	[image: image1.jpg]

	 International
 Virtual
 Observatory
Alliance

Simulation Database I: Data Model APPENDIX
Version 0.x
Note 2010 September 8
This version:

0.x-20101006
Latest version:
Previous version(s):

See revision page on GoogleCode: http://code.google.com/p/volute/source/browse/trunk/projects/theory/snapdm/specification/SimDB-DataModel.doc
Author(s):

Gerard Lemson

Hervé Wozniak
Laurent Bourgès
Rick Wagner
Claudio Gheller

Abstract
This document contains appendices with additional material accompanying the SimDB_DataModel.doc
 Note. The first, Appendix A, describes the UML profile used in the model construction. Appendix B discusses various issues, problems, complications of the model. Appendix C discusses two protocols using the model. Appendix D finally describes implementations of the model. Real use cases where the model is used to describe simulations and related data products. Appendix D may be removed and its contents be moved to a separate document that Franck LePetit and coworkers
Status of This Document
This is an appendix to a Note. The first release of this document was 2010 …. This is a preparation of a specification document, but, coming from the theory interest group, can not be a working draft on the recommendation track. Because of this we have taken the liberty to add hints here and there in the document to working groups with suggestions or requests for feedback. In the final specification these must be taken out.
This is an IVOA Note expressing suggestions from and opinions of the authors. It is intended to share best practices, possible approaches, or other perspectives on interoperability with the Virtual Observatory. It should not be referenced or otherwise interpreted as a standard specification.
A list of current IVOA Recommendations and other technical documents can be found at http://www.ivoa.net/Documents/.
Contents
4Appendix A
UML Profile

4A.1
Element

4A.2
Model

5A.3
Package

5A.4
Class

6A.5
ValueType

6A.6
PrimitiveType

7A.7
DataType

7A.8
Enumeration

7A.9
Attribute

9A.10
Inheritance

9A.11
Collection

10A.12
Reference

11A.13
Subsets

11A.14
… (?)

11Appendix B
Issues

11B.1
Normalisation

13B.2
Quantities and Units

14B.3
Linking services, experiments and other resources.

15Appendix C
Use of SimDB data model

15C.1
SimDB

15C.2
SimDAP

16Appendix D
Proof of concept [TBD can likely be moved to Franck’s document on use cases, mappings, implementations].

16D.1
Millennium Run: simulation, post-processing and publication

17D.2
S3

Appendix A UML Profile

The SimDB data model uses UML [TBD add ref] as the language for specifying the data model. This is in accordance with decisions of the IVOA data model working group. One advantage of UML is that it is implementation neutral. It is a graphical language, consisting of “boxes and lines” that is very suitable for whiteboard discussions but allows one to model the concepts and relations in a static data model. It is also rich enough to allow one to describe all important data elements and relations.

In fact, UML is almost too rich. It is easy to become overwhelmed by the large number of possible syntactic elements to choose from for modelling a particular structure. Luckily UML allows one to formally define a subset of its language where one restricts oneself to a subset of the syntactic elements. Such a subset is called a UML Profile. Apart from creating a more restricted language, a Profile also allows on to assign new meanings to existing elements by defining stereotypes with associated properties (tag definitions). It is also possible to predefine classes and data types (see below) that can be reused by the data modeller.
In our modelling effort we have defined an initial implementation of a UML profile as created by MagicDraw available under this link. The profile is also contained in the UML file containing the SimDB data model. Here we give a list of the main elements that we use and give a short motivation for their inclusion in the language. It is our opinion that the DM working group should be ultimately responsible for a profile such as this, as it gives the possibility of defining a domain specific language for all IVOA data modelling efforts, thus giving some uniformity to those disparate efforts.
1.1.2 Element
All elements mentioned below are specialisations of UML Element.
Stereotypes

· <<modelelement>>: This stereotype can be assigned to any UML Element and is used to define the utype tag on.
Tags:
· utype [string]: this holds the actual UTYPE that points to the other modelling element that is represented here.

1.1.3 Model
This is the root of the complete model, contains all packages, classes etc. Also contains any imported profile.
Stereotypes
· <<model>>
If the designer wants to annotate the model with the tags in this stereotype (s)he must explicitly associate this stereotype to the Model.
Tags:
· author : Indicates the author(s) of the model.
· title : provides a long title to the model. The name of the model is assumed to be short.

