
VO-DML and UTYPEs and VOTable

Author: Gerard Lemson

Dates: 2013-03-26

Version: 0.2

Table of Contents
Abstract ... 3

1 UTYPEs as mapping language ... 4

2 Summary of VO-DML concepts ... 6

2.1 VO-DML/XML ... 7

2.2 Default utype syntax... 7

2.3 ‘vo-dml:’ utypes ... 7

3 Format of @utype: Mapping types and roles ... 8

4 Examples: Mapping VO-DML ⇒VOTable ... 9

4.1 Sample model and instances ... 9

4.2 Data carriers in VOTable ..12

4.3 Mapping ObjectType ...13

4.4 Mapping Attribute ...15

4.5 Mapping Reference ...17

4.6 Mapping Collection ...21

4.7 Mapping value types ...23

5 Annotating VOTable: specification ...25

5.1 Model ...26

5.1.1 GROUP[@utype ⇒ Model] ∊ VOTABLE ..26

5.2 Atomic types ..27

5.2.1 FIELD[@utype ⇒ PrimitiveType] ...28

5.2.2 FIELD[@utype ⇒ Enumeration & VALUES] ...28

5.2.3 PARAM[@utype ⇒ PrimitiveType] ..29

5.2.4 PARAM[@utype ⇒ Enumeration & VALUES] ..29

5.3 DataType ..30

5.3.1 GROUP[@utype ⇒ DataType] ..30

5.4 Attribute ..32

5.4.1 FIELDref[@utype ⇒ Attribute [+ (PrimitiveType | Enumeration)]] 33

5.4.2 PARAM[@utype ⇒ Attribute [+ (PrimitiveType | Enumeration)]] ∊ GROUP[@utype ⇒

⟨ObjectType | DataType⟩] ...33

5.4.3 PARAMref[@utype ⇒ Attribute [+(PrimitiveType | Enumeration)]]34

5.4.4 GROUP[@utype ⇒ Attribute(DataType)] ∊ GROUP[@utype ⇒ ⟨ObjectType |

DataType⟩] ...34

5.5 ObjectType ...34

5.5.1 GROUP[@utype ⇒ ObjectType] ..34

5.6 vo-dml:ObjectType.ID and vo-dml:Identifier ..36

5.6.1 FIELDref[@utype ⇒ ID] ∊ GROUP[@utype ⇒ ⟨ObjectType⟩]37

5.6.2 PARAM[@utype ⇒ ID] ∊ GROUP[@utype ⇒ ⟨ObjectType⟩ & ¬ FIELDref]37

5.6.3 GROUP [@utype ⇒ ID] ∊ GROUP[@utype ⇒ ⟨ObjectType⟩]37

5.7 Reference...37

5.7.1 GROUP[@utype ⇒ Reference & @ref] ∊ GROUP[@utype ⇒ ⟨ObjectType | DataType⟩

& ¬ FIELDref]  GROUP[@utype ⇒ ⟨ObjectType⟩ & @id & ¬ FIELDref]....................................38

5.7.2 GROUP[@utype ⇒ Reference + ‘vo-dml:Identifier’] ∊ GROUP[@utype ⇒ ⟨ObjectType

| DataType⟩ & ¬ FIELDref]  GROUP[@utype ⇒ ⟨ObjectType⟩ & FIELDref & ID] ∊ TABLE39

5.7.3 GROUP[@utype ⇒ Reference + ‘vo-dml:Identifier'] ∊ GROUP[@utype ⇒ ⟨ObjectType

| DataType⟩ & FIELDref]  GROUP[@utype ⇒ ⟨ObjectType⟩ & ¬FIELDref & ID].......................39

5.7.4 GROUP[@utype ⇒ Reference + ‘vo-dml:Identifier’] ∊ GROUP[@utype ⇒ ⟨ObjectType

| DataType⟩ & FIELDref]  GROUP[@utype ⇒ ⟨ObjectType⟩ & FIELDref & ID]39

5.8 Collection..39

5.8.1 GROUP [@utype ⇒ Collection+ObjectType] ∊ GROUP[@utype ⇒ ⟨ObjectType⟩] 40

5.8.2 GROUP [@utype ⇒ Collection & @ref] ∊ GROUP[@utype ⇒ ⟨ObjectType⟩]..............41

5.8.3 GROUP[@utype ⇒ Container+ID] ∊ GROUP[@utype ⇒ ⟨ObjectType ⟩].....................42

5.9 Extends, inheritance ..42

5.9.1 GROUP[@utype ⇒ Extends+ID] ∊ GROUP[@utype ⇒ ⟨ObjectType ⟩] 42

6 Notable absences ...42

6.1 TABLE[@utype ⇒ ObjectType] ...43

6.2 FIELD[@utype ⇒ Attribute] ∊ TABLE [@utype ⇒ ObjectType] ..43

6.3 PARAM [@utype ⇒ Attribute] ∊ TABLE [@utype ⇒ ObjectType]43

7 Utype: identifier or path expression? ...43

7.1 Deriving paths from VO-DML ...44

7.1.1 Utype identifiers in VO-DML ...45

7.1.2 Generic path expressions..46

7.2 At least 3 solutions ..47

7.3 Discussion ...49

7.4 A compromise? ...51

8 Notes, issues, questions, comments ..50

Appendix A. VO-DML/XML version of sample model ...51

Appendix B. Mapping "grammar' ...56

Appendix C. GROUP in TAP_SCHEMA ...57

Abstract
In this document we propose a possible mapping language for VOTable. It uses utype attributes and

the structure of the VOTable meta-model elements to indicate how instances of data models are

stored in VOTable documents. We show many examples and give a complete listing of allowed

mapping patterns. We believe this approach to be a complete and in a certain sense most explicit

mapping language.

It is however not meant to be the normative specification for using utypes in VOTable. But it can be

used as a basis for such a specification when also other issues have to be taken into consideration.

In this draft attention should be paid mainly to sections 1-4. Here we give an introduction to the

approach, an overview of VO-DML as a meta-model, and a bunch of examples that illustrate the

mapping.

Section 5 aims to be a more rigorous listing of all valid annotations, but its attempt at a formal

mapping syntax in the titles may be somewhat obscure. Section 6 discusses possible annotations that

"we" propose should not be supported, though they may seem obvious. Section 7 has a discussion on

the alternative utype syntax using path expressions rather than identifiers to reduce hierarchical

grouping. Problems with that approach are listed. Section 8 raises some questions that we may still

need to address. The appendices have some supplementary material, partially there as placeholder.

1 UTYPEs as mapping language
When encountering a data container, i.e. a file or database containing data, one may wish to

interpret its contents according to some external, predefined data model. That is, one may want to

try to identify and extract instances of the data model from amongst the information. For example in

the “global as view” approach to information integration, one identifies elements (e.g. tables)

defined in a global schema with views defined on the distributed databases [TBD refs].

If one is told that the data container is structured according to some standard serialization format of

the data model, one is done. I.e. if the local database is an exact implementation of the global

schema, one needs no special annotation mechanism to identify these instances. An example of this

is an XML document conforming to an XML schema that is an exact physical representation of the

data model.

But in an information integration project like the IVOA, which aims to homogenize access to many

distributed heterogeneous data sets, databases and documents are in general not structured

according to a standard representation of some predefined, global data model. The best one may

hope for is to obtain an interpretation of the data set, defining it as a custom serialization of the

result of a transformation of the global data model1. For example, even if databases themselves are

exact replications of a global data model, results of general queries will be such custom serializations.

To interpret such a custom serialization one generally needs extra information that can provide a

mapping of the serialization to the original model. If the serialization format is known, this mapping

may be given in phrases containing elements both from the serialization format and the data model.

For example if our serialization contains data stored in ‘rows’ in one or more ‘tables’ that each have a

unique ‘name’ and contain ‘columns’ also with a ‘name’, you might be able to say things like:

 The rows in this table named SOURCE contain instances of object type ‘Source’ as defined in data

model ‘SourceDM’.

 The type’s ‘name’ attribute (having datatype ‘string’, a primitive type) also acts as the identifier

of the Source instances and is stored in the single column with name ID.

 The type’s ‘classification’ attribute is stored in the table column CLASSIFICATION (from the data

model we know its datatype is an enumeration with values ..., these are represented here by ...).

 The type’s ‘position’ attribute (being of structured data type ‘Coordinate’ defined in model

‘STC2.0’) is stored over the two columns RA and DEC, where RA stores the Coordinate’s attribute

‘longitude’, DEC stores the ‘latitude‘ attribute. Both must be interpreted using an instance of the

CoordinateSystem type, This instance is stored in 1) another document elsewhere and a

reference to it is this url: http://ivoa.net/documents/STC-Instances/ICRS, or 2) in this document

and its identifier is

 Instances from the collection of luminosities of the Source instances are stored in the same row

as the source itself. Columns MAG_U and ERR_U give the ‘magnitude’ and ‘error’ attributes of

type LuminosityMeasurement in the “u band”, an instance of the Filter type. (stored elsewhere in

this document (a reference to this Filter instance is ...). Columns MAG_G and ERR_G ... etc.

1 Or alternatively as a transformation of a (standard) serialization of the data model.

http://ivoa.net/documents/STC-Instances/ICRS

In this example the underlined words refer to concepts defined in VO-DML, an example of a meta-

model that can be used as a formal language for expressing data models. The use of such a modeling

language lies in the fact that it provides formal, simple and implementation neutral definitions of the

possible structure, the ‘type’ and ‘role’ of the elements from the actual data models that one may

encounter in the serializatio(SourceDM and STC2.0). This can be used to constrain or validate the

serialization, but more importantly it allows us to formulate mapping rules between the serialization

format (itself a kind of meta-model) and the meta-model, independent of the particular data models

used; for example rules like:

 An object type MUST be stored in a ‘table’.

 A ‘primitive type’ MUST be stored in a ‘column’.

 A reference MUST identify an object type instance represented elsewhere, either in another

‘table’, possibly in the same table, possible in another document.

 An attribute SHOULD be stored in the same table as its containing object type.

 etc

Clearly free-form English sentences as the ones in the example are not what we’re after. If we want

to be able to identify how a data model is represented in some custom serialization we need a

formal, computer readable mapping language.

One part of the mapping language should be anchored in a formally defined serialization language.

After all, for some tool to interpret a serialization, it MUST understand its format. A completely

freeform serialization is not under consideration here. This document assumes VOTable. Alternatives

that have been mentioned in our discussion are FITS and TAP_SCHEMA. VOTable is richer and has

components the other two miss. Hence the language we propose here is not necessarily applicable to

these two. We discuss possible ways how to deal with that impedance mismatch2.

The mapping language must support the interpretation of elements from the serialization language

in terms of elements from the data model. If we want to define a generic mapping mechanism, one

by which we can describe how a general data model is serialized inside a VOTable, it is necessary to

use a general data model language as the target for the mapping, such as the one described above.

This language can give formal and more explicit meaning to data modeling concepts, possibly

independent of specific languages representation languages such as XML schema, Java or the

relational model. In this document we will use VO-DML as the target language; section 2 discusses

this meta-model, but a full spec of the language should be made.

The final ingredient in the mapping language is a mechanism that ties the components from the two

different meta-models together into "sentences". This generally requires some kind of explicit

annotation, some meta-data elements that provide an identification of source to target structure. In

general the ease with which a link can be made between two meta-models depends largely on how

“similar” they are. The more similar, the easier an annotation can be.

In this document we will argue that in VOTable the ‘utype’ attribute can provide this link in a rather

simple manner:

2 http://en.wikipedia.org/wiki/Object-relational_impedance_mismatch

 The value of a utype attribute must correspond to the utype identifier of an element

explicitly defined in a VO-DML document, or the concatenation of two such identifiers.

 The VOTable element owning the utype attribute is said to represent the identified VO-DML

data model element. It identifies one or more instances of the data model element, the

identification depends on the kind of element and on the context in which it appears.

 There is a set of rules that constrain which VOTable elements can be identified with which

type of VO-DML element and how the context plays a role here.

We show that this solution is sufficient and that it is in some sense the simplest and most explicit

approach for annotating a VOTable. It may not be the most natural or suitable approach for other

meta-models such as FITS or TAP_SCHEMA. For example the current approach relies heavily using on

GROUPs to identify most of the structural mapping. FITS and TAP_SCHEMA do currently not possess

such a construct. Massaging the approach so it works also for those cases, as well as producing some

level of backwards compatibility may be possible though not necessarily the only solution. In any

case it might be derived from the more explicit solution presented here. We will discuss this at the

end of this document.

In the next section we review the main concepts in VO-DML, whilst we assume that all readers are

familiar with VOTable. The following section shows examples of mappings as they may occur in

realistic VOTables. We will discuss the different VO-DML elements and show how they might be

serialized and how annotation with simple utype and other meta-data elements can help one

interpret the VOTable. In the later normative sections we turn this around and explicitly list all legal

annotations, their constraints and interpretation.

2 Summary of VO-DML concepts
VO-DML is ... TBC.

Containers:

 Model

 Package

Types:

 PrimitiveType

 Enumeration

 DataType

 ObjectType

Property:

 Attribute

 Reference

 Collection

 Extends

2.1 VO-DML/XML
VO-DML has an XML schema representation that defines the structure of XML documents containing

valid data models The schema is complemented by a Schematron file that defines rules on the

documents that are hard if not impossible to define in XML schema; examples are constraints on

valid data types for particular roles and are rules constraining links to external models. The schema

files are located in vo-dml.xsd and vo-dml.sch.xml and example models can be found in

https://volute.googlecode.com/svn/trunk/projects/dm/vo-dml/models.

2.2 Default utype syntax
The vo-dml.xsd schema defines for each referencable element an identifier named 'utype'. The value

of each instance of this must be unique in the data model document and this is the only requirement

on its value. To guarantee this uniqueness one may use some syntax rules to derive the utype value

from the location of its parent in the document. The uniqueness assumes certain constraints on valid

data models such as uniqueness of names of types in a package, or of roles in a type. The syntax we

use is the one first proposed in the Simulation Data Model (section 4.1), later taken over by a first

draft of the UTYPE document, and reproduced here:

utype := [model-utype | package-utype | type-utype | attribute-utype | collection-utype

| reference-utype | container-utype | identifier-utype | extends-utype

model-utype := <model-name>

package-utype := model-utype “:” package-hierarchy

package-hierarchy := <package-name> [“/” <package-name>]*

type-utype := package-utype “/” <type-name>

attribute-utype := type-utype “.” attribute

attribute := [primitive-attr | struct-attr]

primitive-attr := <attribute-name>

struct-attr := <attribute-name> “.” attribute % not explicitly represented in VO-DML/XML doc %

collection-utype := type-utype “.” <collection-name>

reference-utype := type-utype “.” <reference-name>

container-utype := type-utype “.” “CONTAINER”

identifier-utype := type-utype “.” “ID”

extends-utype := type-utype “.” “EXTENDS”

[TBD this started as a copy from the SimDM doc; changes in red; need to check whether it still

conforms to our desired practice.]

2.3 ‘vo-dml:’ utypes
It is sometimes useful to be able to use utypes to refer to elements in the meta-model. And more

subtly, we need a formal way of indicating that certain VOTable elements represent instances of the

meta model that are not instances of type definitions in a particular model. For example we want to

be able to indicate that certain models are represented in a VOTable. To do so with utypes we have

created a small model in VO-DML representation representing some super types and meta-types.

