	[image: image1.jpg]

	 International
 Virtual
 Observatory
Alliance

UML Profile used in SimDB Data Model
Version 0.x
Note 2010 September 22
This version:

0.*-20100922
Latest version:
Previous version(s):
Author(s):

Gerard Lemson

Laurent Bourges

Jai Won Kim

Abstract
In this Note we describe the UML Profile we have used in the ISmDB data model (SimDB/DM)
Status of This Document
This is a Note. The first release of this document was 2010 …. This Note accompanies the UML data model expressed in UML and serialised to XMI [] in …/SimDB_DM.xml. This Note explains the syntactic elements used in that data model.

We suggest that the Data Model Working Group investigates this note and suggest its contents might be used to define a more uniform language for data models expressed in the IVOA.
This is an IVOA Note expressing suggestions from and opinions of the authors. It is intended to share best practices, possible approaches, or other perspectives on interoperability with the Virtual Observatory. It should not be referenced or otherwise interpreted as a standard specification.
A list of current IVOA Recommendations and other technical documents can be found at http://www.ivoa.net/Documents/.
Acknowledgements
Contents
61
Executive Summary

72
History

83
SimDB/DM: application, approach and outline

83.1
Application(s) of the model

93.2
Modelling approach

103.3
Phase 1: analysis

113.4
Phase 1: domain model

144
Logical model overview

144.1
Packages

154.2
Resource hierarchy

174.3
Physics, models and algorithms

184.4
Parameters: definition and values

194.5
Goal of experiment

204.6
Object types: real and simulated

204.7
Results: object collections and characterisation

244.8
Access services

255
Dependencies on other IVOA efforts

255.1
SimDB and Registry

265.2
SKOS vocabularies

275.3
Characterisation

286
Issues

286.1
Normalisation

306.2
Quantities and Units

306.3
Linking services, experiments and other resources.

316.4
Constraints

327
Serialisations

327.1
SimDB/UTYPE (normative)

337.2
XML

348
Use of SimDB data model

348.1
SimDB

358.2
SimDAP

358.3
S3

358.3.1
data model for an S3 service

368.3.2
S3 as a TAP service.

38References

41Appendix A
UML syntax

41A.1
Element

41A.2
Model

42A.3
Package

42A.4
Class

43A.5
ValueType

43A.6
PrimitiveType

44A.7
DataType

44A.8
Enumeration

44A.9
Attribute

46A.10
Inheritance

46A.11
Collection

47A.12
Reference

48A.13
Subsets

48A.14
… (?)

48Appendix B
Proof of concept

48B.1
Millennium Run: simulation, post-processing and publication

1 UML syntax
SimDB uses UML [TBD add ref] as the language for specifying the data model. This is in accordance with decisions of the IVOA data model working group. One advantage of UML is that it is implementation neutral. It is a graphical language, consisting of “boxes and lines” that is very suitable for whiteboard discussions but allows one to model the concepts and relations in a static data model. It is also rich enough to allow one to describe all important data elements and relations.

In fact, UML is almost too rich. It is easy to become overwhelmed by the large number of possible syntactic elements to choose from for modelling a particular structure. Luckily UML allows one to formally define a subset of its language where one restricts oneself to a subset of the syntactic elements. Such a subset is called a UML Profile. Apart from creating a more restricted language, a Profile also allows on to assign new meanings to existing elements by defining stereotypes with associated properties (tag definitions). It is also possible to predefine classes and data types (see below) that can be reused by the data modeller.
In our modelling effort we have defined an initial implementation of a UML profile as created by MagicDraw available under this link. The profile is also contained in the UML file containing the SimDB data model. Here we give a list of the main elements that we use and give a short motivation for their inclusion in the language. It is our opinion that the DM working group should be ultimately responsible for a profile such as this, as it gives the possibility of defining a domain specific language for all IVOA data modelling efforts, thus giving some uniformity to those disparate efforts.
1.1.1 Element
All elements mentioned below are specialisations of UML Element.
Stereotypes

· <<modelelement>>: This stereotype can be assigned to any UML Element and is used to define the utype tag on.
Tags:
· utype [string]: this holds the actual UTYPE that points to the other modelling element that is represented here.