· subject: 0..* list of subjects in the sense of the Registry’s subject attribute.
A.1 Package
[image: image2.jpg]experiment

>

protocol

Figure 16 This figure shows a package "simdb" that contains two other packages. Of these the experiment package depends on the protocol packages, which is indicated by the dashed arrow.
A package groups related elements such as class definitions and possibly sub packages. Packages can depend on each other (indicated by the dashed line), which means that elements in one package can use elements in the target package in their definition. This relation is transitive. A package is similar to an XML namespace and in fact we map UML packages to XML namespaces in the XML schema mapping for the model described in 7.2.
1.1.4 Class
[image: image3.jpg]Bperiment

pukblisherDID - vokdentfer (1]

Figure 17 A Class is a rectangular box, with the name of the class in boldface.
Classes are the fundamental building blocks of a data model. A Class represents a full fledged concept and is built up from properties and relations to other Classes. An important feature of Classes as opposed to DataTypes (see below) is that instances of Classes, i.e. objects, have their own, explicit identity
. That is we want to assign an explicit identifier to each concept so that

Properties:
· isAbstract
Indicated by italicised name of the object. Implies that no instances can be made of the class, only of concrete (=non abstract) sub classes.
1.1.5 ValueType
A ValueType represents a simple concept that is used to describe/define more complex concepts such a Classes. ValueType-s are, in contrast to Classes not separately identified. They are identified by their value. For example an integer is a value type; all instances of the integer value 3 represent the same integer.
In this profile ValueType-s are only represented using specialised examples.
Attributes (see below) must have a ValueType as their datatype.
1.1.6 PrimitiveType
PrimitiveTypes are the simplest examples of ValueTypes. They are represented by a single value only. A set of PrimitiveTypes is predefined in the IVOA profile (see Figure 13).
[image: image4.png]IVOAValueTypes

Figure 18 The PrimitiveTypes that are predefined in the IVOA profile.
1.1.7 DataType

[image: image5.png]<<dtaType=>
Pos3D

[Quantiy 1]
v Guantiy 1]
= Quantiy 1]

Figure 19 Example of a structured datatype:Pos3D represents a position in 3D space and is defined using x, y and z attributes. The DataType symbol is distinguished form the Class by the <<dataType>> stereotype.
A DataType is a ValueType that has more structure than a single value. This structure is modelled using Attributes, just as on ObjectTypes.

A.2 Enumeration
[image: image6.jpg][<<enumeration=>
DataType

lboolean
lcomplex:
detetine.
doutle
float

et

long
ratonal
jshort
atring

Figure 20 An enumeration is indicated by a box with the name of the the enumeration and the list of literals.
An Enumeration is a ValueType that is defined by a list of valid values. These are the only values that instances of this data type can assume.

A.3 Attribute
[image: image7.jpg]InputParameter

[mame : string [1]
|<<ontologyterm=>-ucd : string
|-ciatatype : DataType [1]
[mutipicty : Carcinalty [0.1]

Figure 21 An attribute is indicated by a line with a name, a datatype, an indication of the multiplicity and possibly a stereotype.

An Attribute is a Property of a type (object type as well as structured data type). An attribute’s data type is always a Value type, not an object type. For object type properties one should use References
Properties

· data type

· multiplicity/cardinality: indicates the cardinality of the attribute (assumed to be 0..1, or 1. This is a relational bias based on normal form and the assumption that most databases do not allow storage of arrays in single columns.)

Stereotypes
· <<attribute>>
To assign further properties such as the tags this stereotype attribute must be explicitly assigned.
Tag definitions

· length [integer]: Constraint indicating that an attribute must have a specific fixed length. Is relevant only for attributes of type string.

· maxLength [integer]: Constraint indicating that an attribute may at most have the indicated length. Is relevant only for attributes of type string. Is used in mappings to TAP to indicate the length of the corresponding column. Thist would seem to be very much an application specific feature and therefore belong to logical modelling. But this profile can be used for that purpose, hence it is included.

· uniqueGlobally: Constraint indicating that only one instance of the type of the Class owning this attribute can have a given value. Globally should be read to mean globally in a given instance of the model, i.e. a database for example that stores instances of the model.