This model is located in https://volute.googlecode.com/svn/trunk/projects/dm/vo-dml/models/vo-

dml/VO-DML.vo-dml.xml3 and contains the following main elements.

 vo-dml:Model

Can be assigned to a GROUP element to indicate a certain model is used

3 This model still depends for its PrimitiveType on the IVOA_Profile model in
https://volute.googlecode.com/svn/trunk/projects/dm/vo-dml/models/profile/IVOA_Profile.vo-dml.xml. We
might decide to merge the two into a VO-DML Profile or so. That model would have to be part of a spec and be
separately maintained.

https://volute.googlecode.com/svn/trunk/projects/dm/vo-dml/xsd/vo-dml.xsd
https://volute.googlecode.com/svn/trunk/projects/dm/vo-dml/xsd/vo-dml.sch.xml
https://volute.googlecode.com/svn/trunk/projects/dm/vo-dml/models
https://volute.googlecode.com/svn/trunk/projects/dm/vo-dml/models/vo-dml/VO-DML.vo-dml.xml
https://volute.googlecode.com/svn/trunk/projects/dm/vo-dml/models/vo-dml/VO-DML.vo-dml.xml
https://volute.googlecode.com/svn/trunk/projects/dm/vo-dml/models/profile/IVOA_Profile.vo-dml.xml

o vo-dml:Model.url

Can be assigned to an PARAM inside a Model GRUOP element to hold the URL of the

VO-DML document defining the model.

o vo-dml:Model.prefix

Can be assigned to an PARAM inside a Model GROUP element to hold the prefix used

to identify utype-s form this model.

 vo-dml:ObjectType

Indicates the ObjectType definition, can also be seen more accurately as the (implicit)

common base class of all ob ject type instances..

o vo-dml:ObjectType.ID

Indicates the ID attribute (implicitly) defined on ObjectType. Can be assigned to a

FIELDref, PARAM or GROUP to indicate it represents an ObjectType’s identifier.

 vo-dml:Identifier

A generic DataType indicating an identifier. When used as type part of a concatenated utype

in an annotation of a reference, indicates that the annotated element(s) together act as a

foreign key to a remote object that must have the same identifier contents.

One could imagine others such as vo-dml:Collection to indicate that a certain element is a collection

rather than a collection element. One also could also consider using implicitly defined vo-

dml:ObjectType.CONTAINER and vo-dml:Type.EXTENDS iso of the generated CONTAINER and

EXTENDS utypes. It might facilitate the writing of a model a bit, requiring fewer explicit utype

identifiers. And after all containers and extensions are 0..1, so there is no possibility of confusion.

3 Format of @utype: Mapping types and roles
In general a mapping from VOTable to VO-DML uses a @utype attribute of a VOTable element to

identify the VO-DML element it represents. The approach here assumes that the @utype takes the

value of the utype identifier of the VO-DML element it represents, or at least is built from such

identifiers. This value may be built according to the default syntax described in section 2.2, but that is

not required. These utypes generally identify type definitions or property definitions. A property is a

role played by a type in the definition of another type and is an important piece of metadata to add

to one's VOTable.

However, a @utype attribute identifying only a property may not provide sufficient information

about the contents of the annotated element. This is due to the fact that our data modeling language

supports inheritance and polymorphism. Polymorphism is the common object-oriented design

concept that says that the declared type of a property may not be the same as the type of an

instance of that property that is actually serialized. In particular, the value of a property may be an

instance of a subtype of the declared type. So in general it is not enough to know the type of the

attribute (for example) to uniquely know which type of instance to expect. And it may also not be

possible to infer the instance type uniquely from the contents of the element representing the

attribute.

Hence a single @utype attribute with value indicating only the role may not be sufficient to infer all

DM information about a VOTable element. Typed languages such as Java support a casting operation,

which provides more information to the interpreter about the type it may expect a certain instance

to be. We might have to consider adding a similar kind of explicit casting to utype attributes, allowing

clients to identify both role and type.

A separate motivation for such explicit casting support is simply to improve usability of the

annotation. A typical usage scenario is [TBD may be?] a VOTable client tool that is sensitive to certain

models only, say STC. Such a tool can be written to understand annotation with STC types. Finding an

element mapped to a type definition from STC it might infer or example that it represents a

coordinate on the sky and “do something with that information”. Such a tool would not necessarily

understand other models where such an STC type is used as a role. If the annotation only refers to

the attribute’s utype, a tool will have to infer that it represents the role played by a known type after

parsing the data model document. If instead the actual type can be inferred from the annotation

directly usability might be increased.

Two possibilities have been proposed to support this kind of type casting, other might be considered:

1. Concatenate utypes. Identify both role and type using the corresponding utype-s, separated

by a separator, for example a ‘+’.

2. Use the @utype to identify the type, and another attribute, for example the @name to

identify the role. This may work for GROUP and PARAM on a GROUP, but not for FIELDref

and PARAMref. In those latter cases one might use the @utype of the …ref element to

indicate the role, and the @utype of the referenced FIELD and PARAM respectively to

indicate the type.

In the rest of this note we assume option 1, including the use of the ‘+’. We could consider using a

different separator, say a ‘;’. Reason could be that ‘;’ has been used in other interpretations already,

basically to give an alternative annotation. We prefer the ‘+’ as it makes explicit that the two utypes

concatenated together are complementary; both are needed for a complete interpretation of an

annotation aimed at a VO-DML document. It should be straightforward to change the description if

another option is chosen.

TBD Note that the choice of how to do casting does have some consequences, namely that the utype

identifiers used in VO-DML documents must not use this separator, or at least follow a syntax that

allows the concatenation of utypes to be discovered.

4 Examples: Mapping VO-DML ⇒VOTable
In this section we list some mappings from VO-DML to VOTable. We use examples extracted from a

sample model with sample instances described in the next section. These should be seen as an

introduction to the complete and formal specification in section 5 on how one SHOULD use utypes in

VOTable to indicate mapping to VO-DML.

4.1 Sample model and instances
For examples we use a highly simplified version of a possible Source data model, illustrated by its

UML representation in Figure 1. It has a VO-DML representation which is reproduced in 8.1.

Figure 1 Example data model used in example. It represents a simplified Source data model,
containing luminosities following a simplified PhotDM model. It imports a simplistic version of

an STC model with some types for defining coordinates on the sky.

The model defines some types allowing one to define a Source with position on the sky and a

collection of luminosities. The position is modeled as a DataType, ‘SkyCoordinate’ in a “basicSTC”

model that is imported by the Sample model. SkyCoordinate has a reference to a coordinate frame

that is required to interpret its longitude and latitude attributes. The luminosities are really

measurements of luminosities in a given filter that is indicated by a reference to a PhotometryFilter;

hence they have a value and an error. A Quantity DataType is introduced that provides a real value

and a unit. The latter is actually the cause of a possible problem discussed in section 8.

The models are by no means meant to be comprehensive and include some admittedly artificial

elements such as an Equinox PrimitiveType, which is supposed to be a simple string and might carry

enough semantic value of its own to use it as an annotation on PARAM elements for example.

Note that this sample model defines a Package [TBD ref to VO-DML document needed] that contains

all the types. This package shows up in the values of the utype-s we use to identify the different

elements. The values we use for these utype identifiers are generated from the VO-DML using the

default utype described in section. I.e. they are path-like expressions that are guaranteed unique and

give some impression of the location in the data model.

We also use some sample instances of the models. These are here illustrated by UML instance

diagrams. The diagram in Figure 2 represents the first two lines returned from a query to the SDSS

DR7 database.

Figure 2 Instance diagram representing SDSS objetcs as sources in the sample data model.
[TBD update to latest form of model]. The first few results are represented from the default
radial SDSS query at http://skyserver.sdss.org/dr7/en/tools/search/radial.asp corresponding to
the SQL query:

SELECT top 10 p.objID, p.run, p.rerun, p.camcol, p.field, p.obj,

 p.type, p.ra, p.dec, p.u,p.g,p.r,p.i,p.z,

 p.Err_u, p.Err_g, p.Err_r,p.Err_i,p.Err_z

http://skyserver.sdss.org/dr7/en/tools/search/radial.asp

 FROM fGetNearbyObjEq(195,2.5,3) n, PhotoPrimary p

 WHERE n.objID=p.objID

The instance diagram in
Figure 3 represents one of the sources returned by a cone search query vs. the 2MASS catalogue,
represented as instances of the Sample data model.

Figure 3 A 2MASS source is partially represented here according to the SAMPLE model in
Figure 1. Result is obtained from http://irsa.ipac.caltech.edu/ using coordinate “123 -2.1” with

search radius 3’. TBD update to latest form of model

4.2 Data carriers in VOTable
VO-DML describes four different kinds of types: PrimitiveType (PT), Enumeration (E), DataType (DT)

and ObjectType (OT). PT, E and DT are value types; OT is an object - or reference type [TBD add few

sentences]. PT and E are atomic, their values consist of a single value; DT and OT are structured, they

are built from multiple values, organized as attributes, and possibly of reference relations to OTs. An

OT can also have collections of other OTs, and can have an identifier, an attribute of undetermined

type that is implicitly defined for ObjectType-s.

To store instances (values and objects) of these types in a VOTable various options are available.

Atomic values (i.e. instances of PT and E) are stored in cells in a row in a table (i.e. a TD) or in the

value attribute of a PARAM (@value). To store an instance of a structured type one must store its

components. To identify the structured instance in a serialization one must be able to identify the

individual components and how they are to be combined. This last identification is done by the

GROUP element. It is the main representation of structured types, both ObjectType and DataType. It

is also used to represent relations to object types. These may be stored using foreign key like

mechanisms or through some kind of hierarchy.

http://irsa.ipac.caltech.edu/

In fact in the approach described here virtually all mapping of VOTable to VO-DML is performed by

GROUP elements and their components. They identify which elements are to be combined to create

the object or DataType instance, what the roles are that these components play (attribute,

reference) and they do so simply by using the utype of the corresponding type or role as defined in

VO-DML for the value of their @utype attribute.

In the next few subsection we provide some examples how this mapping can be performed. It starts

with the ObjectType and then discusses its components, Attribute, Reference and Collection. The

mapping of the value types is discussed in the mapping of Attributes. The mapping of Reference and

Collection relations is the most complex part of the whole mapping story and treated separately.

4.3 Mapping ObjectType
ObjectTypes consist of Attributes, References and Collections. How these are mapped is described in

more detail below. But the important part for representing structured instance like an object is that

these components must be combined together to construct a complete instance. In VOTable this is

done using a GROUP element.

In the representation of ObjectType instances, GROUPs can be used in two different modes that are

distinguished by the way the instance’s data are ultimately stored. If all values are eventually stored

exclusively in @value attributes of PARAM elements in the GROUP (or possibly outside the GROUP

but accessed through PARAMrefs), the GROUP represents a complete instance directly. If even only

one of the attributes is stored in a FIELD and accessed through a FIELDref, the GROUP is said to

indirectly represents possibly multiple instances, one for each TR.

We will use these terms, “direct GROUP” and “indirect GROUP” as shorthand phrases for these

representations all through the document. This freedom of choice where to store objects complicates

the mapping of relations between objects, as many different referencing mechanisms must be taken

into account. This is particularly important when discussing how to represent References in section

5.7 below.

We illustrate the two modes of mapping by showing an example how each mode may represent

exactly the same object. For this we use the object type in Figure 4 and a corresponding instance in

Figure 5.

Figure 4 ObjectType representing a Source.

Figure 5 Instance of Source ObjectType.

Indirect serialization to a TABLE:

Source instance from Figure 5 is stored in the first TR below. The TABLE is annotated using a GROUP

with utype attribute identifying the type. Some atomic attributes are stored in FIELDs annotated by

FIELDref-s, some in PARAMs; a structured attribute is represented by the child GROUP with its

attributes annotated by FIELDref. A reference is also represented by a GROUP (for discussion see

section 4.5):

<TABLE>

<GROUP utype="SAMPL:source/Source" >

 <FIELDref ref="_designation" utype="vo-dml:ObjectType.ID"/>

 <FIELDref ref="_designation" utype="SAMPL:source/Source.name"/>

 <PARAM name=”type” utype=”SAMPL:source/Source.classifiication” value=”galaxy”/>

 <GROUP utype="SAMPL:source/Source.position+bSTC:SkyCoordinate">

 <FIELDref ref="_ra" utype="bSTC:SkyCoordinate.longitude"/>

 <FIELDref ref="_dec" utype=" bSTC:SkyCoordinate.latitude"/>

 <GROUP ref="_icrs" utype=" bSTC:SkyCoordinate.frame"/>

 </GROUP>

</GROUP>

<FIELD name="designation" ID="_designation" .../>

<FIELD name="ra" ID="_ra" unit="deg" .../>

<FIELD name="dec" ID="_dec" unit="deg" .../>

<TR><TD>08120809-0206132</TD><TD>123.033734</TD><TD>-2.103671</TD></TR>

...

</TABLE>

Note the special representation of the identifier of the Source object. This attribute is not defined

explicitly in the model; hence no utype exists for it there. We can interpret each ObjectType as

ultimately being a subclass of some ObjectType class (just as in Java all classes ultimately extend

java.lang.Object, generally implicitly). In VO-DML we can represent this by allowing an ObjectType to

have a component of as yet unspecified type, that represents the ID attribute (implicitly) defined on

this base class. We use a special utype for this attribute: vo-dml:ObjectType.ID, obtained from the

VO-DML model discussed in 2.3.

UPDATE 2013-03-19: in section 2.3 we have introduced a small model that contained base classes to

be used in instantiations of types. There we introduce a DataType vo-dml:Identifier that acts

as the datatype of the ID atrribute. If we take that seriously, in serializations it should be represented

by a GROUP. In section 2.3 we note that the VO-DML base model may have to be part of a VOTasble-

UTYPE spec, hence we might decide to make special allowances

Note furthermore that the same FIELD is referenced for holding both the ‘name’ attribute of the

Source class, and for its identifier, albeit from different GROUPs!

Direct serialization to a GROUP:

Here the instances is directly represented by a GROUP containing only PARAMs for the atomic

attributes, and a GROUP with PARAMs for the structured attribute (and again a reference, see

section 4.5).

<GROUP utype="SAMPL:source/Source" >

 <PARAM utype=”vo-dml:ObjectType.ID" value=”08120809-0206132” .../>

 <PARAM utype=”SAMPL:source/Source.name" value=”08120809-0206132” .../>

 <PARAM utype=”SAMPL:source/Source.classifiication” value=”galaxy” .../>

 <GROUP utype="SAMPL:source/Source.position+ bSTC:SkyCoordinate">

 <PARAM utype=" bSTC:SkyCoordinate.longitude" value=”123.033734” .../>

 <PARAM utype=" bSTC:SkyCoordinate.latitude" value=”-2.103671” .../>

 <GROUP ref="_icrs" utype=" bSTC:SkyCoordinate.frame"/>

 </GROUP>

</GROUP>

Details on the mapping of the components are discussed next.

4.4 Mapping Attribute
An attribute is the role a value type plays in the definition of a structured type. They may represent

atomic or may represent structured (Data)types themselves. These are represented differently.

Figure 6 The ObjectType Source and the DataType SkyCoordinate both define attributes.
Attributes can represent a PrimitiveType (‘name’ and ‘description’ in Source, ‘longitude’ and
‘latitude’ in SkyCoordinate), an Enumeration (‘classification’ in Source), or a structured
DataType (‘position’ in Source).

