with the Virtual Observatory. It should not
be referenced or otherwise interpreted as a standard specification.

A list of current IVOA Recommendations and other technical documents
can be found at http://www.ivoa.net/documents/.

http://www.ivoa.net/documents/TSSerializationNote/20180522
http://www.ivoa.net/documents/TSSerializationNote
http://www.ivoa.net/cgi-bin/twiki/bin/view/IVOA/FrancoisBonnarel
http://wiki.ivoa.net/twiki/bin/view/IVOA/MireilleLouys
http://wiki.ivoa.net/twiki/bin/view/IVOA/AdaNebot
http://wiki.ivoa.net/twiki/bin/view/IVOA/LaurentMichel
http://wiki.ivoa.net/twiki/bin/view/IVOA/MarkCresitelloDittmar
https://volute.g-vo.org/svn/trunk/projects/ivoapub/ivoatexDoc/ivoatexDoc.tex
http://www.ivoa.net/documents/

Contents

1 Introduction 3

2 Time Series 3
2.1 Definition . 3
2.2 Science use cases . 4
2.3 Using a common time frame 6
2.4 Extension of ObsCore based on EPNCore 6

3 Models 8

4 Time series representation: Data Model and UML diagram 8
4.1 Data modeling with CharacterizationDM and Cube DM . . . 8
4.2 Perspective . 9
4.3 TimeSerie representation use-cases 9

4.3.1 Light curve . 9
4.3.2 Time Series of spectra 11
4.3.3 Time series of images 11
4.3.4 Time series of cubes 11
4.3.5 Time series of combined data 12

5 TS Data Model 13
5.1 datamodel fields . 15
5.2 Mark . 16

6 Serialisations 19
6.1 Jiri’s approach . 19
6.2 Full utype serialisation . 19
6.3 Marks’s approach . 21

6.3.1 Sample Files . 21
6.3.2 Mapping Syntax . 22

6.4 Laurent’s approach . 24
6.4.1 Mapping Syntax . 25
6.4.2 Workflow (to be updated) 27
6.4.3 Conclusions and Prospects 27

7 View from Data Providers 28
7.1 GAVO . 28
7.2 vizier . 28

2

8 View from Applications 28
8.1 Aladin . 28
8.2 Topcat . 28
8.3 Javascript widget . 28

9 Discussion 29

10 Conclusions 29

A Recognized time scales 29

Acknowledgments

1 Introduction

This is the intro of the Note.

2 Time Series

In this section we describe what Time Series data is in a wide context,
defining the most relevant parameters that define it. We describe the com-
mon requirements of the different science use cases collected by the SPC ?.
A common frame for time is defined with the minimum set of parameters
taken from and compatible with STC. We then compare the defined fields
describing time with the fields content of Obscore and EPNcore.

2.1 Definition

Time Series can be defined in a very large sense as a collection of any kind
of data over time for a particular source (e. g. star, binary, QSO) or part of
a source (e. g. sun spots), independent on the type of data (images, light-
curves, radial velocity, polarisation estates or degrees, positions, number of
sunspots, densities,...), the duration of the observation or the cadence.

Independent on the type of data we can sketch Time Series data as
shown in Fig. 1. Time Series data is composed of a set of observations
(n_observations = 3 in this example), each with a different exposure or in-
tegration time (t_exp). Although in some cases the cadance or time span
between each observation (delta_t) is fixed, in the general case it can be
different and we can therefore define a minimum and a maximum value
(delta_t_min, delta_t_max). Each observation has it’s own time stamp
(t_i) with a given precision or resolution (t_resolution). As can be seen
from this figure the duration of the observation can be defined in different
ways: a) as the total integration or exposure time, i. e. the sum of all the

3

Figure 1: Simple representation of Time Series data.

exposure times: t_exp_total =
∑
t_exp; or b) as the time spam between

the beginning and the end of the observations: t_exp_total = t_max -
time_min). Note that in the case that the exposure time is constant for
all the observations then t_exp_total = n_observations ×t_exp. The sit-
uation can be more complicated, for instance during the observation there
could be clouds and we therefore pause the exposure for a while and resume
once the cloud has passed or we might want to remove parts of the obser-
vation due to artefacts in the data. In any case these values can be taken
as approximative of the minimum and the maximum value this specific field
can have. The most relevant fields of Time Series metadata are summarized
in Table 1.

In many cases time series data is composed of only three colums:

time, magnitude, magnitude error

For this data to be fully exploitable and reusable (interoperable) it has to be
properly documented. In this specific case the minimum information that
needs to be provided is: the object coordinates (or name), the filter in which
the observations have been carried out, and the time frame and offset (if
applicable).

2.2 Science use cases

Different science use cases for Time Series have been collected and described
in by ? and can be found under http://wiki.ivoa.net/twiki/bin/view/

4

http://wiki.ivoa.net/twiki/bin/view/IVOA/CSPTimeSeries
http://wiki.ivoa.net/twiki/bin/view/IVOA/CSPTimeSeries

Table 1: Time Series metadata fields.

Field Explanation

(RA,Dec) Coordinates1

target_name Target name1

t_min Date of the begining of the of observation
t_max Date of the end of the observation
t_exp_min Minimum exposure time
t_exp_max Maximum exposure time
t_exp_total Total exposure time
delta_t_min Minimum time sampling / cadence
delta_t_max Maximum time sampling / cadence
t_resolution Time resolution/precision
n_observations Number of observations
type_of_data Type of data (fluxes, radial velocities, images,...)

Note: 1For SSO or moving objects coordinates might not be enough or
relevant.