· uniqueInCollection [boolean]: If true, indicates that the value of the attribute can not be shared by the same attribute of any other instance of the Class owning this attribute that is in the same collection, i.e. has the same container object. In SimDB/DM an example is given by the name attribute of the InputParameter class. For a given Protocol

· <<ontologyterm>>
There are many instances in the data model where we need to describe elements of the SimDB/Resource-s explicitly, because we do not have implicit information based on the context. Examples are the various properties of object types, the target objects and processes etc. Apart from a name and a description we then frequently add an attribute which is supposed to "label" the element according to an assumed standard list of terms.
We model this using the <<ontologyterm>> stereotype. Attributes with this stereotype are assumed to take their values form such a predefined "ontology"
.
Tag definitions:

· ontologyURI
A URL locating a standard (RDF|SKOS|OWL|???) document containing a list of terms from which the value for this attribute may be obtained. It is our opinion that the Semantics working group should be responsible for the definition of relevant ontologies (or semantic vocabularies, or thesauri, or ...) required for a given application domain, though the contents should be decided in cooperation with domain experts.

A.4 Inheritance
[image: image8.jpg]Bperiment

publisherDID - vokdentfer (1]

[Simulation

Figure 22 Inheritance is indicated by a line with an open arrow from a subclass to its base class.

Indicates the typical “is a” relation between the sub-class and its base-class (the one pointed at). In this profile we do not support multiple inheritance.

A.5 Collection
[image: image9.jpg]Protocol

[mame : sting [1]
[descripton string

paranjeters

<<compfston=>

0
pararpeter

InputParameter

[<<afirkute»=-name - string [1]{mexd_engt
|<<ontologyterm=>-uid: stringfortologyRef
-ciatatype DataType [1]

[mutipicty : Carcinalty [0.1]

)

Figure 23 The line with the closed circle on one end and an arrow on the other indicates a composition relation, or collection, between the parent (on the side of the circle) and the child, on the other side.
This relation indicates a composition relation between one, parent object and 0 or more child objects. The life cycles of the child objects are governed by that of the parent.

In UML a composition relation is represented by a binary association end.

A.6 Reference
[image: image10.jpg]Experiment protocol[" Protocol |

pukblisherDID - vokdentfer (1]

areferencess | [name: stng (1]

[descripton string

Figure 24 A Reference is represented by a line connecting a class with another, referenced, class with an arrow on the referenced class. Note, the <<reference>> sterotype indication is not required.

This is a relation that indicates a kind of usage, or dependency of one object on another. It is in general shared, i.e. many objects may reference a single other object. Accordingly the referenced object is independent of the "referee". In our profile the cardinality can not be > 1.

For implementing the Reference in UML we use a shared, navigable binary association end.

A.7 Subsets
[image: image11.jpg]Experiment protocol[" Protocol |

pulisherDID - vokdentfer (1]

areferencess | [name: stng (1]

[escripton string

[Simutation imuetor | Simulator

1 |-codeRet - anyUR[0.1]

{subsets protocol)

Figure 25 The subsets property can only be assigned to a relation between two objects that are both subclasses of Classes that have an equivalent relation. It is indicated by the {subsets ...} annotation to the relevant association end.
The “subsets” property, when associated to a Reference or Collection (in UML to the corresponding association end), indicates that a relation overrides the definition of a relation of the same name defined on a base class. It does so by specifying that the class at the end point of the relation should be a subclass of the class at the endpoint of the original, sub-setted relation.

A.8 … (?)

@@TBD What did I miss? @@

1.2 Issues
We identify and discuss here several issues with the SimDB data model that need to be discussed further.
1.2.1 Normalisation
The current version of the SimDB/DM is rather more normalised [9] than most of the other data models in the IVOA. We explain this concept based on a particular choice we made during the modelling process, and then we discuss the consequences of particular choices.
[image: image12.png]Parameter

Experiment
-protacalName

-name
-datatype
-ucd
-description
-value

Figure 12 Non-normalised model for experiments and parameters.
At an earlier stage, the model was less normalised in the design of the input parameters of an experiment, as is illustrated in Figure 9. There was no separate protocol class, only an attribute protocolName on the Experiment class indicated the protocol by which the experiment was run. Also, the input parameters on the experiment were completely contained in a collection of Parameter-s. The Parameter class contained all the details, including name of the parameter, description, ucd etc. It also contained the value of the parameter in the experiment.
[image: image13.png]Experiment | JProtocol |

InputParameter

Parameter’