PrimitiveType attribute as FIELDref, Enumeration as PARAM:

In the indirect representation of the ObjectType below a FIELDref indicates that an attribute is stored

in field with ID=”_designation”. It does so using the utype of the attribute:

SAMPL:source/Source.name, identifiying the name attribute of the Source type. Note that in our

example we use a utype syntax derived from the VO-DML model itself. From this string one can here

infer directly that some role with name ‘name’ defined on a type named Source is represented. But

that is all one might infer. In principle this could have been a string like

SAMPL: _12_1_1dfa04c4_1354024272942_181358_515. In both cases one would need to inspect the

formal data model to find out precisely what kind of model element this utype represents.

Another attribute, ‘classification’, is represented by a PARAM through its utype value

SAMPL:source/Source.classification and assigns it the value ‘galaxy’. The attribute has as datatype an

Enumeration, SourceClassification and indeed the PARAM defines a VALUES element with various

OPTIONs (note that that is almost useless for a PARAM that represents a single value directly

anyway). Its set of Literals indeed contains a value ‘galaxy’. In general however, especially for existing

“legacy” databases, one cannot expect that enumerated values will exactly correspond to those in a

model. Some type of mapping might be required, howevere OPTION does not support this in

VOTable (i.e. has no @utype attribute). The fact that this attribute is stored in a PARAM in the

GROUP indicates also that all Source instances stored in the TABLE are classified as galaxies.

<TABLE>

<GROUP utype="SAMPL:source/Source" >

 <FIELDref ref="_designation" utype=" vo-dml:ObjectType.ID"/>

 <FIELDref ref="_designation" utype="SAMPL:source/Source.name"/>

 <PARAM name=”type” utype=”SAMPL:source/Source.classification” value=”galaxy”>

 <VALUES><OPTION value=”galaxy”/><OPTION value=”star”/>...</VALUES></PARAM>

 <GROUP utype="SAMPL:source/Source.position+ bSTC:SkyCoordinate">

 <FIELDref ref="_ra" utype=" bSTC:SkyCoordinate.longitude"/>

 <FIELDref ref="_dec" utype=" bSTC:SkyCoordinate.latitude"/>

 <GROUP ref="_icrs" utype=" bSTC:SkyCoordinate.frame"/>

 </GROUP>

</GROUP>

<FIELD name="designation" ID="_designation" .../>

<FIELD name="ra" ID="_ra" unit="deg" .../>

<FIELD name="dec" ID="_dec" unit="deg" .../>

<TR><TD>08120809-0206132</TD><TD>123.033734</TD><TD>-2.103671</TD></TR>

...

</TABLE>

DataType attribute as GROUP:

As DataType-s are structured, their natural representation in a VOTable is as a GROUP, whether used

directly or indirectly. Hence if an attribute is defined in a VO-DML data model as representing a

DataType, it is most naturally represented by a GROUP embedded in the GROUP of the structured

type owning the attribute. This is the mapping we [TBD that is, I, Gerard] favor and makes the utype

annotation very simple. But see elsewhere for a discussion of an alternative approach [TBD].

The example below shows in red a GROUP representing the attribute ‘position’ (identified by utype

SAMPL:source/Source.position) that has as data type an STC SkyCoordinate, which itself consists of a

‘longitude’ and ‘latitude’ attribute (we defer discussing the reference to the next section). Note that

the attributes of the STC type have a different prefix (bSTC) to indicate they are imported from a

different model. And note their structure indicates only their relation to their defining type,

bSTC:SkyCoordinate (though this, as discussed above, is unimportant for the current approach which,

apart from the prefix, assigns no importance to the syntax of the utype identifiers in VO-DML

models).

<TABLE>

<GROUP utype="SAMPL:source/Source" >

 <FIELDref ref="_designation" utype="vo-dml:ObjectType.ID"/>

 <FIELDref ref="_designation" utype="SAMPL:source/Source.name"/>

 <PARAM name=”type” utype=”SAMPL:source/Source.classifiication” value=”galaxy”>

 <VALUES><OPTION value=”galaxy”/><OPTION value=”star”/>...</VALUES></PARAM>

 <GROUP utype="SAMPL:source/Source.position">

 <FIELDref ref="_ra" utype="bSTC:SkyCoordinate.longitude"/>

 <FIELDref ref="_dec" utype="bSTC:SkyCoordinate.latitude"/>

 <GROUP ref="_icrs" utype="bSTC:SkyCoordinate.frame"/>

 </GROUP>

</GROUP>

<FIELD name="designation" ID="_designation" .../>

<FIELD name="ra" ID="_ra" unit="deg" .../>

<FIELD name="dec" ID="_dec" unit="deg" .../>

<TR><TD>08120809-0206132</TD><TD>123.033734</TD><TD>-2.103671</TD></TR>

...

</TABLE>

In this example the utype of the child GROUP only indicates its role in the definition of its parent

GROUP, namely the attribute SAMPL:source/Source.position. It does not indicate the type, which

would be bSTC:SkyCoordinate. In principle the role alone should be sufficient, as its definition in a

VO-DML data model will provide its data type.

However there are arguments why one might wish to add information about the type as well. As we

will argue in section 3, sometimes it is necessary to supply information about the type, as a kind of

casting operation. There we propose a particular format for this, which consist of a concatenation of

the utype identifiers of both role and type, separated by a ‘+’. According to that proposal the above

example could have been written as follows:

<GROUP utype="SAMPL:source/Source" >

...

 <GROUP utype="SAMPL:source/Source.position+bSTC:SkyCoordinate">

...

 </GROUP>

</GROUP>

DataType attribute as collection of fields with path-like utype:

An alternative approach that will be discussed in section 7 in more detail aims to avoid the nesting of

GROUP elements as much as possible. A structured attribute as ‘position’ in the example would not

be represented with its own GROUP. To ensure one is able to collect the components of the

SkyCoordinate type together one might put explicit structure on the utype attribute. One approach is

some kind of path expression. In that approach the example could be written as follows:

<TABLE>

<GROUP utype="SAMPL:source/Source" >

 <FIELDref ref="_designation" utype="vo-dml:ObjectType.ID"/>

 <FIELDref ref="_designation" utype="SAMPL:source/Source.name"/>

 <PARAM name=”type” utype=”SAMPL:source/Source.classifiication” value=”galaxy”>

 <VALUES><OPTION value=”galaxy”/><OPTION value=”star”/>...</VALUES></PARAM>

 <FIELDref ref="_ra" utype="SAMPL:source/Source.position.longitude"/>

 <FIELDref ref="_dec" utype="SAMPL:source/Source.position.latitude"/>

 <GROUP ref="_icrs" utype="SAMPL:source/Source.position.frame"/>

</GROUP>

<FIELD name="designation" ID="_designation" .../>

<FIELD name="ra" ID="_ra" unit="deg" .../>

<FIELD name="dec" ID="_dec" unit="deg" .../>

<TR><TD>08120809-0206132</TD><TD>123.033734</TD><TD>-2.103671</TD></TR>

...

</TABLE>

4.5 Mapping Reference

Referencing as ”GROUPref” to direct GROUP:

The example below uses a GROUP+@ref to represent the reference from a position object stored in a

TABLE to a SkyCoordinateFrame stored in a direct GROUP. Hence all rows in the table use the same

frame and the reference needs no structure.

<GROUP utype="bSTC:SkyCoordinateFrame" ID="_icrs">

 <PARAM utype="bSTC:SkyCoordinateFrame.name" value="ICRS" .../>

 <PARAM utype="bSTC:SkyCoordinateFrame.equinox+bSTC:Equinox" value="J2000.0" .../>

</GROUP>

<TABLE>

<GROUP utype="SAMPL:source/Source" id="_source">

 <FIELDref ref="_designation" utype="vo-dml:ObjectType.ID"/>

 <FIELDref ref="_designation" utype="SAMPL:source/Source.name"/>

 <GROUP utype="SAMPL:source/Source.position+bSTC:SkyCoordinate">

 <FIELDref ref="_ra" utype="bSTC:SkyCoordinate.longitude"/>

 <FIELDref ref="_dec" utype="bSTC:SkyCoordinate.latitude"/>

 <GROUP ref="_icrs" utype="bSTC:SkyCoordinate.frame"/>

 </GROUP>

</GROUP>

<FIELD id="_ designation " name="parentId" datatype="char"/>

<FIELD id="_ra" name="ra" datatype="float"/>

<FIELD id="_dec" name="dec" datatype="float"/>

...

<DATA><TABLEDATA>

<TR><TD>08120809-0206132</TD><TD>123.034</TD><TD>-2.1037</TD>...</TR>

...

</TABLEDATA></DATA>

</TABLE>

ORM-like referencing from TABLE to TABLE:

A table with PhotometryFilter instances is referenced from a table with LuminosityMeasurement

instances. The reference is represented by a GROUP that uses its @ref attribute to identify the

GROUP representing the target filters. The reference GROUP contains a FIELDref.

Note, the ID of the PhotometryFilter is constructed from 2 columns, representing (through their

@utype) each a field of the Identifier, one identifying a catalogue, one a band. Hence the referencing

object must use also two fields. As there is no explicit double linking possible in VOTable (FIELDref

cannot use @ref both for indicating the local FIELD and the remotely referenced one), we propose

the rule that to reference an Identifier one must replicate its structure. See 5.6 for more details.

<TABLE>

<GROUP utype="SAMPL:source/PhotometryFilter" id=”_filters”>

 <GROUP utype=”vo-dml:ObjectType.ID+vo-dml:Identifier”

 <FIELDref ref=”_cat” utype="vo-dml:Identifier.field"/>

 <FIELDref ref=”_bans” utype="vo-dml:Identifier.field" />

 </GROUP>

 <FIELDref ref=”_name” utype="SAMPL:source/PhotometryFilter.name"/>

</GROUP>

<FIELD name=”catalogue” id=”_cat” .../>

<FIELD name=”band” id=”_band” .../>

<FIELD name=”name” id=”_name” .../>

..

<DATA><TABLEDATA>

<TR><TD>SDSS</TD><TD>g</TD><TD>SDSS g-band</TD></TR>

<TR><TD>SDSS</TD><TD>u</TD><TD>SDSS u-band</TD></TR>

<TR><TD>2MASS</TD><TD>J</TD><TD>2MASS J-band</TD></TR>

</TABLDATA></DATA>

</TABLE>

<TABLE>

<GROUP utype="SAMPL:source/LuminosityMeasurement" id="SDSS_mags">

 <GROUP utype="SAMPL:source/LuminosityMeasurement.CONTAINER+vo-dml:Identifier">

 <FIELDref ref="_container" />

 </GROUP>

 <FIELDref ref="__mag" utype="SAMPL:source/LuminosityMeasurement.value"/>

 <PARAM name="type" utype="SAMPL:source/LuminosityMeasurement.type" value="magnitude"/>

 <FIELDref ref="__mag" utype="SAMPL:source/LuminosityMeasurement.error"/>

 <GROUP ref="_filters"

 utype="SAMPL:source/LuminosityMeasurement.filter+vo-dml:Identifier">

 <FIELDref ref=”_fcat” utype="vo-dml:Identifier.field" />

 <FIELDref ref=”_fband” utype="vo-dml:Identifier.field" />

 </GROUP>

</GROUP>

<FIELD id="_container" name="parentId" datatype="char"/>

<FIELD id="_mag" name="mag" datatype="float"/>

<FIELD id="_eMag" name="eMag" datatype="float"/>

<FIELD id="_fcat" name="catalogue" datatype="char"/>

<FIELD id="_fband" name="band" datatype="char"/>

<DATA><TABLEDATA>

<TR><TD>08120809-0206132</TD><TD>23.2</TD><TD>.04</TD><TD>SDSS</TD><TD>g</TD></TR>

<TR><TD>08120809-0206132</TD><TD>25.2</TD><TD>.1</TD><TD>2MASS</TD><TD>J</TD></TR>

...

</TABLEDATA></DATA>

</TABLE>

Referrer and target in same TR:

Following example shows a LuminosityMeasurement stored in a TR together with information about

its PhotometryFilter. This might be the result of a query like:

SELECT M.value,M.error,F.id,F.name

 FROM LUMINOISOTY_MEASUREMENT M

 , PHOTOMETRY_FILTER F

 WHERE F.ID=M.FILTER_ID

It joins the filter to the measurement and stores some of its fields.

<TABLE>

<GROUP utype="SAMPL:source/PhotometryFilter" id=”_filters”>

 <GROUP utype=”vo-dml:ObjectType.ID”

 <FIELDref ref=”_cat”/>

 <FIELDref ref=”_bans”/>

 </GROUP>

 <FIELDref ref=”_name” utype="SAMPL:source/PhotometryFilter.name"/>

</GROUP>

<FIELD name=”catalogue” id=”_cat” .../>

<FIELD name=”band” id=”_band” .../>

<FIELD name=”name” id=”_name” .../>

..

<DATA><TABLEDATA>

<TR><TD>SDSS</TD><TD>g</TD><TD>SDSS g-band</TD></TR>

<TR><TD>SDSS</TD><TD>u</TD><TD>SDSS u-band</TD></TR>

<TR><TD>2MASS</TD><TD>J</TD><TD>2MASS J-band</TD></TR>

</TABLDATA></DATA>

</TABLE>

<TABLE>

<GROUP utype="SAMPL:source/LuminosityMeasurement" id="SDSS_mags">

 <GROUP utype="SAMPL:source/LuminosityMeasurement.CONTAINER+vo-dml:Identifier ">

 <FIELDref ref="_container" />

 </GROUP>

 <FIELDref ref="__mag" utype="SAMPL:source/LuminosityMeasurement.value"/>

 <PARAM name="type" utype="SAMPL:source/LuminosityMeasurement.type" value="magnitude"/>

 <FIELDref ref="__mag" utype="SAMPL:source/LuminosityMeasurement.error"/>

 <GROUP ref="_filter" utype="SAMPL:source/LuminosityMeasurement.filter/>

</GROUP>

<GROUP utype="SAMPL:source/PhotometryFilter" id=”_filter”>

 <FIELDref ref=”_filter.id” utype=”vo-dml:ObjectType.ID”/>

 <FIELDref ref=”_filter.name” utype=”SAMPL:source/PhotometryFilter.name”/>

</GROUP>

<FIELD id="_container" name="parentId" datatype="char"/>

<FIELD id="_mag" name="mag" datatype="float"/>

<FIELD id="_eMag" name="eMag" datatype="float"/>

<FIELD id="_filter.id" name="filter_id" datatype="char"/>

<FIELD id="_filter.name" name="filter_name" datatype="char"/>

<DATA><TABLEDATA>

<TR><TD>08120809-0206132</TD><TD>23.2</TD><TD>.04</TD><TD>SDSS:g</TD><TD>SDSS g-band</TD></TR>

...

</TABLEDATA></DATA>

Note that both LuminosityMeasurement and PhotometryFlter are explicitly (and indirectly)

represented by GROUPs that identify their type. The reference between the two is represented by a

“GROUPref” construct without contents, i.e. no vo-dml: Identifier is used.

Referencing unspecified GROUP from within TABLE through vo-dml:Identifier:

It may be that objects of the same type are represented by different GROUPs in the same VOTable. It

may then also be that from within a TABLE one may wish to reference one of these, but different

rows may have references to different instances. The following example shows this.