Science Target(s) Datatype Time Brightness Photometric
Case Band

Group A yes lightcurves yes yes one
Group B yes lightcurves yes yes several
Group C yes other yes no no

IVOA/CSPTimeSeries. Science cases are grouped according to their common
requirements:

• Group A Common requirement: Combine photometry and light
curves of a given object/list of objects in the same photometric band

• Group B Common requirement: Combine photometry and light
curves of a given object/list of objects in different photometric bands

• Group C Common requirement: Time series other than light curves

As highlighted by the different science use cases described in http:
//wiki.ivoa.net/twiki/bin/view/IVOA/CSPTimeSeries, there are astro-
physical phenomenae that vary in different timescales and hence, in order
to study the different physical underlying mechanims a user might need to
collect and analyse data from different missions and of different nature. An-
swering all the possible science cases is a difficult task. We would therefore

5

http://wiki.ivoa.net/twiki/bin/view/IVOA/CSPTimeSeries
http://wiki.ivoa.net/twiki/bin/view/IVOA/CSPTimeSeries
http://wiki.ivoa.net/twiki/bin/view/IVOA/CSPTimeSeries
http://wiki.ivoa.net/twiki/bin/view/IVOA/CSPTimeSeries

like to keep a practical approach to the problem, solving the simplest cases
in a first step and allowing having incremental solutions for more complex
systems at later stages.

Looking at the different science cases we simplify the questions to two:

1. Have these two missions observed this object within these two dates?

2. Is it possible to discover long/short term variability within the data?

To answer the first question a user needs to be sure that dates are compa-
rable, that is time has to be brought into a common time frame. To answer
the second question we need to keep track of the minimum and maximum
time span. We aim in a first step to answer these fundamental questions
and, later on we will move to answer the specific science cases, which focus
of the nature of the Time Series data, giving priority to lightcurves which
represent the majority of the cases, while having in mind a wider approach.

2.3 Using a common time frame

To compare datasets from different missions or archives a common represen-
tation of time is needed. In order to do so we propose to map time into a
pivot format. Following ? and Rots (2007) we propose a set of minimum
metadata to be added for serializations of Time Series (see Table 2).

We recommend to be specific on the time frame and we suggest to use:

JD(TDB;BARYCENTER)

We also give some values that can be used as default in the case that some
information is not known and impossible to recover. We minimize the impact
of doing this by adding a systematic error to time when those values are
unkown.

2.4 Extension of ObsCore based on EPNCore

Some of the fields described for Time Series data have already been exple-
citely defined and used in the context of data discovery using ObsCore Louys
and Bonnarel et al. (2011), and the remaining ones have been defined in the
context of EPNcore ?. In Table 3 we show the equivalence between the fields
we define here and those by ObsCore and EPNcore.

For discovering Time Series data, an extension of ObsCore based on the
fields listed in Table 3 and missing in ObsCore would suffice. For these extra
fields we would recommend using the EPNcore name convention.

6

Table 2: Metadata for time in Time Series data serialisation.

Parameter Explanation

time_frame_scale Time frame scale is the scale used to me-
assure time. IAU definition: “A time scale
is simply a well defined way of measur-
ing time based on a specific periodic natu-
ral phenomenon.” http://aa.usno.navy.mil/
publications/docs/Circular_179.pdf. Rec-
ognized time scale values and their meaning are
listed in Table 9. If we don’t know use “UN-
KOWN”.

time_frame_position Time Frame Position is the place where the time
is measured. Standard values are liste in Ta-
ble 10. If we don’t know use “UNKOWN”.

time_uncertainty Resolution or uncertainty of the time stamps.
time_sys_error Time Systematic Error to take into account

our knwoledge of the time frame (scale and
position). If time_scale is not known then
100s as DEFAULT value, if time_scale and
time_frame_position are both not known then
use 1000s as DEFAULT value. Approximately
100s is good for the time_scale since that’s re-
lated to changes in the clock in space/earth;
1000s is good if we don’t know if times are cor-
rected for the position of the Earth/satellite on
its orbit around the Sun since that’s approxi-
mately twice the time it takes the light to travel
the Sun-Earth/satellite distance.

time_representation JD, MJD, ISO-8601.
time_offset Offset that has been subtracted to the time.

Time can be relative to a certain moment, e. g.
time after the GRB that happened on date
YYYYMMHHMMSS.SS or a random number
the authors have subtracted from data to allow
higher precision in the time stamps. Its default
value is 0.0.

Description A text briefly describing what is varying with
time. “Photometric variability in filter V”, “Ra-
dial velocity curve in HJD”. This field is aimed
to help the reader.

7

http://aa.usno.navy.mil/publications/docs/Circular_179.pdf
http://aa.usno.navy.mil/publications/docs/Circular_179.pdf

Table 3: Equivalence between Time Series data fields and ObsCore and
EPNCore fields

Field ObsCore field name EPNCore field name
coordinates s_ra, s_dec -
target_name target_name target_name

t_min t_min time_min
t_max t_max time_max

t_exp_min - time_exp_min
t_exp_max - time_exp_max
t_exp_total t_exp -
delta_min - time_sampling_step_min
delta_max - time_sampling_step_max

n_observations t_xel -
type_of_data dataproduct_type2 dataproduct_type

Note: 1 The explanation of t_resolution in Obscore as “Temporal resolution
FWHM” should be modified to simply “Temporal resolution”. 2 dataprod-
uct_type should be set to timeseries in Obscore, but this would still not tell
the user that the timeseries is composed of images or lightcurves or a combi-
nation of both in a more complicated case. Q : is it possible to combine
dataproduct_type=timeseries;images;sed for instance?

3 Models

In this section we describe the usage and role of models in the context of
this note (see (?)).

4 Time series representation: Data Model and
UML diagram

4.1 Data modeling with CharacterizationDM and Cube DM

The goal of this modeling effort is to tackle various use-cases for character-
izing time dependent datasets.