F L slname

valie -datatype
-description

-ucd

Figure 13 Normalised modelling of experiments, protocols and their parameters.
Currently the model treats parameter definitions and settings as in Figure 10. In this normalised design, the Protocol is given a class of its own, and it contains the input parameter collection. The InputParameter class does not contain a value, only the definition of the parameter: name, datatype, ucd, description. The values assigned to parameters in a given experiment are captured with the ParameterSetting class, contained in a collection off Experiment.
The motivation for this change of model was that a SimDB instance will in general contain many simulations (experiments) run with the same simulator code (protocol). In the old model, each experiment has to define the collection of input parameters with all details. In the new design this only has to be defined once, on the appropriate protocol. This clearly is less redundant, which is one important design goal of a normalised modelling approach. At the same time it provides an explicit identity to input parameters, which allows us to ask explicit questions about all parameter settings for a given, identified parameter. In the old model this is only indirectly possible, using equality of the name of input parameters for all experiments having the same protocolName. Now we can ask for all experiments with the same protocol reference, and look for parameter settings with the same input parameter reference. This is arguably a more "correct" model of reality.
There are therefore advantages to normalisation, but there are also disadvantages. We need to realise these and make choices that optimise the usability of the data model. One of the main disadvantages is that references, which naturally have to be introduced when normalising a model, are more difficult to deal with than most of the other modelling elements, particularly in some physical representations (see below). When defining a new experiment, one will have to find the input parameter that one needs to set, and instead of simply giving name/value, one needs to represent the reference to the parameter. For this one may have to extract the protocol as stored in the SimDB and find the appropriate identifiers of the input parameters. In this sense an Experiment definition becomes less self-contained, it depends on the details of the registered Protocol. This protocol is registered separately and necessarily at an earlier point in time.
This puts strong requirements on SimDB implementations to maintain referential integrity, something which will be even harder to achieve if we were to allow cross-SimDB referencing. In one advanced usage scenario the UC San Diego version of SimDB registers the Enzo
 simulator, whilst the Italian SimDB allows registration of simulations that used it and reference the remote protocol
.
Similarly a query language needs to be able to handle with this level of indirection. For example in a relational database one needs to write joins between ParameterSetting and InputParameter. For expert SQL users this is not a problem, but is something to get used to. For simpler query languages, those not allowing joins, like TAP/Param, asking meaningful queries becomes very difficult. One way around this problem could be to add some view definitions to the model. In relational databases, views are predefined, named SQL queries that can be treated as if they were tables when querying the database. It is quite straightforward to define some SQL queries that as it were denormalise the model and put the input parameter definition back under the experiment together with the value. This way one may protect users of the database from the high level of normalisation. @@TODO discuss this further @@
A.9 Quantities and Units
At various locations in the SimDB data model numerical values can be defined, for example in parameter settings or the characterisation of properties of representation object type collections. Often these numerical values will need to have a unit. The IVOA has two ways of dealing with units. Either units are fixed explicitly for properties/parameters in protocol or data model, sometimes depending on the small list of possible UCDs. Alternatively units are epxlicitly stated, for example in VOTable. At the moment we suppport the second mode, especially because, as is true for VOTable, we do not know what kind of property is being used. To this end we introduce a value type in the model, Quantity, which contains a value and a unit, and which is the data type of various value attributes, for example in NumericalParameterSetting or Characterisation. In the XML schema this is translated to a complexType with 2 elements, in the relational database schema to two columns, one with the value, one with the unit.
It is in the use of the relational schema that we anticipate problems with this approach, especially in the query protocol to SimDB. Consider the typical science question: return all N-body simulations with particle mass roughly 1010Msun. In SimDB this would be need to be translated in an ADQL query which contains the unit column explicitly. Allowing users freedom of registering SimDB resources using any units they desire can lead to resource containing, for the same observable "N-body particle mass", values with a whole range of units. To provide reasonable support to users requires the SimDB implementation to be able to do the automated transformation. But in the We propose in SimDB to use ADQL/TAP as the query interface. If units are stored explicitly users can phrase queries using these,
An alternative approach is to mandate stating values for properties with a given UCD (or other semantic label) always with the same units. This would solve the query problem but poses others. For one it may be very (too?) unnatural for users to be forced to use meters for cosmological simulations, or megaparsec for simulations in the solar system. Related to this is the probably contentious discussion of what units to assign to what UCD. One might choose SI or cgs units, but these are not always very useful or natural. @@NB This is similar to the recent proposal by Alberto Micol for “Standardising units and formats (and ref frames?) in transmission”
 http://www.ivoa.net/forum/dal/0905/1270.htm @@
1.2.2 Linking services, experiments and other resources.
When studying the SimDB/DM and comparing it to the explanation in 5, one will notice that there is no concept of storage for the results in the proposed model. The reason is that whereas we can define the concept of a Result as collections of Objects quite satisfactory, we have shied away of trying to model the precise way these results are actually stored in files or a database. There are simply too many possible and actual ways in which results can be stored in a file system. In general, a result, or snapshot in our model, can not be modelled with a simple reference to a file or table in which it is stored. Large results may be split up over many files, stored as structs, or in arrays. We have therefore decided not to open this can of worms (or reopen it, see the Quantity data model [20]).