<GROUP utype="SAMPL:source/PhotometryFilter">

 <PARAM utype="vo-dml:ObjectType.ID" value="sdss:g" .../>

 <PARAM type="SAMPL:source/PhotometryFilter.name" value="SDSS g band" .../>

</GROUP>

<GROUP utype="SAMPL:source/PhotometryFilter">

 <PARAM utype="vo-dml:ObjectType.ID" value="sdss:u" .../>

 <PARAM type="SAMPL:source/PhotometryFilter.name" value="SDSS u band" .../>

</GROUP>

..

<TABLE>

<GROUP utype="SAMPL:source/LuminosityMeasurement" id="SDSS_mags">

 <GROUP utype="SAMPL:source/LuminosityMeasurement.CONTAINER+vo-dml:Identifier">

 <FIELDref ref="_container" utype="vo-dml:Identifier.field"/>

 </GROUP>

 <FIELDref ref="__mag" utype="SAMPL:source/LuminosityMeasurement.value"/>

 <PARAM name="type" utype="SAMPL:source/LuminosityMeasurement.type" value="magnitude"/>

 <FIELDref ref="__mag" utype="SAMPL:source/LuminosityMeasurement.error"/>

 <GROUP utype="SAMPL:source/LuminosityMeasurement.filter+vo-dml:Identifier">

 <FIELDref ref="_filter" utype="vo-dml:Identifier.field"/>

 </GROUP>

</GROUP>

<FIELD id="_container" name="parentId" datatype="char"/>

<FIELD id="_mag" name="mag" datatype="float"/>

<FIELD id="_eMag" name="eMag" datatype="float"/>

<FIELD id="_filter" name="filter" datatype="char"/>

<DATA><TABLEDATA>

<TR><TD>08120809-0206132</TD><TD>23.2</TD><TD>.04</TD><TD>sdss:g</TD></TR>

<TR><TD>08120809-0206132</TD><TD>22.5</TD><TD>.05</TD><TD>sdss:u</TD></TR>

...

</TABLEDATA></DATA>

</TABLE>

The mapping in this example is indirect, for the GROUP representing the target is not explicitly

identified by the reference. This reference is here nevertheless represented by a GROUP with a

FIELDref. The GROUP represents a copy the vo-dml:Identifier instance used as value of the remote

object's vo-dml:ObjectType.ID; the FIELDref the single vo-dml:Identifier.field. Different rows

reference different GROUPs, hence a “GROUPref” construct is not applicable here. To find the target

the client will have to search the document for a GROUP representing the right type and with an ID

with a single field of the right value. If the value of a TD could be a @ref, we could use XMLs ID/IDREF

mechanism which in some tools facilitates the lookup. But see section [TBD] for ideas how to best

analyze a VOTable with data model structure, in particular how to deal with referencing. [TBD do we

want such a section? It might borrow from some more VO-URP implementation ideas.]

4.6 Mapping Collection
A collection is a composition relation between a parent ObjectType and a child, or part, ObjectType.

The fact that objects can be stored in different ways implies many different ways in which the

relation may need to be expressed. In XML serializations of a data model (such as used in VO-URP

and the Simulation Data Model) one may choose to have the contained objects serialized inside the

serialization of the parent. It is possible to do so in VOTable as well using child GROUP-s representing

a complete child object embedded in the GROUP representing the parent object. This is natural for

this relationship because a collection element is really to be considered as a part of the parent

object.

This may be used to represent flattening of the parent-child relation. One or more child objects may

be stored together with the parent object in the same row in a TABLE. Such a case is actually very

common, for example when interpreting tables in typical source catalogues. These generally contain

information of a source together with one or more magnitudes. The latter can be seen as elements

form a collection of photometry points contained by the sources.

Hence a GROUP inside another GROUP MAY represent a collection. It can do so in different modes

that are illustrated by the following examples and described in more detail in section 5.8.

Container and contained objects in separate TABLE linked by “GROUPrefs“:

The basic Object-Relational mapping has containers stored in one table, the objects in the collection

in another. The child objects need a foreign key/pointer to the container object. In the example

below we have the collection represented on the container using a "GROUPref" to the collection. The

utype identifies only the collection, the @ref identifies the GROUP where the collection element(s)

can be found. In this case that GROUP annotates a TABLE and has as @utype the type of the

collection. It also contains a GROUP representing a pointer to the container object. Its utype is a

concatenation of the CONTAINER utype and of the predefined vo-dml:Identifier to indicate it

represents the ID of the container object.

...

<TABLE>

<GROUP utype="SAMPL:source/Source" id="_source">

 <FIELDref ref="_designation" utype="vo-dml:ObjectType.ID"/>

 <FIELDref ref="_designation" utype="SAMPL:source/Source.name"/>

 <PARAM name=”type” utype=”SAMPL:source/Source.classifiication” value=”galaxy”/>

 <GROUP utype="SAMPL:source/Source.position+bSTC:SkyCoordinate">

 <FIELDref ref="_ra" utype="bSTC:SkyCoordinate.longitude"/>

 <FIELDref ref="_dec" utype="bSTC:SkyCoordinate.latitude"/>

 <GROUP ref="_icrs" utype="bSTC:SkyCoordinate.frame"/>

 </GROUP>

 <GROUP utype="SAMPL:source/Source.luminosity" ref=”SDSS_mags”/>

</GROUP>

<FIELD name="designation" ID="_designation" .../>

<FIELD name="ra" ID="_ra" unit="deg" .../>

<FIELD name="dec" ID="_dec" unit="deg" .../>

<TR><TD>08120809-0206132</TD><TD>123.033734</TD><TD>-2.103671</TD></TR>

...

</TABLE>

...

<TABLE>

<GROUP utype="SAMPL:source/LuminosityMeasurement" id="SDSS_mags">

 <GROUP utype="SAMPL:source/LuminosityMeasurement.CONTAINER+vo-dml:Identifier ">

 <FIELDref ref="_container"/>

 </GROUP>

 <FIELDref ref="_mag" utype="SAMPL:source/LuminosityMeasurement.value"/>

 <PARAM name="type" utype="SAMPL:source/LuminosityMeasurement.type" value="magnitude"/>

 <FIELDref ref="_eMag" utype="SAMPL:source/LuminosityMeasurement.error"/>

 <FIELDref ref="_filter" utype="SAMPL:source/LuminosityMeasurement.filter+vo-

dml:Identifier"/>

</GROUP>

<FIELD id="_container" name="parentId" datatype="char"/>

<FIELD id="_mag" name="mag" datatype="float"/>

<FIELD id="_eMag" name="eMag" datatype="float"/>

<FIELD id="_filter" name="filter" datatype="char"/>

<DATA><TABLEDATA>

<TR><TD>08120809-0206132</TD><TD>23.2</TD><TD>.04</TD><TD>sdss:g</TD></TR>

<TR><TD>08120809-0206132</TD><TD>23.0</TD><TD>.03</TD><TD>sdss:r</TD></TR>

</TABLEDATA></DATA>

</TABLE>

Container and contained objects in same row in same TABLE:

A very typical case is the following example, which shows a Source object serialized in the same row

as its luminosities. The Sample data model models luminosity measurements as a collection, which is

flexible and allows measurements from different source to be combined in a natural manner. But for

a given catalogue such as SDSS or 2MASS, it is known a priori how many magnitudes will be supplied

and which bands they will correspond to. Hence for a given catalogue the natural representation is to

simply add these as attributes to their model. Interestingly enough, the approach proposed here is

able to support this mapping without any problem, even making a natural link to the actual

photometry filter used for the measurements. And note that to indicate the fact the instances of the

contained types are indirectly represented by these GROUPs, the utype attributes MUST be

concatenations of the role (the collection) and the type.

<TABLE>

<GROUP utype="SAMPL:source/Source" id="_source">

 <FIELDref ref="_designation" utype="vo-dml:ObjectType.ID"/>

 <FIELDref ref="_designation" utype="SAMPL:source/Source.name"/>

 <PARAM name=”type” utype=”SAMPL:source/Source.classifiication” value=”galaxy”/>

 <GROUP utype="SAMPL:source/Source.position+bSTC:SkyCoordinate">

 <FIELDref ref="_ra" utype="bSTC:SkyCoordinate.longitude"/>

 <FIELDref ref="_dec" utype="bSTC:SkyCoordinate.latitude"/>

 <GROUP ref="_icrs" utype="bSTC:SkyCoordinate.frame"/>

 </GROUP>

 <GROUP utype="SAMPL:source/Source.luminosity+SAMPL:source/LuminosityMeasurement">

 <FIELDref ref="__gmag" utype="SAMPL:source/LuminosityMeasurement.value"/>

 <PARAM utype="SAMPL:source/LuminosityMeasurement.type" value="magnitude" .../>

 <FIELDref ref="_egMag" utype="SAMPL:source/LuminosityMeasurement.error"/>

 <GROUP ref="_gfilter" utype="SAMPL:source/LuminosityMeasurement.filter"/>

 </GROUP>

 </GROUP>

 <GROUP utype="SAMPL:source/Source.luminosity+SAMPL:source/LuminosityMeasurement">

 <FIELDref ref="__rmag" utype="SAMPL:source/LuminosityMeasurement.value"/>

 <PARAM utype="SAMPL:source/LuminosityMeasurement.type" value="magnitude" .../>

 <FIELDref ref="_erMag" utype="SAMPL:source/LuminosityMeasurement.error"/>

 <GROUP ref="_rfilter" utype="SAMPL:source/LuminosityMeasurement.filter"/>

 </GROUP>

 </GROUP>

</GROUP>

<FIELD name="designation" ID="_designation" .../>

<FIELD name="ra" ID="_ra" unit="deg" .../>

<FIELD name="dec" ID="_dec" unit="deg" .../>

<FIELD id="_gmag" name="gmag" datatype="float"/>

<FIELD id="_egMag" name="egMag" datatype="float"/>

<FIELD id="_rmag" name="rmag" datatype="float"/>

<FIELD id="_erMag" name="erMag" datatype="float"/>

<TR>

<TD>08120809-0206132</TD><TD>123.033734</TD><TD>-2.103671</TD><TD>23.2</TD><TD>.04</TD>

 <TD>23.0</TD><TD>.03</TD>

</TR>

...

</TABLE>

Container and collection all as direct instances in GROUPs:

When not using tables at all in a mapping, the individual elements form a collection can be directly

represented inside the parent GROUP. To indicate this explicitly the utype attributes MUST be

concatenations of the role (the collection) and the type.

<GROUP utype="SAMPL:source/Source" id="_source">

 <PARAM utype=”SAMPL:source/Source.name" value=”08120809-0206132” .../>

 <PARAM utype=”SAMPL:source/Source.classifiication” value=”galaxy” .../>

 <GROUP utype="SAMPL:source/Source.position+bSTC:SkyCoordinate">

 <PARAM utype="bSTC:SkyCoordinate.longitude" value=”123.033734” .../>

 <PARAM utype="bSTC:SkyCoordinate.latitude" value=”-2.103671” .../>

 <GROUP ref="_icrs" utype="bSTC:SkyCoordinate.frame"/>

 </GROUP>

 <GROUP utype="SAMPL:source/Source.luminosity+SAMPL:source/LuminosityMeasurement">

 <PARAM utype="SAMPL:source/LuminosityMeasurement.value" value=”23.2” .../>

 <PARAM utype="SAMPL:source/LuminosityMeasurement.type" value="magnitude" .../>

 <PARAM utype="SAMPL:source/LuminosityMeasurement.error" value=”0.04” .../>

 <GROUP ref="_gfilter" utype="SAMPL:source/LuminosityMeasurement.filter"/>

 </GROUP>

 </GROUP>

 <GROUP utype="SAMPL:source/Source.luminosity+SAMPL:source/LuminosityMeasurement">

 <PARAM utype="SAMPL:source/LuminosityMeasurement.value" value=”23.0” .../>

 <PARAM utype="SAMPL:source/LuminosityMeasurement.type" value="magnitude" .../>

 <PARAM utype="SAMPL:source/LuminosityMeasurement.error" value=”0.03” .../>

 <GROUP ref="_rfilter" utype="SAMPL:source/LuminosityMeasurement.filter"/>

 </GROUP>

 </GROUP>

</GROUP>

4.7 Mapping value types
The examples above started from the assumption that the basis of a serialization was an ObjectType.

Value types only show up as attributes. There may be some use cases howevere where one wishes to

indicate only that a certain column or set of column represent some known value type. One reason

may be that a standard, global data model does not exist that defines ObjectType-s matching the one

in one’s serialization, but that one can identify some sub-components that could be mapped to a

DataType for example.

In fact the Sample used here is an example. It is a model for Source-s. The IVOA does currently not

have an accepted model for this concept, though attempts in this direction have been made4. This

implies many tables of interest in the VO can currently not formally declare they store instances of a

Source. However they could declare they have columns that together correspond to a coordinate on

the sky in the STC model. This could lead to a VOTable fragment as the following, which is a version

of an example in 4.4, but with altered utypes, and removal of the GROUP representing the Source.

<TABLE>

<GROUP utype="bSTC:SkyCoordinate ">

 <FIELDref ref="_ra" utype="bSTC:SkyCoordinate.longitude"/>

 <FIELDref ref="_dec" utype="bSTC:SkyCoordinate.latitude"/>

 <GROUP ref="_icrs" utype="bSTC:SkyCoordinate.frame"/>

</GROUP>

<FIELD name="designation" ID="_designation" .../>

<FIELD name="ra" ID="_ra" unit="deg" .../>

<FIELD name="dec" ID="_dec" unit="deg" .../>

<TR><TD>08120809-0206132</TD><TD>123.033734</TD><TD>-2.103671</TD></TR>

...

</TABLE>

Tools that understand” STC may be able to do something with this annotation, even though they

cannot know what role the coordinate plays.

Another example arises from a possible access protocol specification. Say Simple Cone Search (SCS)

would declare that the result of a request MUST be a VOTable with a GROUP representing the actual

request consisting of a position and a search radius. It could insist the position must be serialized

using a GROUP representing an STC coordinate following our data modeling serialization

prescription. E.g. as in the following example:

<GROUP utype="bSTC:SkyCoordinateFrame" ID="_icrs">

 <PARAM utype="bSTC:SkyCoordinateFrame.name" value="ICRS" .../>

 <PARAM utype="bSTC:SkyCoordinateFrame.equinox+bSTC:Equinox" value="J2000.0" .../>

</GROUP>

...

<GROUP name="SCS">

 <INFO value="The SCS request "/>

 <PARAM name="SR" datatype="float" utype="ivoa_1.0:stdtypes/real"/>

 <GROUP name="center" utype="bSTC:SkyCoordinate">

 <INFO value="The center coordinate of the simple cone search"/>

 <PARAM name="ra" utype="bSTC:SkyCoordinate.longitude" value="123.00000" datatype="float"/>

 <PARAM name="dec" utype="bSTC:SkyCoordinate.latitude" value="-2.10000" datatype="float"/>

 <GROUP ref="_icrs" utype="bSTC:SkyCoordinate.frame"/>

 </GROUP>

</GROUP>

...

Note, this example even assigns a utype for the search radius SR, identifying it as the PrimitiveType

“ivoa_1.0:stdtypes/real”. This shows that also PrimitiveType-s and Enumerations could be used

directly, i.e. outside of a role they play. The use of this is probably limited, but we may allow it (see

section 5.2 for details and constraints.