This model interprets the Cube Data Model (?) for describing the meta-
data of Time series necessary to discover and select a dataset. It also repre-
sents the data themselves, the time line and the kind of measurements taken
for each time stamp and how they are grouped together by some common
physical parameter.

It summarizes the properties of an observed dataset following the ap-
proach of the ObsCore Data Model and Characterization Data Model. The

8

time axis especially is characterized in coverage (span), resolution(uncer-
tainty), sampling in order to easily identify a data set for studying one spe-
cific event. Spatial axis, Spectral axis, Observable (Flux), and Polarimetry
axes are also characterized for data discovery.

The representation of data re-uses the SparseCube Class for representing
a collection of measures organized as a multi-dimensional array with possibly
empty values : a sparse cube. The axes covered by the SparseCube can be
described from an axis profile listing which axes are present, which ones are
combined and in which data product types and subtypes.

4.2 Perspective

The data are represented by a node with a time stamp and a bundle of
observable data taken at this time slot. This bundle may contain only a
simple measurement, f.i a flux or a magnitude in the case of a simple light
curve, or a data varying along other parameters like wavelength or frequency,
for a spectrum or like position for an image, or both like a hyperspectral data
cube (2D position + lambda). More over these can also be multiband images,
polarimetric spectra or images, etc.

The event list is the form of the most scattered format of measures, sam-
pling all values separately, but the VO already offers a strategy for querying
and handling dataproducts like images and spectra as well and we can build
on it at least for data discovery.

4.3 TimeSerie representation use-cases

We identified various use-cases where data are taken following a series of
time stamps. The data model allows to accommodate various cases, from
the single light curve for one astronomical object to a series of advanced data
sets depending on the Time axis. The following section describes how data
are bound together for each use-case. It shows a simple block diagram and
illustrates the case with real data sets. The more general form is TS = f(t,
pos, em, pol, ..) represented as a node tupple and by setting one or more of
these parameters to a constant or a set of discrete values, we can represent
many cases .

4.3.1 Light curve

The node tupple is (t, m) with m beeing a photomeric measure which
can be characterised by the Observable UCD tag o_ucd = phot.mag or
phot.flux for instance. In this case attributes from ObsDataset easily
represent the type of dataset: dataproduct_type to be ’timeseries’ and
dataproduct_subtype to be ’lightcurve’ for instance.

9

Figure 2: Light curve: simple if n equals 1 and multiband light curve if
several fluxes have been recorded in various filters. Here they have been
recorded simultaneously and are bound to the same time stamp. The Pho-
tometric calibration and information of the Photometric system together
with the Filter details are linked to the Flux measures.

0

0,5

1

1,5

He

0

0,5

1

1,5

0,5 1 1,5 2 2,5 3 3,5 4 4,5

u'

0

0,5

1

1,5

2

r'

Phase

no
rm

al
iz

ed
 c

ou
nt

 ra
te

Figure 3: Time series data with multiple fluxes for one time stamp in three
bands : ULTRACAM data

10

Here is a representation for non synchronised multiband time series in
Fig 4

Figure 4: Time series data with multiband fluxes not synchronized : Can be
seen as a compilation of three interlacing monoband time series .

4.3.2 Time Series of spectra

The node tupple here is (t, m) with m to be a spectrum (t, f luxi = f(emi))
. We deal with a list of time-stamped spectra. see Fig 5

4.3.3 Time series of images

This can be used in many fields for detecting changes (solar events, planetary
applications, GRB events, ...) The sparse profile is (t, f luxi = f(Posi)) at
some em_reference, em_0, em_1, em_2, etc...

Here we deal with a list of time-stamped images. The series can hold
images taken with different filters taken simultaneously and have a multi-
spectral coverage. Or this can be a compilation of multiple images in various
bands at interlacing time intervals.

4.3.4 Time series of cubes

Sparse profile = (t, F lux(em, pos))emin[em_min, em_max], pos in a sky
bounding box This is typically the MUSE data collection which stacks a time
series of hyperspectral cubes over a night and combine these to improve SNR
of the reconstructed data cube.

11

Figure 5: Time series of spectra and SED compared for the PESSTO data

4.3.5 Time series of combined data

A TS:NDPoint can be even more sophisticated and can gather several data to
store interpretation results and highlight previous identification and analysis
of the combined data. This is then up to the archive publisher/designer to
link the science-ready data parts together. Time domain applications will
then support appropriate browsing of these logical links and help astronomers
for the science interpretation.

LightCurve enriched with preview images Light curve may be enriched
with preview images showing the source in spatial context and in appropiate
filters for some critical time stamps. The linked images can be progenitor
images from which the photometry was computed, or an illustration of how
the source can appear at some specific time and /or spectral band. lSee 6
and 7

12

Figure 6: The TS:NDpoint now has a time stamp and a flux attached .
Images of the source are linked to the various time stamps corresponding to
luminosity peaks and illustrate the source in its temporal and spatial context.

Figure 7: Time series data with flux measure and illustrating images at
relevant data points. Application to Pulsar data analysis

5 TS Data Model

The overview of the data model is given in the following class diagram in
fig. 8. The details of the Characterisation along the Time axis , which
will be selection criteria used for timeseries discovery are modeled in the
Characterisation part and represented in Fig. 9.

13

Figure 8: Time series main components: Timeseries data are represented
by the TimeSeriesData object which is a collection of NDpoints as a Spar-
seCube. How the data are spanned along the various axes is summarized
in the main properties of the Characterization class. The TimeAxis class
especially is described for Coverage , resolution and sampling.