Instead we assume the existence of web services that allow users access to the results of SimDB experiments. Some of these services may implement a standard protocol as defined by SimDAP, or they may be custom services. The precise way to relate experiments to services and what can be inferred about how to call them is the task of the SimDAP protocol.

In the model actually web services are related to resources in general. This can be used to represent services that gives access to a set of experimental results from some project, or that can for example visualise any result of experiments performed according to a fixed protocol, for example generic Gadget-format visualisers.
Appendix B Use of SimDB data model

Here we present our views on how the data model presented in this and accompanying documents could/should be used. We first discuss the usage in the SimDB service protocol for which it was originally intended. We then discuss the possible usage in SimDAP. that was assumed to use the model in some form as well, though the link has been weakened after the SNAP proposal was separated in SimDB and SimDAP. We then propose how also the S3 proposal [REF] could use the model, thus tying that specification closer to the other developments in the theory interest group. Finally we discuss how one might identify Registry Resource-s in the model, and how one might extract these, in effect creating a specialised Registry implementation on top of the Simulation Database.
B.1 SimDB

As will be discussed in the SimDB Services Note [REF], the current proposal is that a Simulation Database uses the SimDB data model exactly as described here, in all its details. With one proviso though. The data model presented here is in UML form, which is not usable in protocols, databases etc. Hence one or more physical representations must be created. The XML Schema representation was shortly discussed in section 7.2 and will be more detailed in [REF]. But the main emphasis in the SimDB protocol is on a TAP/ADQL interface, which requires a relational database and hence a relational model. In [REF] we therefore provide a relational mapping of the data model together with its representation in metadata formats prescribed by the TAP specification.
This means that, in the current proposal, the data model only needs a transformation to a physical representation, without any loss of information. However as we have discussed in section 6.1, the highly normalised nature of the model complicates its usage, whatever the representation. There we proposed a solution using “denormalised representations” of the model. These representations could be created in UML and used exactly as the current model as the basis for UTYPEs, XML schema, TAP metadata etc. [TBD shall we create a complete denormalised version of the SimDB data model for appreciation?].
We believe that in principle it is up to applications
 how to use the data model, but we feel that it would be good if some more or less formal transformation were given that could express the application model into the SimDB model, vice versa transform the SimDB model into the application specific representation.
B.2 SimDAP

The Simulation Data Access Protocol (SimDAP, [3]) “… defines a protocol for retrieving data coming from numerical simulations.” When SNAP was split into two separate efforts, SimDAP was supposed to be the data access component, complementing the discovery functionality from SimDB. The main tasks of SimDAP are how to handle accessing the possibly very large data sets resulting form 3+1D simulations.
Appendix C Proof of concept
 [TBD can likely be moved to Franck’s document on use cases, mappings, implementations].
Here we show how some concrete simulations are mapped into/described by the model. These can be seen as use cases, alternatively serve as proof of concept. Here each case is described in English using terms/concepts from the model, though possibly in slightly different name. Where these occur we give the utype of the actual concept as defined in the HTML documentation. The formal description is an XML document describing each case according to the XML Schema defined for the model.