One could argue that alternatively a standard protocol like SCS might define a little standard data

model to represent its full request and use it in the serialization of result. In that case also the parent

group, currently named “SCS’’, could have been declared to represent say an “scs:Request”, as

follows:

4 See http://wiki.ivoa.net/twiki/bin/view/IVOA/IVAODMCatalogsWP.

 <GROUP utype="bSTC:SkyCoordinateFrame" ID="_icrs">

 <PARAM utype="bSTC:SkyCoordinateFrame.name" value="ICRS" .../>

 <PARAM utype="bSTC:SkyCoordinateFrame.equinox+bSTC:Equinox" value="J2000.0" .../>

</GROUP>

...

<GROUP name="SCS" utype=”scs:Request”>

 <INFO value="The SCS request"/>

 <PARAM name="SR" datatype="float" utype="scs:Request.SR "/>

 <GROUP name="center" utype="scs:Request.center+bSTC:SkyCoordinate">

 <INFO value="The center coordinate of the simple cone search"/>

 <PARAM name="ra" utype="bSTC:SkyCoordinate.longitude" value="123.00000" datatype="float"/>

 <PARAM name="dec" utype="bSTC:SkyCoordinate.latitude" value="-2.10000" datatype="float"/>

 <GROUP ref="_icrs" utype="bSTC:SkyCoordinate.frame"/>

 </GROUP>

</GROUP>

...

[TBD I assume we do not have to spell out the SCS data model?]

5 Annotating VOTable: specification
In this section we list all legal mappings where a VOTable element uses its @utype to identify one or

two VO-DML elements; we describe how such an annotation should be interpreted and what

restrictions there are on the association. In its subsections it explicitly lists possible annotations of a

VOTable with a utype value that one may encounter following this spec.

The organization of the following sections is based on the different VO-DML concepts that can be

represented. Each of these subsections contains sub-subsections which represent the different

possible ways the concept may be encountered in a VOTable and discuss rules and constraints on

those annotations. We start with Model, and then we discuss value types (PrimitiveType,

Enumeration and DataType) and Attributes. Then ObjectType and the relationships, Collection,

Reference and Inheritance (extends). We leave out Package as we have not yet found a convincing

use case why one might want to point at one from a VOTable (though we did not really look for a

reason either).

The title of each subsection describing a legal mapping is structured according to a "grammar'. It

starts with a VOTable element on the left, the utype assignment and possible other constraints in

square brackets []. A possible context is indicated by an ∊ with to its right a container formatted

like the element of the left. Finally, an '' indicates a relation to another element; this will generally

be defined in the same VOTable, but might be serialized elsewhere.

For example the section with title “GROUP[@utype ⇒ ObjectType]” discusses the rules on linking a

GROUP to an ObjectType; similarly “GROUP[@utype ⇒ ObjectType] ∊ RESOURCE” discusses the

same case restricted to GROUPs defined directly on a RESOURCE, i.e. not on a TABLE or another

GROUP. Where relevant, subsections will be used for different cases or contexts within which to

interpret the annotation. 8.1 contains an attempt at formalizing this grammar so one may argue

about valid instances of it in a more explicit manner. This is TBD and likely too scary. Instead each

section should spell state the meaning of the title explicitly.

Some comments on how we refer to VOTable and VO-DML elements

 When referring to VOTable elements we will use the notation by which these elements will

occur in VOTable documents, i.e. in general “all caps”, E.g. GROUP, FIELD, (though FIELDref).

 When referring to rows in a TABLE element in a VOTable, we will use TR, when referring to

individual cells, TD. Even though such elements only appear in the TABLEDATA serialization

of a TABLE. When referring to a column in the TABLE we will use FIELD, also if we do not

intend the actual FIELD element annotating the column.

 When referring to an XML attribute on a VOTable element we will prefix it with an ‘@’, e.g.

@utype, @ref.

 References to VO-DML elements will be capitalized, using their VO-DML/XSD type

definitions. E.g. ObjectType, Attribute.

 Some mapping solutions require a reference to a GROUP elsewhere in the VOTable. We refer

to such a construct as a “GROUPref. In the examples we use a concrete implementation of

this concept which (currently) does not exists in VOTable (and is likely not desired). The

solution assumed in this document is to use a GROUP with a @ref attribute which we will

assumes always identifies another GROUP in the same document. This target GROUP must

have an @id attribute. In cases where this is important we will indicate that this combination

is to be interpreted as a “GROUPref”, including the quotes.

The following list defines some shorthand phrases (underlined) which we use in the descriptions

below:

 Generally when using the phrase type we mean a "kind of" type as defined in VO-DML. These

are PrimitiveType, Enumeration, DataType and ObjectType.

 With atomic type we will mean a PrimitiveType or an Enumeration as defined in VO-DML.

 A structured type will refer to an ObjectType or DataType as defined in VO-DML.

 With a property available on or defined on a (structured) type we will mean an Attribute or

Reference, or (in the case of ObjectTypes) a Collection defined on that type itself, or

inherited from one of its base class ancestors.

 A VO-DML type plays a role in the definition of another (structured) type if the former is the

declared data type of a property available on the latter.

 When writing that a VOTable element represents a certain VO-DML type, we mean that the

VOTable element is mapped either directly to the type, or that it identifies a role played by

the type in another type’s definition.

 A descendant of a VOTable element is contained in that element, or in a descendant of that

element. This is a standard recursive definition and can go up the hierarchy as well: an

ancestor of an element is the direct container of that element, or an ancestor of that

container.

5.1 Model
There has been quite some discussion how to indicate which models provide the utypes used in a

certain VOTable. Options are to make an explicit statement through some INFO element for example,

or to leave model usage implicitly defined through a predefined set of model prefixes. We here

follow the former, explicit approach. We propose that for each model that is used an INFO element

should exist which identifies the location of the VO-DML file representing the model. This element

should also define the prefix used by utypes corresponding to that model.

5.1.1 GROUP[@utype ⇒ Model] ∊ VOTABLE

A GROUP element with @utype attribute identifying a Model and placed directly under the root

VOTABLE element indicates that the corresponding VO-DML model is used in @utype associations.

Restrictions

 GROUP element must exist directly under VOTABLE and have @utype=”vo-dml:Model”

 Must have child PARAM element with @utype=”vo-dml:Model.url” and @value the url of the

VO-DML document representing the model. @name is irrelevant, @datatype=”char” and

arraysize=”*”.

 SHOULD have child PARAM element with @utype=”vo-dml:Model.prefix” and @value the

prefix used in the current VOTable document for utypes coming from that model. @name is

irrelevant, @datatype=”char” and arraysize=”*”.

TBD How do we deal with prefix? Can it be different from utype prefix in VO-DML document?

Do utypes in VO-DML document have a prefix?

Example

<VOTABLE>

<GROUP utype="vo-dml:Model" name="Sample">

 <PARAM utype="vo-dml:Model.url" name=”url” datatype=”char” arraysize=”*”

value="http://volute.googlecode.com/svn/trunk/projects/dm/vo-dml/models/sample/Sample.vo-

dml.xml"/>

 <PARAM utype="vo-dmlLModel.prefix" name=”prefix” datatype=”char” arraysize=”*”

value="SAMPL"/>

</GROUP>

<GROUP utype="vo-dml:Model" name="IVOA_Profile">

<PARAM utype="vo-dml:Model.url" name=”url” datatype=”char” arraysize=”*”

value="http://volute.googlecode.com/svn/trunk/projects/dm/vo-

dml/models/profile/IVOA_Profile.vo-dml.xml"/>

<PARAM utype="vo-dml:Model.prefix" value="ivoa_1.0" name=”prefix” datatype=”char”

arraysize=”*” />

</GROUP>

...

5.2 Atomic types
Instances of atomic types (PrimitiveType and Enumeration in VO-DML) are values. In general these

will be used as values for Attributes in instances of structured types (DataType and ObjectType) as

will be described below. But there may be valid use cases for indicating simply that certain values

occurring in a VOTable’s data are instances of the VO-DML type. Such atomic values will be stored in

a TD or in the @value attribute of a PARAM. They will be annotated by the @utype attribute of the

corresponding FIELD or the PARAM itself respectively.

One might expect that Enumerations are represented by a FIELD or PARAM with a VALUES

component. Its Literals might correspond to the OPTION values. How that association would be made

is TBD. After all OPTION elements do not have a @utype attribute. Until that time the OPTION values

may have to be identical to the Literals.

TBD We might wish to consider the more complex (if not perverse) possibility where an atomic value

is cut up in two or more parts, each of these stored separately. An example could be a ‘date’, which

might be distributed over three columns representing year, month and day. Do we want to support

this?

Question: is it useful to declare that a value or set of values in a column represent some primitive

type or enumeration? Could we not use UCDs for this?

Possible answer: This would seem to depend on the “expressivity” of the type. In general FIELD-s will

be used as attributes of structured types, i.e. through the role the type plays in the definition of a

parent ObjectType or DataType. But if no model exists that allows a parent to be defined, this link to

a type might still be useful, probably more so for Enumerations.

5.2.1 FIELD[@utype ⇒ PrimitiveType]

A FIELD’s @utype may identify a PrimitiveType directly (and without a role!). This indicates that the

TDs corresponding to the FIELD hold values whose type may be interpreted as the identified

PrimitiveType.

Restrictions

 This FIELD SHOULD NOT be used from within a GROUP with a FIELDref. (For reasons of trying

to avoid redundancy.) If this is done anyway the @utype annotation of the FIELDref MUST

refer to an Attribute whose data type is the same as the PrimitiveType identified by the

FIELD. Otherwise the annotation is invalid.

 The FIELD’s @datatype SHOULD (MUST?) define a valid serialization type for the

PrimitiveType. (For reasons of translational semantics: It must be possible to create an

instance of the PrimitiveType from the value stored in the VOTable).

Example

...

<TABLE>

...

<FIELD name="designation" ID="_designation" utype="ivoa_1.0:stdtypes/string">

<DESCRIPTION>source designation formed from sexigesimal coordinates</DESCRIPTION>

</FIELD>

...

</TABLE>

...

5.2.2 FIELD[@utype ⇒ Enumeration & VALUES]

A FIELD with a VALUES element may identify an Enumeration directly through its @utype. This

indicates that the TDs in the FIELD hold values whose type may be interpreted as the identified

Enumeration. The OPTION values should be interpreted in terms of the Literals of the Enumeration.

Restrictions

 A FIELD directly annotated with a type SHOULD NOT be used from within a GROUP with a

FIELDref. (For reasons of trying to avoid redundancy).

If this is done anyway the @utype annotation of the FIELDref MUST refer to an Attribute

whose data type is the same as the Enumeration identified by the FIELD. Otherwise the

annotation is invalid.

 The FIELD’s data type SHOULD (MUST?) be an exact serialization type for the Enumeration

(For reasons of translational semantics: It must be possible to create an instance of the

Enumeration from the value stored in the VOTable).

 The FIELD definition SHOULD (MUST?) have a VALUES element with OPTIONS corresponding

to the Literals in the Enumeration’s definition.

How that correspondence is made is TBD. A possible solution might be to have a link

(through @utype) from the different OPTION values to the corresponding Literal. But

OPTION does not have a @utype attribute. So currently the only way to make the

identification is if the OPTION values are exact copies of the Literals.

Example

...

<TABLE>

...

<FIELD name="type" utype="SAMPL:source/SourceClassification">

<VALUES>

<OPTION value=”star”/>

<OPTION value=”galaxy”/>

<OPTION value=”AGN”/>

<OPTION value=”planet”/>

<OPTION value=”unknown”/>

</FIELD>

...

</TABLE>

...

5.2.3 PARAM[@utype ⇒ PrimitiveType]

A PARAM’s @utype may identify a PrimitiveType directly. This indicates that the @value of the

PARAM may be interpreted as the identified PrimitiveType. The rules and interpretation are similar

to those of a FIELD’s mapping to a PrimitiveType (see section 5.2.1).

Restrictions

 A PARAM annotated with a @utype like this FIELD SHOULD NOT be used from within a

GROUP with a PARAMref. (For reasons of trying to avoid redundancy.) If this is done anyway

the @utype annotation of the PARAMref MUST refer to an Attribute whose data type is the

same as the PrimitiveType identified by the PARAM. Otherwise the annotation is invalid.

 The PARAM’s data type SHOULD (MUST?) be a valid serialization type for the PrimitiveType.

(For reasons of translational semantics: It must be possible to create an instance of the

PrimitiveType from the value stored in the VOTable).

Example

<GROUP name="SCS">

<PARAM name="SR" utype="ivoa_1.0:stdtypes/real"/>

...

</GROUP>

5.2.4 PARAM[@utype ⇒ Enumeration & VALUES]

A PARAM’s @utype may identify an Enumeration directly. This indicates that the @value of the

PARAM may be interpreted as the identified Enumeration. The rules and interpretation are similar to

those of a FIELD’s mapping to a Enumeration, see section 5.2.2.

Restrictions

 A PARAM mapped directly to an Enumeration MUST NOT be contained in a GROUP that is

mapped to a structured type (see below).

 The PARAM’s data type SHOULD (MUST?) be a valid serialization type for the Enumeration.

(For reasons of translational semantics: It must be possible to create an instance of the

Enumeration from the value stored in the VOTable).

 The PARAM definition SHOULD (MUST?) have a VALUES element with OPTIONS

corresponding to the Literals in the Enumeration’s definition.

How that correspondence is made should follow the same rules as for a FIELD mapped to an

Enumeration in section 5.2.2.

5.3 DataType
A DataType instance (also a value) is structured; it consists of values assigned to each of its attributes

and possibly references. To represent the complete instance of a DataType the various attributes

(and references) must be grouped together; in VOTable this is done using a GROUP element. GROUPs

in fact can play two different roles, depending on where the instance’s data is really stored. If all

values are eventually stored exclusively in PARAMs in the GROUP, or possible outside the GROUP but

accessed through PARAMrefs, the GROUP directly represents a complete instance. If even only one of

the attributes is stored in a FIELD and accessed through a FIELDref, the GROUP indirectly represents

possibly multiple instances, one for each TR. This is also true in any child GROUP contains a FIELDref

and so on. We will use these terms, direct and indirect representation all through the document. And

note that this same classification holds for ObjectTypes discussed in 5.5, though with a twist related

to possible child GROUPs representing Collections.

The attribute values of a DataType are stored according to the prescription for storing instances of

their data type. For attributes with declared data type a PrimitiveType or Enumeration section 5.2

provides details. If the attribute’s data type is itself a DataType the prescription in the current section

should be used recursively. DataType-s can also have Reference-s to ObjectType-s, but a discussion of

how to store References is deferred to section 5.7, after the discussion of storing ObjectType

instances, which is provided in section 5.5.

Polymorphism

When assigning values to attributes and references an important issue arises due to polymorphism.

Though an attribute is assigned a certain data type in the data model, instances of the attribute MAY

have a different data type, namely one that is (ultimately) a subclass of the declared type. This is

especially important for attributes with a structured DataType. Subclasses of PrimitiveTypes and

Enumerations remain atomic, but subclasses of DataTypes may add attributes and references to the

ones inherited from the base class. For this reason we advocate that the utype attribute of a

component representing an Attribute SHOULD (MUST?) be a concatenation of the utypes of the

Attribute and the type. See the discussion on the syntax of the utype attribute in section 3.