Figure 9: Time Axis main properties. Coverage, sampling, time sampling
step as well as time period between two samples are described. The time
resolution can be present either as a typical resolution value in TimeResolu-
tion Refval or by a set of minimal and maximal values representing the time
resolution (or also considered as accuracy along the time axis)

How the data set can be localised in spatial, spectral, polarisation axis,
flux axis or other observable is also described via the Characterization DM
using spatial, spectral, polarimetry, etc. coverage description. The flux axis
if present is bound to a PhotCal object present in the PhotDM . This allows
to bind a flux measure to its spectral coverage, filter and photometric system

14

easily , as proposed in the Spectral and Photometry DM. This is needed in
the use case of a multiband lightCurve for instance.

The TimeSeries data only needs two concepts : a time stamp represen-
tation and the corresponding measure taken at this time instant. These are
two Observable objects , and derived as TimeObservable for the timestamp
and a specialized Coordinate measure as defined in the meas package of the
STC v2.0 data model.

The following diagram in fig. ?? highlights how the measurements classes
from STC can be reused, but leaves the details to further discussions until
the STCV2.0 DM is finalized completely.

Figure 10: Time Axis main properties. The Coverage , the sampling , time
sampling step as well as time period between two samples are described.
The time resolution can be present either as a typical resolution value in
TimeResolutionRefval or by a set of minimal and maximal values represent-
ting the time resolution (or also considered as accuracy along the time axis)

More than one single measure corresponding to a time stamp, we can
also gather time series of dataproducts like spectra, images or cubes. This
is the use case described in class diagram of Fig.11.

This datamodel has been designed with Modelio 3.6. It includes the
Modelio exportfiles from Cube and STCv2.0 DM in their current version.
The complete integration phase of those datamodel parts is still in progress
with imports beeing unwieldy . Once solved the VODML description of the
TimeseriesDM should be easy to generate and the HTML docs as well.

5.1 datamodel fields

t_min TimeAxis.Coverage.Bounds.Limits.LoLim
t_max TimeAxis.Coverage.Bounds.Limits.LoLim
t_exp_min TimeAxis.SamplingExtent.Bounds.Limits.LoLim
t_exp_max TimeAxis.SamplingExtent.Bounds.Limits.HiLim
t_delta_min TimeAxis.SamplingPeriod.Bounds.Limits.LoLim

15

Figure 11: When the measures are datasets by themselves.

t_delta_max TimeAxis.SamplingPeriod.Bounds.Limits.HiLim
t_sampling type of sampling TimeAxis. irregular, regular .. if regular period if computed

5.2 Mark

For the purposes of this exercise, we generated a toy timeseries model based
off current models (Dataset, Cube, Coords, Meas). The model extends
Cube model elements to facilitate the modeling of a wide variety of Time-
Series flavors.

There are multiple ways the TimeSeries model could be derived from
Cube. The details will depend on a thorough review of the full set of use
cases and requirements. This toy model focuses on representing the Simple-
TimeSeries as a fairly direct extension of SparseCube... with the addition
of requiring a ’timeAxis’. The cube component elements are designed to
facilitate the definition of other TimeSeries described in the CSPTimeseries
document, but are not heavily considered here at this point.

The Simple Time Series model shown in Fig. 12, is defined as an extension
of the Cube data model with the addition of only 3 objects. This approach
maximizes the interoperability of the data and reinforces the concept that
these data can be considered a slice through a generalized sparse cube. By
creating a VO-DML compliant model, instances of a Simple Time Series
can be annotated using their assigned VODML-IDs. Applications which
understand Cube model instances will automatically understand a very
large percentage of the Time Series content.

Having separate models for different areas of the ’Universe of Discourse’
maximizes interoperability, but can take some practice to interpret. Below

16

Figure 12: Simple Time Series as extension of Cube.

is a descriptive outline of the model structure.
ds:Dataset Metadata

• Dataset - provides generic identification and curation metadata for the
dataset (eg: Curation, DataID, etc).

• ObsDataset - adds metadata related to the Observation (eg: Target,
Instrument, Configuration, etc)

cube:N-Dimensional Cube - This model defines generic cube data prod-
ucts, either as SparseCube-s (eg: Event lists) or Image-s (eg: nD Pixelated
image). The Simple Time Series model will extend from SparseCube, inher-
iting the following:

17

• A reference to the relevant Dataset Metadata instance which describes
it.

• A collection of NDPoint-s, each being a collection of associated Ob-
servables. (eg: time, position, mag)

• Observable - identifies the item as ’dependent’ or ’independent’, and
provides the measured data value (value + error) which is described
in the Measurement model.

meas:Measurement - This model defines measured data and their asso-
ciated errors. It is a generic model, so provides the basis for many types
of measured data. In some cases, additional metadata is required to fully
describe the measurement and how it was obtained. These are expected to
be defined in models which specialize in that content.

• CoordMeasure - class of Measure given by a Coordinate ’value’ plus
one or more Error-s also defined in that model.

spec:Spectral Model - This is a dummy Spectral model for illustrating how
a specialized LuminosityMeasure could be defined which provides additional
metadata related to how the Luminosity value was determined.. eg: which
photometry filter was used.

• LuminosityMeasure - Extends CoordMeasure, so has a Coordinate
value + Errors, and adds a reference to associated Photometry meta-
data.

• NOTE: being an extension of CoordMeasure, this type is automatically
usable in a Cube instance, and therefore, SimpleTimeSeries.

ts:Simple Time Series - The Simple Time Series is modeled as a ’view’
through a sparse cube. Time becomes the independent axis, with other
observable axes providing the measured data.

• SimpleTimeSeries - defined as a SparseCube which MUST contain
TSPoint-s.

• TSPoint - adds a single ’independent’ timeAxis to the generic NDPoint.

• SampleTime - provides the TimeMeasure for the point. TimeMeasure
is defined in the Measurment model, giving the Coordinate value in
JD, MJD, ISO, etc.. plus any associated errors. The Coordinate is
associated with a TimeFrame identifying the timescale and reference
position. NOTE: This element includes basically all the information
described in Table 2.