1.2.3 Millennium Run
: simulation, post-processing and publication
In 2004, the VIRGO consortium
 ran a cosmological simulation modelling a large part of the universe. For this simulation they used a particular version of the simulation code Gadget
 written by Volker Springel. This simulation code needs a certain (large) number of input parameters to be set. Some physical, such as parameters defining the cosmology (Hubble constant, density parameter Ω in dark matter, cosmological constant, and baryons etc) some numerical such as the gravitational smoothing length. The simulation started from initial conditions generated from a predefined power spectrum in the particular cosmology. The simulation code approximates various physical processes including gravity, hydrodynamics, star formation and black hole formation using appropriate numerical algorithms (TreePM, SPH). The simulation code allows one to choose which physical processes one wants to include. For the Millennium Run only gravity was included. The processes act on simulation objects (here point particles) that on their own, or in aggregate represent real world objects. (here clusters, or Large Scale Structure) The simulation objects have a number of properties, some constant (identifier, mass) some variable that are evolved forward in time by the simulation code. The code allows me to choose which properties one may want to calculate (here [x, y, z, vx, vy, vz,]).
The simulation produces results that consist of collections of the simulation objects, one for each type of simulation object that is included. In this simulation each result corresponds to a snapshot taken at a particular time. The results are stored in multiple files (512 per snapshot). These files have a complex format, the particles are ordered using an index based on a space-filling curve, and the files contain hash tables that act as indexes to optimise retrieval of spatial sub volumes.
The Millennium simulation contained about 10 billion particles in a box of size 500Mpc/h. It had 64 snapshots, including the initial conditions which were calculated using a separate code. Each snapshot was about 400GB.
The snapshots produced by the simulation were used as input for various types of post-processing. For example a cluster finder using the friends-of-friends (FOF) algorithm was run on each of the snapshots. This produces FOF groups, which are dark matter halos with more complex properties (radius, various types of mass, velocity dispersion etc). The results are stored again in 512 files per snapshot.
These files with FOF groups are used as input for the SUBFIND code which detects substructures in the FOF groups, which correspond to bound “sub-halos”. These sub-halos evolve in time by merging with each other. The resulting merger trees are detected using a further post-processing algorithm which uses the particle data and the sub-halo files.
These merger trees are the input for a simulation code that implements galaxy formation using so called semi-analytical algorithms. These algorithms model physical processes such as gas cooling. star formation and evolution, supernovae feedback etc.
All the post-processing results are also stored in a relational database, which is published through a web application that allows users to submit SQL queries to the database.
The simulation code Gadget and the Millennium Run Simulation itself are mapped to the data model in full detail in two XML documents on the GoogleCode specification site:
C.1 S3

2 S3 [19] is a proposal for a simple protocol aimed at querying and retrieving results of, or even running, “micro-simulations”. S3 is defined by a number of simple HTTP GET requests ([19], section 2):
1. Metadata: Returns the parameters defining the service.
2. Data query: Returns information about files that exist for given (ranges of) parameters.
3. Retrieve file: Returns a particular file.
The result of a Metadata query is a VOTable describing the service in natural language and a list of PARAM elements, one for each parameter accepted by the Data query request. These parameters may correspond to parameters of the model
, but can also contain extra service specific parameters.
The Data query finds models corresponding to particular (ranges of) values for these parameters, selected ones of which can be downloaded using the Retrieve file request.
Most of the S3 protocol can be described using SimDB/DM concepts. In the next section we will give this interpretation. It will then be seen that in theory the discovery, i.e. Data Query part of any S3 service could be completely supported by the SimDB protocol. In the next section we show the role S3 might play as a simplified protocol when the context is constrained.
C.1.1 data model for an S3 service

One can argue that an S3 service is a SimDB/WebService giving access to results of SimDB/Simulations (“models” in S3) that are all run using the same SimDB/Simulator.
The Metadata request returns an English description and a list of parameters, some of which are SimDB/InputParameters, others may correspond to SimDB/Property-s used to characterise SimDB/TargetObject-s.

The Data query part searches for SimDB/Simulations executed with the protocol and having particular SimDB/ParameterSetting.value-s or SimDB/Characterisation.value-s (in case the S3/parameter corresponds to a value obtained after the experiment was run). Each S3 model presumably produces a single result. Partially to accommodate S3 we have introduced the generic SimDB/Result type in the model, since the SimDB/Snapshot class is used to describe 3+1D simulations.
So we see that the SimDB data model contains most concepts required in a potential S3 data model. Some features of S3 could be added to SimDB to complete this support. For example a new “S3” literal in the ServiceType enumeration and the more generic Result class has already been added. SimDB/WebService might be declared (using a reference) to “implement a” (rather than “be a”) SimDB/Protocol in its own right, which allows it to define its own extra parameters.
From the SimDB model we can also derive suggestions as to what might be missing from S3. For example a description of the type and contents of the results is missing, i.e. there is no SimDB/RepresentationObjectType collection, nor a SimDB/TargetObjectType or SimDB/TargetObjectProcess. Curation is not included either, nor a possible aggregating SimDB/Project type. Particularly for “micro-simulations” a parameter study may be a frequent type of experiment, which can be described this way.
These features can be added so that S3 services and their underlying experiments can be found in a SimDB implementation. The current S3 protocol does not address that issue, but it seems clear that without much work, and using the SimDB approach this is easily accommodated.
C.1.2 S3 as a TAP service.