5.3.1 GROUP[@utype ⇒ DataType]

A GROUP’s @utype may identify a DataType directly. Depending on the contents and context, i.e. the

location of the GROUP within other VOTable elements, such a mapping indicates the existence of one

or more instances of the DataType (i.e. values really, as a DataType is a value type). Different cases

are discussed in subsets. In all cases the following restrictions hold:

Restrictions

 The components of a GROUP mapped to a DataType MUST be mapped to properties defined

on that DataType. The following options are available:

o FIELDref[@utype ⇒ Attribute [+ (PrimitiveType | Enumeration)]]

∊ GROUP[@utype ⇒ (DataType | ObjectType)] (see 5.4.1)

o PARAM [@utype ⇒ Attribute + [(PrimitiveType | Enumeration)]]

∊ GROUP[@utype ⇒ (DataType | ObjectType)] (see 5.4.2)

o PARAMref [@utype ⇒ Attribute + [(PrimitiveType | Enumeration)]]

∊ GROUP[@utype ⇒ (DataType | ObjectType)] (see 5.4.3)

o GROUP [@utype ⇒ Attribute [+ DataType]]

∊ GROUP[@utype ⇒ (DataType | ObjectType)] (see 5.4.4)

o GROUP [@utype ⇒ Reference [+ ObjectType]]

∊ GROUP[@utype ⇒ (DataType | ObjectType)] (see 5.7)

 If the GROUP is contained in a parent GROUP, the parent MUST NOT use its @utype

attribute. This is consequence of previous rule really.

 ...

5.3.1.1 GROUP[@utype ⇒ DataType] ∊ RESOURCE

A GROUP in a RESOURCE cannot have FIELDrefs, only PARAMs, PARAMrefs and GROUPs. The GROUP

represents therefore a single instance of the DataType directly as defined in 5.3, with the PARAM-s

etc. providing the values of the components of the DataType.

The possible role this instance plays in the VOTable document must have been defined outside of any

mapping to a data model. After all, in contrast to instances of ObjectTypes, the existence of instances

of value types need not be explicitly stated (see the description of value types in section TBD). An

example could be a VOTable containing the result of a simple cone search. A RESOURCE in that

document might contain a GROUP representing the position of the cone, which may be mapped

through its @utype to a DataType “stc:SkyCoordinate” (if such a type existed, our sample model

contains a type like it).

Example

<RESOURCE>

...

<GROUP utype="bSTC:SkyCoordinate">

 <INFO value="The center coordinate of the simple cone search"/>

 <PARAM name="ra" utype="bSTC:SkyCoordinate.longitude" value="123.00000"/>

 <PARAM name="dec" utype="bSTC:SkyCoordinate.latitude" dec=-2.10000/>

 <PARAMref ref="_icrs" utype="bSTC:SkyCoordinate.frame"/>

</GROUP>

...

5.3.1.2 GROUP[@utype ⇒ DataType &¬FIELDref] ∊ TABLE

A GROUP defined on a TABLE, annotated with a DataType, but without FIELDref-s in the GROUP or

any of its descendant GROUPs, represents a DataType instance directly, just as was the case for the

GROUP in a Resource in the previous subsection. In this case we can then interpret the GROUP

“merely” as a structured PARAM following the VOTable spec [REF] “A PARAM may be viewed as a

FIELD which keeps a constant value over all the rows of a table”. I.e. a GROUP without FIELDref is a

structured set of columns all with the same value in each row. As the GROUP is mapped directly to a

DataType rather than to a role, the use of such a GROUP in the context of the TABLE is not defined by

a mapping, but possibly by a protocol as described in section 5.3.1.1.

5.3.1.3 GROUP[@utype ⇒ DataType & FIELDref] ∊ TABLE

If the GROUP is a descendant of a TABLE, is annotated with a DataType and contains at least one

FIELDref element, either directly or in a descendant GROUP, the GROUP represents an instance of

the DataType for each TR. The interpretation of the possible role it plays in terms of

Example

<TABLE>

...

 <GROUP utype="bSTC:SkyCoordinate">

 <FIELDref ref="_ra" utype="bSTC:SkyCoordinate.longitude"/>

 <FIELDref ref="_dec" utype="bSTC:SkyCoordinate.latitude"/>

 <GROUP ref="_icrs" utype="bSTC:SkyCoordinate.frame"/>

 </GROUP>

...

<FIELD name="ra" ID="_ra" unit="deg">

<DESCRIPTION>right ascension (J2000 decimal deg)</DESCRIPTION>

</FIELD>

<FIELD name="dec" ID="_dec" unit="deg">

<DESCRIPTION>declination (J2000 decimal deg)</DESCRIPTION>

</FIELD>

...

5.3.1.4 GROUP[@utype ⇒ DataType] ∊ GROUP[¬@utype]

A GROUP may be defined inside another GROUP and be mapped to a DataType. There are some

restrictions. NONE of its ancestor GROUPs MAY be mapped to a data model element. This would

conflict with rules of mapping such an ancestor GROUP that state that children of such GROUPs

MUST be mapped to properties of the structured type represented by the containing GROUP (see the

restrictions defined in 5.3.1).

Whether the GROUP represents the DataType instance directly or indirectly is independent of this

embedding in a parent GROUP, only of the existence of a FIELDref in it or its descendants.

Example A GROUP representing parameters of a Simple Cone Search

<GROUP name="SCS">

...

<GROUP name="center" utype="bSTC:SkyCoordinate">

 <INFO value="The center coordinate of the simple cone search"/>

 <PARAM name="ra" utype="bSTC:SkyCoordinate.longitude" value="123.00000"/>

 <PARAM name="dec" utype="bSTC:SkyCoordinate.latitude" dec=-2.10000/>

 <GROUP ref="_icrs" utype="bSTC:SkyCoordinate.frame"/>

</GROUP>

</GROUP>

5.4 Attribute
An attribute is the role a value type plays in the definition of a structured type. The mapping of the

attribute is therefore almost identical to that of its type itself; similar elements can be used and the

utype attribute may contain the utype of the actual type (must do so to support polymorphism). To

annotate an element as attribute one MUST use also the utype of the attribute itself. Furthermore

the element representing the attribute MUST be contained in a GROUP that represents the

containing structured type.

How all of this is achieved in practice is described in the following subsections.

5.4.1 FIELDref[@utype ⇒ Attribute [+ (PrimitiveType | Enumeration)]]

A FIELDref MAY through its @utype declare that the FIELD it refers to stores an Attribute. It MAY

(MUST?) add the utype identifying the actual type (a PrimitiveType or an Enumeration) that the FIELD

represents separated by a ‘+’ from the utype of the Attribute.

Restrictions

 The Attribute MUST be available to the structured type represented by the containing

GROUP.

 The Attribute MUST have an atomic type.

 The datatype of the referenced FIELD must be compatible with the declared datatype of the

Attribute, as well as the actual detatype indicated by the relevant part of the utype

combination.



Example

See example in TBD.

5.4.2 PARAM[@utype ⇒ Attribute [+ (PrimitiveType | Enumeration)]]

∊ GROUP[@utype ⇒ ⟨ObjectType | DataType⟩]

When defined inside of a GROUP that represents a structured type, a PARAM MAY represent an

Attribute defined on the type. Which Attribute it represents it declares through its @utype. It MAY

(MUST?) add the utype identifying the actual type (a PrimitiveType or an Enumeration) that the FIELD

represents separated by a ‘+’ from the utype of the Attribute.

Restrictions

 The Attribute must have an atomic data type.

 The PARAM’s @datatype SHOULD be a compatible, valid serialization type for the type of the

Attribute. (For reasons of translational semantics: It must be possible to create an instance of

the atomic type from the value stored in the PARAM’s @value).

 …

Example

See example in TBD.

5.4.3 PARAMref[@utype ⇒ Attribute [+(PrimitiveType | Enumeration)]]

Inside a GROUP a PARAMref identifies a PARAM defined inside the same RESOURCE or TABLE where

the GROUP is defined. Using its @utype the PARAMref can annotate the PARAM as holding the value

of an Attribute.

Restrictions

 The Attribute must be available to the structured type represented by the containing GROUP.

 Attribute’s data type must be atomic.

 The PARAM must obey the restrictions defined for the annotation of a PARAM by the

Attribute’s type, if a PrimitiveType see 5.2.3, if an Enumeration see 5.2.4.

Example

TBD

5.4.4 GROUP[@utype ⇒ Attribute(DataType)]

∊ GROUP[@utype ⇒ ⟨ObjectType | DataType⟩]

A GROUP that is defined inside parent GROUP representing a structured type can be mapped to an

Attribute with a (structured) DataType. The annotation will be a concatenation of the utype of the

Attribute and of the actual DataType it represents.

Restrictions

 The Attribute represented by the child GROUP must be available on the structured type

represented by the parent GROUP.

 …

Example

<GROUP utype="SAMPL:source/Source">

 ...

 <GROUP utype="SAMPL:source/Source.position+bSTC:SkyCoordinate">

 <FIELDref ref="_ra" utype="bSTC:SkyCoordinate.longitude"/>

 <FIELDref ref="_dec" utype="bSTC:SkyCoordinate.latitude"/>

 <GROUP ref="_icrs" utype="bSTC:SkyCoordinate.frame"/>

 </GROUP>

...

</GROUP>

5.5 ObjectType

5.5.1 GROUP[@utype ⇒ ObjectType]

A GROUP’s @utype may identify an ObjectType. Depending on the context, i.e. the location of the

GROUP within other VOTable elements, such a mapping indicates the existence of one or more

instances of the ObjectType. These may be directly represented by the GROUP, i.e. the GROUP is the

instance, or the GROUP may indicate their existence when it is used to annotate a TABLE. These two

cases are treated in the subsections below.

Much of the definition here mirrors that of the mapping of GROUP to DataType. The main difference

is that having a GROUP annotated directly mapped an ObjectType, rather than to a role the

ObjectType plays (say as reference or collection) is always meaningful. For the existence of instances

of ObjectTypes cannot be inferred from the definition of the type.

Restrictions

 The components of a GROUP mapped to an ObjectType MUST be mapped to properties

defined on that ObjectType. The following options are available:

o FIELDref ∊ GROUP ⇒ Attribute ∊ ObjectType with atomic datatype (see)

o FIELDref ∊ GROUP ⇒ ID ∊ ObjectType with atomic datatype (see

o PARAM ∊ GROUP ⇒ Attribute ∊ ObjectType with atomic datatype (see)

o PARAM ∊ GROUP ⇒ ID ∊ ObjectType with atomic datatype (see)

o PARAMref ∊ GROUP ⇒ Attribute ∊ ObjectType with atomic datatype (see)

o PARAMref ∊ GROUP ⇒ ID ∊ ObjectType with atomic datatype (see)

o GROUP ∊ GROUP ⇒ Attribute ∊ ObjectType with structured datatype (see)

o GROUP ∊ GROUP ⇒ ID ∊ ObjectType with atomic datatype (see)

o GROUP ∊ GROUP ⇒ Collection ∊ ObjectType (see)

o GROUP ∊ GROUP ⇒ Reference ∊ ObjectType (see)

o GROUP ∊ GROUP ⇒ Container ∊ ObjectType (see)

o GROUP ∊ GROUP ⇒ Extends ∊ ObjectType

5.5.1.1 GROUP[@utype ⇒ ObjectType] ∊ RESOURCE

GROUP as instance on RESOURCE

GROUP cannot have FIELDref-s, not can any of possible child GROUPs. Hence GROUP indicates an

instance of the indicated ObjectType.

Example

<RESOURCE>

<GROUP utype="bSTC:SkyCoordinateFrame" ID="_icrs">

 <PARAM name="name" datatype="char" utype="bSTC:SkyCoordinateFrame.name" value="ICRS"/>

 <PARAM name="equnox" datatype="char" utype="bSTC:SkyCoordinateFrame.equinox+bSTC:Equinox"

value="J2000.0"/>

</GROUP>

...

</RESOURCE>

5.5.1.2 GROUP[@utype ⇒ ObjectType & ¬ FIELDref] ∊ TABLE

GROUP as instance on TABLE

¬ FIELDref means that the GROUP has not FIELDref-s directly under it, not in any GROUP

representing an Attribute or Reference. Having no FIELDref, the GROUP represents an instance of the

indicated ObjectType. Some of its child GROUPs may have a FIELDref, but only if they annotate an

ObjectType.

It is allowed for a GROUP representing a Collection to have a FIELDref. In that case the GROUP

represents an instance with ALL the TRs representing objects from the collection. There MUST NOT

be more than 1 GROUP representing a Collection in this manner.

5.5.1.3 GROUP[@utype ⇒ ObjectType & FIELDref] ∊ TABLE

GROUP as annotation

A GROUP defined as child of a TABLE and having at least 1 FIELDref annotates the TRs in the TABLE,

indicating that each row in the table represents at least part of an instance of the indicated

ObjectType.

A child GROUP MAY contain a FIELDref, but only if that child GROUP is annotated to represent a

collection defined on its GROUP. This represents one way of mapping a parent-child composition

relation. The TABLE rows represent instances of the child ObjectType represented by the child

GROUP. The parent GROUP represents the single instance of the container ObjectType.

Example

<TABLE>

<GROUP utype="SAMPL:source/Source">

 <FIELDref ref="_designation" utype="vo-dml:ObjectType.ID"/>

 <GROUP utype="SAMPL:source/Source.position+bSTC:SkyCoordinate">

 <FIELDref ref="_ra" utype="bSTC:SkyCoordinate.longitude"/>

 <FIELDref ref="_dec" utype="bSTC:SkyCoordinate.latitude"/>

 <GROUP ref="_icrs" utype="bSTC:SkyCoordinate.frame"/>

 </GROUP>

...
</GROUP>

<FIELD name="designation" ID="_designation" utype="ivoa_1.0:stdtypes/string">

<DESCRIPTION>source designation formed from sexigesimal coordinates</DESCRIPTION>

</FIELD>

<FIELD name="ra" ID="_ra" unit="deg">

<DESCRIPTION>right ascension (J2000 decimal deg)</DESCRIPTION>

</FIELD>

<FIELD name="dec" ID="_dec" unit="deg">

<DESCRIPTION>declination (J2000 decimal deg)</DESCRIPTION>

</FIELD>

...

5.6 vo-dml:ObjectType.ID and vo-dml:Identifier
It is assumed that objects (i.e. instances of an ObjectType) have an implicitly defined attribute that

identifies instances uniquely; we will refer to this attribute as the ID. This attribute may be required

for a serialization of an object, but is not modeled explicitly in VO-DML models. The reason is that it

often depends on the particular physical representation of model instances how the ID is

represented. For example a relational database might use one or more INTEGER or BIGINT columns

in the table storing the instance, whereas an XML document might have an ID attribute, or a URI. In

fact different serializations of the same object may use different ways to represent the ID.

Hence an instance of an ID can generally be serialized to one or more columns in a TABLE, or to one

or more PARAMs in a GROUP or even some combination of the two. The ID may therefore be

represented by a single FIELDref or PARAM or PARAMref in the annotating GROUP, or possibly a child

GROUP representing an ID with structure. Whatever the choice, an annotation must be provided that

indicates the role of the element in the definition of the object serialization.

We may want to use the same logic as we apply for all such annotations, i.e. a utype MUST point to

an explicitly defined model. To be able to do so we have created a special data model called VO-DML.

This model is located in https://volute.googlecode.com/svn/trunk/projects/dm/vo-dml/models/vo-

dml/VO-DML.vo-dml.xml5, has prefix "vo-dml" and is discussed further in 2.3.