A.1 Model
This is the root of the complete model, contains all packages, classes etc. Also contains any imported profile.
Stereotypes
· <<model>>
If the designer wants to annotate the model with the tags in this stereotype (s)he must explicitly associate this stereotype to the Model.
Tags:
· author : Indicates the author(s) of the model.
· title : provides a long title to the model. The name of the model is assumed to be short.
· subject: 0..* list of subjects in the sense of the Registry’s subject attribute.
A.2 Package
[image: image2.jpg]experiment

>

protocol

Figure 16 This figure shows a package "simdb" that contains two other packages. Of these the experiment package depends on the protocol packages, which is indicated by the dashed arrow.
A package groups related elements such as class definitions and possibly sub packages. Packages can depend on each other (indicated by the dashed line), which means that elements in one package can use elements in the target package in their definition. This relation is transitive. A package is similar to an XML namespace and in fact we map UML packages to XML namespaces in the XML schema mapping for the model described in 7.2.
1.1.2 Class
[image: image3.jpg]Bperiment

pukblisherDID - vokdentfer (1]

Figure 17 A Class is a rectangular box, with the name of the class in boldface.
Classes are the fundamental building blocks of a data model. A Class represents a full fledged concept and is built up from properties and relations to other Classes. An important feature of Classes as opposed to DataTypes (see below) is that instances of Classes, i.e. objects, have their own, explicit identity
. That is we want to assign an explicit identifier to each concept so that
Properties:

· isAbstract
Indicated by italicised name of the object. Implies that no instances can be made of the class, only of concrete (=non abstract) sub classes.
A.3 ValueType
A ValueType represents a simple concept that is used to describe/define more complex concepts such a Classes. ValueType-s are, in contrast to Classes not separately identified. They are identified by their value. For example an integer is a value type; all instances of the integer value 3 represent the same integer.
In this profile ValueType-s are only represented using specialised examples.
Attributes (see below) must have a ValueType as their datatype.
A.4 PrimitiveType
PrimitiveTypes are the simplest examples of ValueTypes. They are represented by a single value only. A set of PrimitiveTypes is predefined in the IVOA profile (see Figure 13).
[image: image4.png]IVOAValueTypes

Figure 18 The PrimitiveTypes that are predefined in the IVOA profile.
A.5 DataType

 INCLUDEPICTURE "C:\\Documents and Settings\\DOCUME~1\\lemson\\LOCALS~1\\doc\\note\\img\\datatype.jpg" * MERGEFORMAT [image: image5.png]<<dtaType=>
Pos3D

[Quantiy 1]
v Guantiy 1]
= Quantiy 1]

Figure 19 Example of a structured datatype:Pos3D represents a position in 3D space and is defined using x, y and z attributes. The DataType symbol is distinguished form the Class by the <<dataType>> stereotype.
A DataType is a ValueType that has more structure than a single value. This structure is modelled using Attributes, just as on ObjectTypes.
A.6 Enumeration
[image: image6.jpg][<<enumeration=>
DataType

lboolean
lcomplex:
detetine.
doutle
float

et

long
ratonal
jshort
atring

Figure 20 An enumeration is indicated by a box with the name of the the enumeration and the list of literals.
An Enumeration is a ValueType that is defined by a list of valid values. These are the only values that instances of this data type can assume.

A.7 Attribute
[image: image7.jpg]InputParameter

[mame : string [1]
|<<ontologyterm=>-ucd : string
|-ciatatype : DataType [1]
[mutipicty : Carcinalty [0.1]

Figure 21 An attribute is indicated by a line with a name, a datatype, an indication of the multiplicity and possibly a stereotype.
An Attribute is a Property of a type (object type as well as structured data type). An attribute’s data type is always a Value type, not an object type. For object type properties one should use References
Properties
· data type