18

With a validated VO-DML compliant model, we can generate serializa-
tions which are annotated using the element VODML-ids. In Section 6.3,
we describe the serialized sample files generated for this study based on this
model, using the current VO-DML/Mapping syntax proposal.

6 Serialisations

This section presents various attempts of serialisation using different strate-
gies.

Subsection 1 is using VOTable GROUPs for separating axes in the serial-
isation and is using utypes from different models on GROUPS and FIELDS.
It has been written by Jiri Nadvornik. Subsection 2 "Full utype serialisa-
tion" subsection has been written by F.Bonnarel. Subsection 3 is using the
full VO-DML mapping serialisation and has been written by Mark Cresitello.
Subsection 3 is a proposal for a "Lighter" VO-DML mapping serialisation
and has been written by Laurent Michel.

6.1 Jiri’s approach

6.2 Full utype serialisation

In this approach, relational views of the TimeSeries described above are pro-
vided. Hierarchies of classes showing 1 to 1 relationships are grouped in one
single table. Table x shows the list of tables used to map the model with the
full set of their columns metadata (utype, datatype, ucd, unit and xtype),
in the case of example 1. The VODataservice "tableset" representation of
this set of tables is described in Appendix.

Each TimeSeries project as its own subset of attributes of the generic
model. This leads to a specific partial relational view of the model. For each
of these a dedicated table like table x could be provided. See the tableset
representations in Appendix.

The structure is made of 4 "tables" number which seems to be a compro-
mise to separate very differents groups of classes without having too much
of them.

The main "table" is the data table where the actual values of the inde-
pendant variable (Time stamps) and of the "one to many" varying variables
are stored.

The three other tables, which we can call "generic TimeSeries metadata"
tables gathers respectively :

• Dataset, curation and dataid classes attributes. This is directly derived
from similar concepts in ObsCore and Dataset metadata model.

19

• Characterization describes where and how the dataset is situated in
the physical parameter space; most of the columns there should be
redondant with what is in Obscore Char.

• Coordsys table. This table mainly serializes stc and gathers the coordi-
nate frames (time, space, spectral) used in the TimeSeries as well as the
different photometric filter descriptions, assimilated to "flux frames".

Utypes are built by concatenating class and attributes names following a
path from a top element to the actual considered leave. They don’t designate
a class atrribute per se but a role of the attribute value with respet to the
full model.

Table x and its vodaitaservice tableset expressions are an absolute ref-
erence for the utypes definition and should be reproduced in the timeSeries
model specification.

"Tables" mentionned here and described in the Appendix are not required
to be serialized as TABLE elements in VOTable. In the case there is only
one single TimeSeries in the VOTable document, "generic metadata tables"
have only one single instance. They can be serialized as groups and their
columns as PARAMS instead of using TABLES with one single row.

The Appendix illustrates the background of the examples the serializa-
tion of which is provided at the URL included here, starting with the simplest
example :
http://volute.g-vo.org/svn/trunk/projects/time-domain/time-series/standardized_votables/
/francois/SDSS_J080434.20+510349.2_VizieR_complete_utypes.xml
This TimeSeries is a light curve for a single SDSS object and is provided as
full Catalog in VizieR. It has one single dependant variable : V magnitude.

Obviously most of the use cases will be more complex, as in the two
following examples

Example 2 is an excerpt of table 3 of the VizieR catalog provided by
Shenavrin and coworkers in 2011 (Shenavrin et al, Astronomicheskii Zhur-
nal, 2011, Vol. 88, No. 1, pp. 34-85.) where the rows present a basic
time with a Time Shift for each photometric band. It presents a main time
as independant variable and several magnitudes in different bands for the
same individual exposure. The exact measurement time is slightly varying
according to the band (due to a shift of time for changing the filter) in such a
way that several secondary times are given for each main TimeStamp as well.
(http://volute.g-vo.org/svn/trunk/projects/time-domain/time-series/standardized_votables/
francois/BetaLyr_Vizier_complete_utypes.xml)

In example 3 where exoplanet data are provided (GAPS project) some
columns provide flux or radial velocity measurements which have a spe-
cific utype in an IVOA model (stc or phot). Some other don’t have
because the definition of the quantity is outside the scope of STC or

20

photometric datamodel. In that case a generic "measurement" utype
(ts:TimeSeriesData.NDPoint.dependantObservedObject.CoordMeasure.coord)
is given and the flavor can be precised with help of the ucd. In some other
cases the column contains an error on some of these measurements. In that
case the utype is set to : "

(http://volute.g-vo.org/svn/trunk/projects/time-domain/time-series/standardized_votables/
francois/GAPS_kp7_complete_utypes.xml)

In example 4, extracted from Gaia DR2 catalog, the TimeSeries is a
concatenation of three set of NDpoints, one per each photomteric band

(http://volute.g-vo.org/svn/trunk/projects/time-domain/time-series/standardized_votables/
francois/GaiaSample3Tables_complete_utypes.vot)

In example 5, the Gaia DR2 TimeSeries with its three bands is organized
in a single table.

(http://volute.g-vo.org/svn/trunk/projects/time-domain/time-series/standardized_votables/
francois/GaiaDR2Example-time-series.xml)

6.3 Marks’s approach

For this study, we generated annotation for the 2 sample files accord-
ing to the current VO-DML Mapping Syntax proposal ?. Annotation
was generated to both the current Cube model and the toy Time Series
model described in Section 5.2. The files themselves may be found at the
following URL: http://volute.g-vo.org/svn/trunk/projects/time-domain/time-
series/standardized_votables/MarkCD/

6.3.1 Sample Files

In the text below we will focus on the annotation to the Time Series model
as that is the focus of this study.