We propose that the utype "vo-dml:ObjectType.ID" is used to annotate an attribute on an

ObjectType that holds on to the ID. It's type is defined as "vo-dml:Identifier". This is a type that

contains an array of strings named "field". Since it is a datatype, in the current proposal an ID

attribute should be mapped to a GROUP. The special role that the VO-DML model plays in this

proposal might be used to make simplifying annotations. For example the majority of all cases will be

where a single field is used to hold the identifier. Hence a GROUP, as is otherwise mandated for

DataType mappings, might seem cumbersome. Below we assume any FIELDref, PARAM(ref) or child

GROUP might be annotated to be an ID. But there must be only one such annotated child element.

This is TBD.

5.6.1 FIELDref[@utype ⇒ ID] ∊ GROUP[@utype ⇒ ⟨ObjectType⟩]

The GROUP representing the ObjectType has an ID consisting of a single FIELD. Each row in the TABLE

has an instance identified by that FIELD.

5.6.2 PARAM[@utype ⇒ ID] ∊ GROUP[@utype ⇒ ⟨ObjectType⟩ & ¬ FIELDref]

A GROUP representing an ObjectType has a single PARAM to identify it. Parent GROUP SHOULD NOT

be contained in TABLE, or have no FIELDref. Otherwise it would indicate multiple rows all with same

ID, which would be odd. To be worked out (might this be used as a way to indicate replication of a

parent object type in a table containing a complete collection? I'd say this should be modeled

differently, using a CONTAINER annotation.) TBD

5.6.3 GROUP [@utype ⇒ ID] ∊ GROUP[@utype ⇒ ⟨ObjectType⟩]

GROUP represents a struct as ID. Containing objects can only be FIELDref, PARAMref and or PARAM.

Order and data type of these is important as references must replicate structure.

5.7 Reference
A Reference is a relation between a structured type (the “referrer”, an ObjectType or DataType) and

an ObjectType, the “target object”, or “referenced object”. The reference is a property of the referrer

and the target object can be referenced by many referrers. The GROUP representing the referrer

should hold on to an element representing the reference. The minimum requirement on this element

MUST allow one to identify the target object.

In general one cannot assume that the target object can be found in the same element that contains

the referrer. For example a standard Object Relational mapping will store both referrer and target

objects in tables that will generally be different (unless referrer and target happen to have the same

type). The referrer table will have a “foreign key” consisting of one or more columns that correspond

to primary key columns in the target table. This kind of representation could be used in VOTable as

5 This model still depends for its PrimitiveType on the IVOA_Profile model in
https://volute.googlecode.com/svn/trunk/projects/dm/vo-dml/models/profile/IVOA_Profile.vo-dml.xml. We
might decide to merge the two into a VO-DML Profile or so. That model would have to be part of a spec and be
separately maintained.

https://volute.googlecode.com/svn/trunk/projects/dm/vo-dml/models/vo-dml/VO-DML.vo-dml.xml
https://volute.googlecode.com/svn/trunk/projects/dm/vo-dml/models/vo-dml/VO-DML.vo-dml.xml
https://volute.googlecode.com/svn/trunk/projects/dm/vo-dml/models/profile/IVOA_Profile.vo-dml.xml

well6; both referrer and target objects may be stored in TABLEs. This context requires that the

mapping of the target objects includes an explicit mapping for their identifier. And the reference

element must have a structure replicating the structure of that identifier.

This is the case where both referrer and target are indirectly represented by GROUP. Either or both

may also be directly represented by a GROUP, which may offer different ways to represent the

reference. An even more perverse possibility is that the target object is serialized in a different

database or document altogether. For example one may wish to refer to a coordinate system

formally defined in a document somewhere else, possibly officially registered in an IVOA registry.

This object may be identifiable through some IVO identifier, and maybe our serialization can make

use of this and not have to contain its own serialization of this reference data.

All in all we need to deal with the cases described in the following sections.

1. Both referrer and target directly represented by a GROUP.

2. Referrer directly in GROUP, refers to object indirectly represented by GROUP annotating TABLE.

Referrer GROUP must be able to identify a row in the TABLE. The TABLE in which to look for the

object MUST be annotated by a GROUP representing a type compatible with the type of the

Reference. For it to be possible to identify the TR in the TABLE that stores the actual target

object, the GROUP annotating the TABLE must define an ID. This may be through a single

FIELDref, or possibly through a GROUP with multiple FIELDref-s in case the ID is structured. The

referring GROUP MUST map the reference to a GROUP have a copy of this ID with values set. For

each FIELDref there must be a PARAM referring (through its @ref) to the same FIELD as the ID’s

FIELDref and with @value set to the value in the TR. Since there is only a single referrer object

here, it SHOULD be possible to indicate in which TABLE the target object resides, indeed which

GROUP represents it. This again should be done using a “GROUPref”.

3. Object in TR refers to object in GROUP.

The object in the TR can in general only use TDs to refer to an object elsewhere. Hence an object

in a GROUP will have to define an ID with its PARAMs. If there is a single referenced object, the

4. Object in TR refers to object in TR

5. Object in GROUP to external object not in document.

6. Object in TR to external object not in document.

In the titles of the sections below the target representation is located on the right of an 

5.7.1 GROUP[@utype ⇒ Reference & @ref]

∊ GROUP[@utype ⇒ ⟨ObjectType | DataType⟩ & ¬ FIELDref]

 GROUP[@utype ⇒ ⟨ObjectType⟩ & @id & ¬ FIELDref]

The title indicates that a GROUP inside of a GROUP representing a structured type directly

(¬FIELDref) represents a reference to another GROUP that also represents an object directly, either

as a type or as a role (must be a collection element).

We have to assume that each referenced object has an identifier and each referrer must somehow

have a copy of that identifier. As the definition of identifiers is not exactly prescribed, neither can we

prescribe the form that the reference will take.

6 See old note by Louys and Bonnarel, http://www.ivoa.net/Documents/Notes/DMVOTSer/ModelVOTSer-
20040522.pdf

http://www.ivoa.net/Documents/Notes/DMVOTSer/ModelVOTSer-20040522.pdf
http://www.ivoa.net/Documents/Notes/DMVOTSer/ModelVOTSer-20040522.pdf

Restrictions

 GROUP identified by @ref MUST represent an ObjectType compatible with the data type of

the Reference, i.e. either the same type of some of its subtypes.

Example

<GROUP utype="SAMPL:source/PhotometryFilter" ID="_2massJ">

 <PARAM name="name" datatype="char" utype="SAMPL:source/PhotometryFilter.name"

value="2mass:J"/>

</GROUP>

...

 <GROUP utype="SAMPL:source/Source.luminosity;SAMPL:source/LuminosityMeasurement">

 <FIELDref ref="_magJ" utype="SAMPL:source/LuminosityMeasurement.value"/>

 <FIELDref ref="_errJ" utype="SAMPL:source/LuminosityMeasurement.error"/>

 <GROUP ref="_2massJ" utype="SAMPL:source/LuminosityMeasurement.filter"/>

 </GROUP>

...

5.7.2 GROUP[@utype ⇒ Reference + ‘vo-dml:Identifier’]

∊ GROUP[@utype ⇒ ⟨ObjectType | DataType⟩ & ¬ FIELDref]

 GROUP[@utype ⇒ ⟨ObjectType⟩ & FIELDref & ID] ∊ TABLE

The title indicates an ObjectType or DataType instance directly represented by a GROUP (¬FIELDref)

that contains a GROUP whose @utype is a concatenation of a utype identifying a Reference with the

utype identifying the VO-DML ID concept, ‘vo-dml:ObjectType.ID’ (see 5.6). This indicates the GROUP

represents a reference that identifies its target object using a copy of the identifier of that object.

This is equivalent to the way foreign keys are used in the relational model to make links between

rows in tables.

5.7.3 GROUP[@utype ⇒ Reference + ‘vo-dml:Identifier']

∊ GROUP[@utype ⇒ ⟨ObjectType | DataType⟩ & FIELDref]

 GROUP[@utype ⇒ ⟨ObjectType⟩ & ¬FIELDref & ID]

TBD

5.7.4 GROUP[@utype ⇒ Reference + ‘vo-dml:Identifier’]

∊ GROUP[@utype ⇒ ⟨ObjectType | DataType⟩ & FIELDref]

 GROUP[@utype ⇒ ⟨ObjectType⟩ & FIELDref & ID]

TBD

5.8 Collection
A collection is a composition relation between a parent ObjectType and a child, or part, ObjectType.

For the same reasons as discussed for reference mapping, the fact that objects can be stored in

different ways implies many different ways in which the relation may need to be expressed.

In XML serializations of a data model (such as used in VO-URP and the Simulation Data Model) one

may choose to have the contained objects serialized inside the serialization of the parent. It is

possible to do so in VOTable as well using child GROUP-s representing a complete child object

embedded in the GROUP representing the parent object. This is natural for this relationship because

a collection element is really to be considered as a part of the parent object.

This may be used to represent flattening of the parent-child relation. One or more child objects may

be stored together with the parent object in the same row in a TABLE. Such a case is actually very

common, for example when interpreting tables in typical source catalogues. These generally contain

information of a source together with one or more magnitudes. The latter can be seen as elements

form a collection of photometry points contained by the sources.

Hence a GROUP inside another GROUP MAY represent a collection. It can do so in different modes

that are described in the following subsections.

Restriction

 The parent GROUP must represent an ObjectType that can contain the Collection.

See also the treatment of the Container reference in section 5.8.3.

5.8.1 GROUP [@utype ⇒ Collection+ObjectType]

∊ GROUP[@utype ⇒ ⟨ObjectType⟩]

Contained group represents an object of the indicated ObjectType that is an element of the indicated

Collection. The GROUP MUST be contained inside of a GROUP that represents an ObjectType and is a

valid Container of the Collection.

In this case the child GROUP represents a single object form the collection, not the collection as a

whole. This can occur when annotating what is often called a flattened representation. One or more

(must be a fixed number!) of elements of a collection are added to the container object and

represented in the same TR in a TABLE.

Restriction

 The @utype MUST be a concatenation of the identifying utypes of both the Collection and

the actual ObjectType.

 …

Example

<TABLE>

<GROUP utype="SAMPL:source/Source">

 <FIELDref ref="_designation" utype="SAMPL:source/Source.name"/>

 <GROUP utype="SAMPL:source/Source.position;bSTC:SkyCoordinate">

 <FIELDref ref="_ra" utype="bSTC:SkyCoordinate.longitude"/>

 <FIELDref ref="_dec" utype="bSTC:SkyCoordinate.latitude"/>

 <GROUP ref="_icrs" utype="bSTC:SkyCoordinate.frame"/>

 </GROUP>

 <GROUP utype="SAMPL:source/Source.luminosity;SAMPL:source/LuminosityMeasurement">

 <FIELDref ref="_magJ" utype="SAMPL:source/LuminosityMeasurement.value"/>

 <FIELDref ref="_errJ" utype="SAMPL:source/LuminosityMeasurement.error"/>

 <GROUP ref="2massJ" utype="SAMPL:source/LuminosityMeasurement.filter"/>

 </GROUP>

 <GROUP utype="SAMPL:source/Source.luminosity;SAMPL:source/LuminosityMeasurement">

 <FIELDref ref="_magK" utype="SAMPL:source/LuminosityMeasurement.value"/>

 <FIELDref ref="_errK" utype="SAMPL:source/LuminosityMeasurement.error"/>

 <GROUP ref="2massK" utype="SAMPL:source/LuminosityMeasurement.filter"/>

 </GROUP>

 <GROUP utype="SAMPL:source/Source.luminosity;SAMPL:source/LuminosityMeasurement">

 <FIELDref ref="_magH" utype="SAMPL:source/LuminosityMeasurement.value"/>

 <FIELDref ref="_errH" utype="SAMPL:source/LuminosityMeasurement.error"/>

 <GROUP ref="2massH" utype="SAMPL:source/LuminosityMeasurement.filter"/>

 </GROUP>

</GROUP>

<FIELD name="designation" ID="_designation" utype="ivoa_1.0:stdtypes/string">

<DESCRIPTION>source designation formed from sexigesimal coordinates</DESCRIPTION>

</FIELD>

<FIELD name="ra" ID="_ra" unit="deg">

<DESCRIPTION>right ascension (J2000 decimal deg)</DESCRIPTION>

</FIELD>

<FIELD name="dec" ID="_dec" unit="deg">

<DESCRIPTION>declination (J2000 decimal deg)</DESCRIPTION>

</FIELD>

5.8.2 GROUP [@utype ⇒ Collection & @ref]

∊ GROUP[@utype ⇒ ⟨ObjectType⟩]

If a child GROUP identifies a Collection, but not also an ObjectType, and it has a @ref identifying a

GROUP elsewhere in the document, this should be interpreted as an indication that the referenced

GROUP elsewhere in the document represents all or part of the identified Collection. This may be

indirectly through a TABLE, in which case it might represent multiple objects [TBD need Container

pointer?], or it may be a single element identified by this “GROUPref”.

During a “standard” object-relational mapping procedure, parent objects and the elements in a

collection are generally mapped to different tables, with the child table having a pointer (foreign key

in relational database) to the parent object. This can be handled by VOTable, which also provides the

possibility for the parent object to be stored in a single GROUP (see).

In either case the child GROUP does not represent an element, but is a true pointer to a GROUP that

annotates the TABLE that stores the collection objects. Actually, it may need to have multiple

pointers, in case the collection is divided over multiple TABLEs. Each individual pointer to a GROUP

must act as a kind of GROUPref. Since such an element does not exist we propose the following

solution.

 The child GROUP representing the collection MUST have as @utype the utype of the

Collection, not concatenated with another utype.

 The child GROUP MUST contain one PARAM for each TABLE storing (part of) the collection.

This PARAM MUST have a @ref identifying the @id of the GROUP wrapping the TABLE.

 That referenced GROUP MUST represent a type compatible with the declared type of the

collection.

 IF the parent object is stored in a TR (i.e. the parent GROUP wraps a TABLE), the child table

MUST have a Container reference (see 5.8.3) to identify the parent instance.

 TBD how about parent in GROUP?

5.8.3 GROUP[@utype ⇒ Container+ID]

∊ GROUP[@utype ⇒ ⟨ObjectType ⟩]

Container is a special reference to remote object. But can only occur in ObjectType and container

cannot be embedded. From the Container utype the possible type of the Container can be inferred.

5.9 Extends, inheritance
Object-relational mapping generally requires one to choose some approach to mapping inheritance

hierarchies. One standard approach is to store a class distributed over multiple tables, linked using

foreign keys. Each table stores the attributes etc. defined on one class in the hierarchy. To build a

complete instance of the subclass requires one to join its contents to the contents of a table storing

attributes etc. defined on its base class and so on. In VOTable one may encounter a similar mapping.

The serialization (and annotation) of such a case requires a mapping of the “extends” relationship

between subclass and base class.

An alternative mapping is to have one table per hierarchy, which then will store instances of different

types. When using this in OR-mapping often a special column is used that identifies the type stored in

a certain row. Note that such a column is also often added to the table representing the root base

class of the inheritance mapping above.

Finally (?) one may have separate tables for each concrete class in the hierarchy, containing columns

for all the attributes etc. from its base classes.