To further analyse the relation between S3 and SimDB it is useful to interpret S3 as a TAP service. In this interpretation the Metadata query returns the metadata of a single table the columns of which correspond to the parameters of the S3 service. The S3 data query can be translated into a particular ADQL query
 against that table. Here we may have to assume that the table contains also the access reference to the model file represented by a row in the table.

We can compare this “S3-TAP” service to the SimDB-TAP service. The difference is solely in the data model. To illustrate the difference, but also the correspondence between these models consider Figures 14 and 15.

Figure 14 shows a greatly simplified cut from the SimDB model, concentrating on parameters and ignoring some tricky details. In addition to the classes we show an instance diagram defining a Simulator named “SimpleGadget” and a simulation named “Millennium” that was run using the SimpleGadget simulator. We define some InputParameters on the Simulator and add corresponding ParameterSettings to the Simulation.

Figure 15 shows a data model that we might have created if our task had been to only model “SimpleGadget” simulations. In that case the definition of the model, its “meta-data” if you wish, will contain knowledge about the SimpleGadget simulator which therefore does not have to be represented in the model itself. The model for simulations can now be made much more explicit. We can define a Gadget2Simulation class, which contains named and typed attributes representing the input parameters.

[image: image14.png]Simulator
simdb Simulation protocsl| — (simts)
e T [rame: sting
[rame - string
—parameter
—parameter
InputParameter
[Parametersetting (sinc)
eno) e - string
[value: string itatype - sring
[escripton string

imulator

name =" SimpleGadget”

hubbleConstant’
"real
"The value

description
ofthe Hubble constant at
220N unit 100 kmis/Mpe”

meterSetting.
value =

description
density paramter atz=0"

description
comoving sizs of the
simulation box in Mpc/

Figure 14 Gadget simulator and a simulation according to SimDB data model.
[image: image15.png]This class describes simiatians run with the "SimpleGadget”
Jsimation code. R alows the following afibutes to be set
Iname: the neme of the simation

Jomeqa0:The densiy parametr at
IrbleConstant. The value af the Hulbbie canstart at 2-0 in it
1100 kmiaiine:

JboxSize: The comoving size of th simulation box n Mo

= [SimpleGadgetSimulation
) =)
e :sting
Fomegad - ree
FhubieConstrt el
[boxSize rea

pleGadgetSimulation
name = "Milennium’

hubbleCanstant=
omega0
bosize

Figure 15 Alternative view of Gadget simulation in Figure 14, inspired by S3 approach.

The information content in the two instance diagrams is basically the same. But obviously the second model is much simpler. In the SimDB version of the model all information is contained in the instances (the data) and can be retrieved from there. One only needs to understand the concept of a Simulator and a Simulation etc. In the S3 model the information is distributed over instances and model definition (metadata).

The SimDB model can capture simulations run according to many different protocols; the S3 version supports only SimpleGadget simulations. If one only is interested in SimpleGadget simulations though, clearly the S3 version of the model is easier to use.

[TBD review this section]

� � HYPERLINK "http://code.google.com/p/volute/source/browse/trunk/projects/theory/snapdm/specification/SimDB-DataModel.doc" �http://code.google.com/p/volute/source/browse/trunk/projects/theory/snapdm/specification/SimDB-DataModel.doc�

� This is admittedly a somewhat theoretical object-oriented concept,

� Possibly this should be a vocabulary, that at least is intended, and the stereotype might have to be called <<skosterm.., with tag definition named skosVocabulary.

� � HYPERLINK "http://lca.ucsd.edu/portal/software/enzo" �http://lca.ucsd.edu/portal/software/enzo�

� We actually do not support this scenario in the current version of SimDB.

� This includes Protocols such as SimDAP and S3, but also SimDB itself. And it includes anyone who wishes to give an custom web (service) interface to their SimDB installation.

� http://www.mpa-garching.mpg.de/millennium

� http://www.virgo.dur.ac.uk/

� http://www.mpa-garching.mpg.de/gadget/

� A “model” in S3 can correspond both the Simulator and Simulation concepts in SimDB.

� In fact the ParamQuery “mode” of TAP may be even closer to S3.

3