1. BetaLyr_Vizier Example file annotated as multiple SimpleTime-
Series data product instances, one per photometric band.

The structure is:

• 1-instance of ObsDataset

• 5-instances of SimpleTimeSeries data products, one for each band
(J,K,L,M,N)

• 5-TSPoint templates, each with 1-Time + 1-Observable (Mag
with Error)

21

The use of FIELD elements to store metadata (eg: ObsDataset meta-
data) presents a challenge for proper annotation. Being in FIELDs,
they must be annotated within a TEMPLATE element, which may
have multiple instances. This forces the INSTANCES to identify a
particular instance via the ORM PRIMARYKEY/FOREIGNKEY el-
ements.

For a model which specifies that there should only be 1 instance of that
type, this is quite a lot of overhead. This annotation shows that the
syntax can accommodate the structure, but in practical application, it
is probably easier for both client and provider to re-cast the VOTable
segment to provide these singular elements as PARAMs. This results
in very straight-forward annotation and VOTable.

2. GaiaSample3Tables Example file annotated to the toy TimeSeries
model, using the current Mapping syntax proposal, as multiple Sim-
pleTimeSeries data products.

• 0-instances of ObsDataset

• 3-instances of SimpleTimeSeries data product

• 3-instances of TSPoint with 3 Observables each (1-Time + 1-
Flux_w_error + 1-Mag)

This appears to be a straight forward representation of 3 SimpleTime-
Series data products, each serialized in their own TABLE. In this exam-
ple, the filter metadata is constant for each table, so we’ve annotated
them as individual instances which are referred to by the Luminosi-
tyMeasures within the TEMPLATE.

There is no DatasetMetadata included.

For annotation purposes, I needed to make the following changes.

• Changed VOTABLE tag to version 1.4 to validate against vo-dml
schema

• Added IDs to TABLE elements to reference in vo-dml annotation

• Added IDs to PARAM elements for Filter metadata

6.3.2 Mapping Syntax

The syntax used is fully documented in the VO-DML Mapping document ?.
It is important to note that this syntax was designed to satisfy a broad set
of use cases and essential requirements identified by the community. Any
syntax being considered by the community for application, should be evalu-
ated against these requirements to ensure that it will meet the needs of the
community.

22

The document fully describes the syntax, so we will not go into detail
here. The key structural components are:

• <VODML> - primary element, all annotation is isolated from the
VOTable serialization.

• <MODEL> - identifies which vo-dml compliant models are represented
in the serialization

• <GLOBALS> - instances which are global in nature. (eg: Frames,
Dataset Metadata)

• <TEMPLATES> - defines multiple instances by iterating over entries
in the template target (rows of a TABLE)

• <INSTANCE> - defines a particular instance of a structured object
(TimeFrame, SimpleTimeSeries, etc) identified by the vodml-id of the
object type (coords:domain.time.TimeFrame, ts:SimpleTimeSeries)

This syntax provides severval benefits over the earlier utype convention,
or any utype based annotation syntax, such as:

• Isolating the annotation from the VOTable elements allows data
providers to retain their native serialization.

– is an additive change to current serialization thread

– allows native code to continue functioning

• Protects against model changes

– if a model changes, say elements move from one group to another
(which has happened), data providers do not need to change the
VOTable GROUP content, just update the annotation section.

• Allows reuse of elements

– a single PARAM value=TOPOCENTER can be used for all
Frame.refPosition roles.

– a single FIELD name=’time’, can provide the time measure for
multiple SimpleTimeSeries instances.

• Clear association of an instance to a role

– The syntax directly associates an instance to the role it plays in
the parent object; ds:Target.position is instance of meas:Position

– The same INSTANCE may serve multiple roles. eg: a single
Organization instance may serve as both ds:DataID.curator and
ds:Curation.publisher

23

• Allows annotation to multiple models, or versions thereof.

– Providers can annotate the same VOTable content as a Sparse-
Cube AND SimpleTimeSeries (for example).

– Providers can annotate the same VOTable content to multiple
versions of the same model, allowing for smoother transitions by
clients.

• Allows clients to ’discover’ content it understands.

– since any modeled instance ALWAYS has the same vodml-id,
client applications can find and work with content that it under-
stands. The common example is a generic plotting package can
find instances containing the roles ’meas:CoordMeasure.coord’
and ’meas:CoordMeasure.error’ to plot these data without know-
ing that they reside in a SparseCube, TimeSeries, or other data
product.

These limitations of the utype annotation approach were the primary drivers
for the VO-DML Mapping project.

6.4 Laurent’s approach

The VO-DML workflow is 2 folds :
1) The model serialization in a model.vo-dml.xml file (REC process cur-

rently close to complete)
2) the data mapping. This last step consists in an XML bloc on the

top of the VOTAble acting as a bridge between the model and the data so
that a client can easily build model instances by exploring that mapping
bloc (see previous section). The VO-DML concepts are endorsed by the
community but the mapping syntax may appear as too complex making
both data annotation process and VOTable parsing difficult.

• VO-DML workflow ++

– Enable to map any modelling feature

– Mapping block independent from the VOTable content

∗ No dependency with the VOTable schema
∗ Easiness to join data taken out from different tables
∗ Easy to skip for clients not model aware

• VO-DML workflow –

– Obscure and chatty mapping syntax

24

– Coupling between the mapping leaves and the VOTable data
structure. For instance, the mapping has to be changed when
a value is moved from a PARAM to a FIELD

The present section explores a possible simplification of the mapping
syntax relying on the strengths of the VO-DML workflow while targeting an
easier job for both data providers and data consumers. The syntax baseline
is designed to provide general-purpose clients (e.g. Aladin, JS widget . . .)
with nothing more than what they need, considering that more advanced
clients could retrieve in any case any model features within the model itself.
This simplification might also improve the reliability of the data annotation
process. This is not a complete proposal, but a proof of concept validated
against TD data.