· multiplicity/cardinality: indicates the cardinality of the attribute (assumed to be 0..1, or 1. This is a relational bias based on normal form and the assumption that most databases do not allow storage of arrays in single columns.)
Stereotypes
· <<attribute>>
To assign further properties such as the tags this stereotype attribute must be explicitly assigned.
Tag definitions
· length [integer]: Constraint indicating that an attribute must have a specific fixed length. Is relevant only for attributes of type string.
· maxLength [integer]: Constraint indicating that an attribute may at most have the indicated length. Is relevant only for attributes of type string. Is used in mappings to TAP to indicate the length of the corresponding column. Thist would seem to be very much an application specific feature and therefore belong to logical modelling. But this profile can be used for that purpose, hence it is included.
· uniqueGlobally: Constraint indicating that only one instance of the type of the Class owning this attribute can have a given value. Globally should be read to mean globally in a given instance of the model, i.e. a database for example that stores instances of the model.
· uniqueInCollection [boolean]: If true, indicates that the value of the attribute can not be shared by the same attribute of any other instance of the Class owning this attribute that is in the same collection, i.e. has the same container object. In SimDB/DM an example is given by the name attribute of the InputParameter class. For a given Protocol
· <<ontologyterm>>
There are many instances in the data model where we need to describe elements of the SimDB/Resource-s explicitly, because we do not have implicit information based on the context. Examples are the various properties of object types, the target objects and processes etc. Apart from a name and a description we then frequently add an attribute which is supposed to "label" the element according to an assumed standard list of terms.
We model this using the <<ontologyterm>> stereotype. Attributes with this stereotype are assumed to take their values form such a predefined "ontology"
.
Tag definitions:
· ontologyURI
A URL locating a standard (RDF|SKOS|OWL|???) document containing a list of terms from which the value for this attribute may be obtained. It is our opinion that the Semantics working group should be responsible for the definition of relevant ontologies (or semantic vocabularies, or thesauri, or ...) required for a given application domain, though the contents should be decided in cooperation with domain experts.
1. Inheritance
[image: image8.jpg]Bperiment

publisherDID - vokdentfer (1]

[Simulation

Figure 22 Inheritance is indicated by a line with an open arrow from a subclass to its base class.
Indicates the typical “is a” relation between the sub-class and its base-class (the one pointed at). In this profile we do not support multiple inheritance.
A.8 Collection
[image: image9.jpg]Protocol

[mame : sting [1]
[descripton string

paranjeters

<<compfston=>

0
pararpeter

InputParameter

[<<afirkute»=-name - string [1]{mexd_engt
|<<ontologyterm=>-uid: stringfortologyRef
-ciatatype DataType [1]

[mutipicty : Carcinalty [0.1]

)

Figure 23 The line with the closed circle on one end and an arrow on the other indicates a composition relation, or collection, between the parent (on the side of the circle) and the child, on the other side.
This relation indicates a composition relation between one, parent object and 0 or more child objects. The life cycles of the child objects are governed by that of the parent.
In UML a composition relation is represented by a binary association end.
A.9 Reference
[image: image10.jpg]Experiment protocol[" Protocol |

pukblisherDID - vokdentfer (1]

areferencess | [name: stng (1]

[descripton string

Figure 24 A Reference is represented by a line connecting a class with another, referenced, class with an arrow on the referenced class. Note, the <<reference>> sterotype indication is not required.
This is a relation that indicates a kind of usage, or dependency of one object on another. It is in general shared, i.e. many objects may reference a single other object. Accordingly the referenced object is independent of the "referee". In our profile the cardinality can not be > 1.
For implementing the Reference in UML we use a shared, navigable binary association end.
A.10 Subsets
[image: image11.jpg]Experiment protocol[" Protocol |

pulisherDID - vokdentfer (1]

areferencess | [name: stng (1]

[escripton string

[Simutation imuetor | Simulator

1 |-codeRet - anyUR[0.1]

{subsets protocol)

Figure 25 The subsets property can only be assigned to a relation between two objects that are both subclasses of Classes that have an equivalent relation. It is indicated by the {subsets ...} annotation to the relevant association end.
The “subsets” property, when associated to a Reference or Collection (in UML to the corresponding association end), indicates that a relation overrides the definition of a relation of the same name defined on a base class. It does so by specifying that the class at the end point of the relation should be a subclass of the class at the endpoint of the original, sub-setted relation.
A.11 … (?)
@@TBD What did I miss? @@
1.1.3 Comments etc
1.2 Constraints
The UML profile allows the definition of various types of constraints. For example we have constraints on the lengths of (string) attributes. These are defined using tags on the <<attribute>> stereotype. Other constraints on that stereotype are uniqueGlobally and uniqueInCollection. The latter can for example be used to state that the names of properties on an object type should be unique for that object type. The former states that the attribute should be unique in the
Questions:
· Can we make statements like: "A SimDB implementation MUST enforce all the rules from the UML model"? Or do we have to stick to statements in terms of the physical representations?
· DM WG may want to start thinking how to express constraints in a DM
� This is admittedly a somewhat theoretical object-oriented concept,

� Possibly this should be a vocabulary, that at least is intended, and the stereotype might have to be called <<skosterm.., with tag definition named skosVocabulary.

12