6.4.1 Mapping Syntax

Basics The design of this mapping syntax being not complete; we just
describe here the outlines of this simplification and the features we need to
map the present data sample.

As describe in the previous section, the <VODML> block is split in 3
sections.

Table 4: Main mapping elements.

<MODELS> References to all referenced models (models + imports)
<GLOBALS> Not implemented here

<TEMPLATES> One template per table

Each template refers to a particular table and contains the mapping of
the classes hosted by that table. The mapping is based on the 3 concepts
necessary to describe a hierarchy of classes:

Table 5: Mapping element roles.

<VALUE> Model leaf. Either points to a <PARAM> or a <FIELD> or contains
its own value for literals

<INSTANCE> Denotes a class. An <INSTANCE> is a tuple of elements which can be
either <VALUE>, <INSTANCE> or <COLLECTION>

<COLLECTION> Denotes a list or an array. A collection can contain either <VALUE>,
<INSTANCE> or <COLLECTION>

Each one of these elements supports some attributes wich can be manda-
tory (mand.) or optional (opt). It has be be noted that some attributes
such as units or formats are not described here as well as the foreign key
mechanism.

25

Table 6: Mapping element attributes.

Attribute: @dmrole @dmtype @ref @tableref @size @value

<VALUE> mand. none mand.
if no
@value

none none mand. if no @ref

<INSTANCE> mand. opt. none opt. none none

<COLLECTION> none none none none opt none

<VALUE> element The @dmrole attribute is the one set in the VO-DML
model. Other VO-DML attributes (e.g. @dmtype) can be retrieved in the
VO-DML file from the location of the <VALUE> element and from its
@dmrole.

• If a <VALUE> element has a @ref attribute but no @value, its value is
taken out from the refered element of the table refered by the current
<TEMPLATES>. The client must first search in the <FIELD>, and
then in the <PARAM>. The value of a <VALUE> element located
out of a <COLLECTION> block and pointing onto a <FIELD> is
set with the values read the first table row.

• If a <VALUE> element has a @value attribute but no @ref, the value
of @value is taken.

• If a <VALUE> element has both @value and @ref, the client must
first resolve @ref and then @value.

<INSTANCE> element The @dmrole attribute is the one set in the VO-
DML model.

• An <INSTANCE> without @dmtype attribute matches the type set
in the VO-DML file. Otherwise, @dmtype can specify a subtype of the
dmtype read in the model. This feature is used to support abstract
classes.

• An <INSTANCE> with a @tableref is mapped in the <TEM-
PLATES> designated by @tableref and having the same @dmrole.

<COLLECTION> element The @dmrole attribute is the one set in the
VO-DML model. All <COLLECTION> sub-elements must have the same
@dmtype. The number of elements in a collection is specified the @size
attribute.

• A <COLLECTION> without @size attribute contains one instance of
each element mapped (see example below)

26

<collection dmrole=’Axes’>
<instance dmrole=’Axis’>

<value dmrole=’name’ valu=’time’ />
.....

</instance>
<instance dmrole=’Axis’>

<value dmrole=’name’ value=’observable’ />
.....

</instance>
</collection>

• A <COLLECTION> with a @size attribute contains as many in-
stances of the mapped elements as requested by @size. To be con-
sistant, when @size is set, <COLLECTION> must have one unique
child containing only one mapped entity.
<collection dmrole=’Points’ size=’−1’>

<instance dmrole=’NDPoint’>
.....

</instance>
</collection>

If @size equals to * or -1, the collection is populated as long as data are
available. For instance, this is the case when the <COLLECTION>
maps photometric points which are read row per row in the table.

6.4.2 Workflow (to be updated)

The model used for these serializations, designed with Modelio 3.5, has been
presented at (ref ivoa). This serialization has also been tested with Sparse-
Cube but the outcomes are less advanced. This demonstrator used for the
serialization of the data sample relies on 2 specific Python tools developed
on this occasion but possibly reusable as seeds for further developments.

• transform.py reads a VO-DMLmodel and genererates a single <VODML>
block with unresolved references. The tool supports directives speci-
fying which classes must be used in replacement of the abstract ones.
The <VODML> block must be inserted by hand in the VOtable to be
annotated. It must be split in multiple <TEMPLATES> if data are
spread out on muliple tables. The references to actual <FIELD> and
<PARAM> must also be set by hand.

• transform.py is a basic client which plots the annotated timeseries.
The key point is that transform.py is able, to some extent, to read any
VOTable mapped with the model.

6.4.3 Conclusions and Prospects

This approach confirms the power and versatility of the VO-DML workflow
since it doesn’t use any feature external to the VO-DML ecosystem. The
main outcome is that clients knowing a model are able by construction to
read VOTables annotated with that model. There is no need to adapt the
client code to specific data collection as long as they are are not too much

27

exotic. The added value of the light syntax sketched here is that the same
outcomes can be reached with more compact and more readable annotations.
This opens the way for light clients such as JavaScript widgets which could
have difficulties to process hundreds of XML lines each time they have to
parse a VOTable.

7 View from Data Providers

The purpose of this section is two folded:

• Pros & cons of each solution

• Difficulty of implementation

7.1 GAVO

GAVO requirements at a glance

7.2 vizier

VizieR requirements at a glance by Sebastien, Gilles, Thomas

8 View from Applications

The purpose of this section is two folded:

• Pros & cons of each solution

• Difficulty of implementation

8.1 Aladin

Aladin requirements at a glance by PF and TB

8.2 Topcat

Topcat requirements at a glance by MT

8.3 Javascript widget

Vizier Javascript widget requirements at a glance by GL

28

Table 7: Model dependances

Model Function ML MCD Rec VO-DMLized
TS Characterization Physical description 3 7 3 7

(mag, flux, position, ...)
Cube data model N-Dim observable 3 3 7 3

PhotoDM Phot. system 3 7 3 7

SparseCube Event lists 3 3 7 3

Meas Def. of measurement 3 3 7 3

spec:Spectral Model Phot. system 7 3 7 7

ts:Simple Time Series Event lists with time axis 7 3 7 3

Dataset Metadata Non-physical description 3 3 7 3

(telescope, pubDID,...)

Table 8: Pros and Cons of each proposed model

models serializations
Type of data ML MCD u-type VODML VODML-light

RV/position/Light-curves 3 3 3 3 3

Radial-velocity curves 3 3 3 3 3

Series of dataproduct 3 7 3 3 3

9 Discussion

Table 8 highlighs and summarizes pros and cons of each of the proposed
serialisations.

10 Conclusions

Conclusions by the TDIG

A Recognized time scales

References

Louys, M., Bonnarel, F., Schade, D., Dowler, P., Micol, A., Durand, D.,
Tody, D., Michel, L., Salgado, J., Chilingarian, I., Rino, B., de Dios San-
tander, J. and Skoda, P. (2011), ‘Observation data model core components

29

Table 9: Recognized time scale values from ? and Rots (2007).

Parameter Explanation

TAI (International Atomic Time) atomic time standard maintained
on the rotating geoid

TT (Terrestrial Time; IAU standard) defined on the rotating geoid,
usually derived as TAI + 32.184 s

TDT (Terrestrial Dynamical Time) synonym for TT (deprecated)
ET (Ephemeris Time) continuous with TT; should not be used for

data taken after 1984-01-01
IAT synonym for TAI (deprecated)
UT1 (Universal Time) Earth rotation time
UTC (Universal Time, Coordinated; default) runs synchronously with

TAI, except for the occasional insertion of leap seconds intended
to keep UTC within 0.9 s of UT1; as of 2012-07-01 UTC = TAI
- 35 s

GMT (Greenwich Mean Time) continuous with UTC; its use is depre-
cated for dates after 1972-01-01

UT() (Universal Time, with qualifier) for high-precision use of radio
signal distributions between 1955 and 1972; see Sect. A.9

GPS (Global Positioning System) runs (approximately) syn-
chronously with TAI; GPS ≈ TAI - 19 s

TCG (Geocentric Coordinate Time) TT reduced to the geocenter, cor-
rected for the relativistic effects of the Earth’s rotation and grav-
itational potential; TCG runs faster than TT at a constant rate.

TCB (Barycentric Coordinate Time) derived from TCG by a 4-
dimensional transformation, taking into account the relativistic
effects of the gravitational potential at the barycenter (relative
to that on the rotating geoid) as well as velocity time dilation
variations due to the eccentricity of the Earth’s orbit, thus en-
suring consistency with fundamental physical constants; Irwin
& Fukushima (1999) provide a time ephemeris.

TDB (Barycentric Dynamical Time) runs slower than TCB at a con-
stant rate so as to remain approximately in step with TT; runs
therefore quasi-synchronously with TT, except for the relativis-
tic effects introduced by variations in the Earth’s velocity rela-
tive to the barycenter; when referring to celestial observations,
a pathlength correction to the barycenter may be needed which
requires the Time Reference Direction used in calculating the
pathlength correction.

LOCAL for simulation data and for free-running clocks.

30

Table 10: Recognized time reference positions.

Parameter Explanation

TOPOCENTER Topocenter: the location from where the observation was
made (default)

GEOCENTER Geocenter
BARYCENTER Barycenter of the Solar System
RELOCATABLE Relocatable: to be used for simulation data only
CUSTOM A position specified by coordinates that is not the obser-

vatory location
HELIOCENTER Heliocenter
GALACTIC Galactic center
EMBARYCENTER Earth-Moon barycenter
MERCURY Center of Mercury
VENUS Center of Venus
MARS Center of Mars
JUPITER Barycenter of the Jupiter system
SATURN Barycenter of the Saturn system
URANUS Barycenter of the Uranus system
NEPTUNE Barycenter of the Neptune system

and its implementation in the Table Access Protocol, version 1.0’, IVOA
Recommendation.
http://www.ivoa.net/documents/ObsCore/20111028/
REC-ObsCore-v1.0-20111028.pdf

Rots, A. (2007), ‘Space-time coordinate metadata for the virtual observa-
tory’, IVOA Recommendation.
http://www.ivoa.net/documents/latest/STC.html

31

http://www.ivoa.net/documents/ObsCore/20111028/REC-ObsCore-v1.0-20111028.pdf
http://www.ivoa.net/documents/ObsCore/20111028/REC-ObsCore-v1.0-20111028.pdf
http://www.ivoa.net/documents/latest/STC.html

	Introduction
	Time Series
	Definition
	Science use cases
	Using a common time frame
	Extension of ObsCore based on EPNCore

	Models
	Time series representation: Data Model and UML diagram
	Data modeling with CharacterizationDM and Cube DM
	Perspective
	TimeSerie representation use-cases
	 Light curve
	Time Series of spectra
	Time series of images
	Time series of cubes
	Time series of combined data

	TS Data Model
	datamodel fields
	Mark

	Serialisations
	Jiri's approach
	Full utype serialisation
	Marks's approach
	Sample Files
	Mapping Syntax

	Laurent's approach
	Mapping Syntax
	Workflow (to be updated)
	Conclusions and Prospects

	View from Data Providers
	GAVO
	vizier

	View from Applications
	Aladin
	Topcat
	Javascript widget

	Discussion
	Conclusions
	Recognized time scales