All of these different possibilities to store objects form a common inheritance tree furthermore

complicates the treatment of polymorphism in references. If a reference is defined whose data type

is a type that has subclasses, to find the target instances may require looking through more than one

target table.

TBD i.e. it's quite a mess.

5.9.1 GROUP[@utype ⇒ Extends+ID]

∊ GROUP[@utype ⇒ ⟨ObjectType ⟩]

...

TBC

6 Notable absences
The VOTable schema allows for redundancy in meta-data assignment. For example it allows assigning

a ucd or utype to FIELDref-s, but also to the FIELD it references. How is one to interpret or use this?

Our approach is at least for the use of utype attribute, to try to avoid this redundancy.

The design laid out in the previous subsections focuses utype assignments on the GROUP element

and it components. The main reason is that in all but the most simplistic use cases we will not be able

to void the use of GROUPs, and that at the same time they provide all functionality (and more) that

TABLE and FIELD could provide. Choosing this approach implies client coders do not need to take the

possibly conflicting assignments into account, they only need consider GROUPs.

Here we list a few possible assignments that we try to avoid, though they might seem valid.

TBD what more can we remove from section 5? FIELD annotation? All notation directly to

PrimitiveType or Enumeration?

6.1 TABLE[@utype ⇒ ObjectType]
There might be some cases where a TABLE could be said to represent a structured type completely,

and where the TABLE’s @utype attribute could make that identification. However in probably most

cases only part of the TABLE will correspond to the type, or multiple types will be stored inside a

single row (see for example). In all of these cases one can (and MUST) use one or more GROUP

elements contained by the TABLE to make the precise assignment. The extra cost of also doing so for

TABLE-s where in principle the assignment could be made directly is minor. Client code only has to

deal with GROUP-s, not also inspect the TABLE.

6.2 FIELD[@utype ⇒ Attribute] ∊ TABLE [@utype ⇒ ObjectType]
This assignment would only make sense inside of bigger context, which would have to be the TABLE

here. But as we propose not to use TABLE to represent a DM element directly, consequently FIELD

cannot be an attribute. We use FIELDref for that.

6.3 PARAM [@utype ⇒ Attribute] ∊ TABLE [@utype ⇒ ObjectType]
For the same reason that makes us avoid the assignment of Attribute to FIELD, we avoid assigning an

attribute to a PARAM that is contained in a TABLE. The context (TABLE) is not used to indicate the

type containing the Attribute. For this element a PARAMref inside a GROUP is to be used.

7 Utype: identifier or path expression?
Opposition has been raised against the explicit mapping of all structured types to GROUP elements
with utype either the type, or the role(+type) the type plays in the definition of a parent GROUP.
Some of the objections are that

1. It does not conform to existing usage.
2. It is complex and harder to parse using simple string matching tools such as SED

3. It cannot be applied to TAP_SCHEMA or in FITS files
4. ...

Another argument against the proposal could be that in particular attributes with a structured data

type might not need such a hierarchy, which, depending on data model, might be deep indeed (see

some STC examples). Instead if utypes had a formally defined path like structure, then from the

structure, the hierarchical grouping of attributes belonging together might be inferred.

Existing utypes lists such as STC and Characterization seem to have taken this approach as some

examples from the usages document show:

 stc:AstroCoords.Position2D.Value2.C1

 stc:AstroCoordSystem.SpaceFrame.CoordRefFrame.Equinox

 Char.SpatialAxis.Coverage.Location.Value

Some examples used in Aladin even go further towards an XPath-like syntax

 stc:AstroCoordArea/Region/reg:Sector/Center[1]

 ivoa:Characterization[ucd=pos]/Coverage/Bounds/min

The usages document7 goes into more detail.

The proposal to use paths has not been developed (yet) as far as the proposal laid out in the sections

above, in fact there is not a single proposal. In the current section, and as agreed in UTYPEs tiger

team telecom 2013-03-26, we discuss each in more detail in section 7.2 below. First we present some

thoughts on how one might derive paths form a VO-DML data model.

7.1 Deriving paths from VO-DML
The ant task run_vo-dml2paths-xml in the vo-dml build script8 allows one to generate an XML file

containing all possible paths one might wish to derive from a specified VO-DML data model. The XML

file consists of elements of the following type:

<path expression="phot:PogsonZeroPoint.flux.unit">
 <path-element type="Model" utype="phot">
 <path-element type="ObjectType" utype="phot:PogsonZeroPoint">
 <path-element type="Attribute" utype="phot:ZeroPoint.flux">
 <path-element type="Attribute" utype="phot:PhysicalQuantity.unit" />
 </path-element>
 </path-element>
 </path-element>
</path>

A <path> element defines a path. It has a @expression attribute that gives the path expression. It

contains nested <path- element>s that explicitly define the meaning of the path expressions. Each

element in the path identifies the VO-DML element it represents. Its @type attribute indicates the

VO-DML meta-model element type; the @utype element identifies precisely which element it is.

The path expressions are generated to comply with the following grammar, which is a slightly altered

version of the UTYPEs grammar originally proposed in SimDM9 section 4.1. In particular the extends-

utype is added and the separator between model and suffix is a ":" only:

utype := [model-utype | package-utype | class-utype |

attribute-utype | collection-utype |

reference-utype | container-utype | extends-utype |

identifier-utype]

model-utype := <model-utype>

package-utype := model-utype “:” package-hierarchy

package-hierarchy := <package-name> “/” [<package-name> “/”]*

class-utype := package-utype “” <class-name>

attribute-utype := class-utype “.” attribute

attribute := [primitive-attr | struct-attr]

primitive-attr := <attribute-name>

struct-attr := <attribute-name> “.” attribute

collection-utype := class-utype “.” <collection-name>

reference-utype := class-utype “.” <reference-name>

container-utype := class-utype “.” “CONTAINER”

extends-utype := class-utype “.” “EXTENDS”

identifier-utype := class-utype “.” “ID”

This grammar is also used to define the structure of utypes generated by the XSLT pipeline for a VO-

DML model. Note that class-utype is used for both ObjectTypes and DataTypes.

7 https://volute.googlecode.com/svn/trunk/projects/utypes/current-usage/utypes-usage.html
8 https://volute.googlecode.com/svn/trunk/projects/dm/vo-dml/build.xml
9 http://www.ivoa.net/Documents/SimDM/20120503/REC-SimulationDataModel-1.00-20120503.pdf

In boldface are indicated those aspects of the grammar that support the path like expressions one

would need if one does not wish to use a GROUP hierarchy. When an attribute is a structured-

attribute, i.e. when its datatype is a DataType, the expansion can continue into the datatype and its

attributes can be appended.

Of course, this is only a grammar. We need some more rules. Those we'll illustrate based on the Toy

model in Figure 7

Figure 7 Toy model used to illustrate path generation.

7.1.1 Utype identifiers in VO-DML

Every (referencable) element in a VO-DML document has a utype identifier. When generating a value

for this we start with the name of the element (or CONTAINER or EXTENDS) and walk up the

hierarchy of elements, adding the name plus separator of the parent element recursively until the

<model> element is reached.

Hence an imaginary configuration like the following,

<vo-dml:model><name>TOY</name>

...

 <package><name>abc</name>

 ...

 <objectType><name>C</name>

 ...

 <attribute><name>c1</name>

 ...

would lead to a utype TOY:abc/C.c1 for the attribute. Note, that these utype identifiers are also path

expressions, but constrained. Only defined elements get utypes, and paths only follow explicit

hierarchies. For the Toy model, the following table shows all utype identifiers generated this way:

TOY
TOY:abc/

TOY:abc/B
TOY:abc/B.b1

TOY:abc/A
TOY:abc/A.a1
TOY:abc/A.a2
TOY:abc/A.aB
TOY:abc/A.c
TOY:abc/A1
TOY:abc/A1.EXTENDS
TOY:abc/A1.a11
TOY:abc/A1.a12
TOY:abc/A2
TOY:abc/A2.EXTENDS
TOY:abc/A2.a21

TOY:abc/C
TOY:abc/C.CONTAINER
TOY:abc/C.c1
TOY:abc/DT
TOY:abc/DT.x
TOY:abc/DT1
TOY:abc/DT1.EXTENDS
TOY:abc/DT1.y
TOY:abc/DT1.foo
TOY:abc/DT2
TOY:abc/DT2.EXTENDS
TOY:abc/DT2.z
TOY:abc/DT2.foo

Figure 8 Table with utype identifiers generated for the Toy model

These rules are relaxed in the generic paths described next.

7.1.2 Generic path expressions

Here we follow a different set of rules, which one could characterize as walking in the opposite

direction from the previous case. We always start at a structured type, either an ObjectType or a

DataType. Paths identifying these are generated the same as in the previous section, i.e. model, zero

or more packages and the type name itself.

Paths for attributes and so on are generated downwards. Paths are created for any role that is

"available on"10 the type. In particular this includes attributes, references etc inherited from a base

class. Furthermore, if an attribute has a datatype that has subtypes, polymorphism indicates that any

of the subtypes may be used to set the value of the attribute. Hence paths are also followed down all

subclasses in such a case. In the Toy model this occurs for the attribute a2 defined on a. Its datatype

is DT, which has subclasses DT1 and DT2, each with their own attributes. Note that this actually

causes a problem for the current mechanism. It is legal for both DT1 and DT2 to define an attribute

with the same name, here 'foo'. This will now lead to identical paths, indicated in common colors in

the table below.

The following table lists all paths generated for the Toy model. Paths formatted in boldface

correspond to an exact/pure utype identifier. All others are derived path expressions.

TOY
TOY:abc/
TOY:abc/A
TOY:abc/A.a1
TOY:abc/A.a2
TOY:abc/A.a2.x
TOY:abc/A.a2.x
TOY:abc/A.a2.z
TOY:abc/A.a2.foo
TOY:abc/A.a2.x
TOY:abc/A.a2.y
TOY:abc/A.a2.foo
TOY:abc/A.aB
TOY:abc/A.c
TOY:abc/A1
TOY:abc/A1.EXTENDS

TOY:abc/A2
TOY:abc/A2.EXTENDS
TOY:abc/A2.a1
TOY:abc/A2.a2
TOY:abc/A2.a2.x
TOY:abc/A2.a2.x
TOY:abc/A2.a2.z
TOY:abc/A2.a2.foo
TOY:abc/A2.a2.x
TOY:abc/A2.a2.y
TOY:abc/A2.a2.foo
TOY:abc/A2.a21
TOY:abc/A2.aB
TOY:abc/A2.c
TOY:abc/B
TOY:abc/B.b1

10 As defined in the list of shorthand phrases in the start of section 5.

TOY:abc/A1.a1
TOY:abc/A1.a2
TOY:abc/A1.a2.x
TOY:abc/A1.a2.x
TOY:abc/A1.a2.z
TOY:abc/A1.a2.foo
TOY:abc/A1.a2.x
TOY:abc/A1.a2.y
TOY:abc/A1.a2.foo
TOY:abc/A1.a11
TOY:abc/A1.a11.x
TOY:abc/A1.a11.y
TOY:abc/A1.a11.foo
TOY:abc/A1.a12
TOY:abc/A1.aB
TOY:abc/A1.c

TOY:abc/C
TOY:abc/C.CONTAINER
TOY:abc/C.c1
TOY:abc/DT
TOY:abc/DT.x
TOY:abc/DT1
TOY:abc/DT1.EXTENDS
TOY:abc/DT1.x
TOY:abc/DT1.y
TOY:abc/DT1.foo
TOY:abc/DT2
TOY:abc/DT2.EXTENDS
TOY:abc/DT2.x
TOY:abc/DT2.z
TOY:abc/DT2.foo

Figure 9 Table with path expressions generated for the Toy model

7.2 3 solutions
The discussion between the solution proposed here, sometimes called the "pure utypes" approach,

and one using more traditional path-like expressions has been hampered by the fact that no

complete solution for the latter has been proposed. Here we make an attempt at remedying this.

First we observe that there is no single proposal for how to approach an alternative, in the telecom

at 2013-03-26 at least three different ones were identified. We list these here.

7.2.1 Paths iso GROUP-s for structured attributes.

The first proposal is mainly supported by Markus. ObjectType-s will still be represented by GROUPs,

and so will collections (references will have to be dealt with yet). The main change is that one would

not use child GROUPs for structured attributes. Instead its aim is to flatten these out, and annotate

the resulting set of atomic "leaf" components (FIELDrefs, PARAMs and PARAMrefs) with the paths as

defined in 7.1.2.

These paths are supposed to be parsable, i.e. not opaque strings. The reason for this is that with

opaque strings one needs a pre-existing list form which one can infer the meaning. Unless this list

can be kept short, it is better to be able to parse them.

The advantage of this approach is that one can use these annotations in cases where GROUP-like

context is not available. The most extreme example of this is a part of the RegTAP solution where a

part of the registry data model is flattened into a list of keyword-value pairs. If the keywords are to

be represented by utypes, the pure utypes may not give sufficient information. [TBD Investigate

possible relevance of <<skosconcept>> in VO-DML for this problem.]

7.2.2 Paths (formal and custom) as aliases for "pure utypes"

Second there is a proposal by Jesus. He wishes to allow data model designers to add a list of explicitly

defined custom utypes to the model and define their meaning in terms of paths in the model. I.e.

the meaning does not come from parsing the string, but from an explicit definition. These custom

utypes are to be interpreted as aliases utypes, representing pure utypes when those are used inside

a particular path context. The GROUP based approach is still assumed [TBD], but at leaf nodes, on

FIELDrefs etc, one is allowed to use an alias utype rather than a pure one. Supposedly one wants to

insist on consistency of annotation. I.e. the path represented by the alias utype must be consisted

with the GROUP hierarchy it is used in. [TBD Jesus hinted that maybe these alias utypes could be

used on their own as well, i.e. outside of containing GROUPs. If so more work is to be done

The main advantage of this approach is the possibility for backwards compatibility. If we still want to

support existing utype lists, the only thing added would be an interpretation of these as aliases of

properly defined path expressions [TBD in a VO-DML model that may still have to be written].

Another advantage of this might be that one could use these aliases also in FITS keywords or

TAP_SCHEMA.Columns.utype annotations.

7.2.3 Paths as complementary annotation on FIELDs and standalone PARAMs only

The third approach was proposed by Mireille, and apparently earlier also by Omar. It allows path-like

expressions for utype attributes, but only on FIELDs and PARAMs outside GROUPs. I.e. precisely on

those atomic elements that in the current proposal are not used. The proposal allows both the

GROUP-based annotation with pure utypes, as well as the more traditional utypes. But the latter are

only used on these atomic fields. They are not used in the GROUP based annotation.

These path-like utypes would be opaque as in case 2 above. I.e. a list of allowed utype-s must be

given along with the data model and defined as path expressions [TBD is this correct, or would/could

they be parsable?]

Main issues are: undesirability of two separate approaches and decision on which of two, or both,

are mandatory.

 Some possible generalizations:

 Cases 2 and 3: It need not be up to the data model designers to define the set of aliases. Also

DAL protocols might define their own list.

 ..

7.2.4 Paths as "pure utypes" of Views

A fourth proposal that falls in this same area has been proposed independently in various forms by

GL, also Omar, and Pierre. It hinges on a (possible) capability to define derived data models form a

main one. The derived model would generally be simpler in structure than the original to which it is

still explicitly linked. Annotations could now follow the "pure utypes" approach, but with target these

simpler models. Those will have their own annotation, but as utypes are opaque, existing, "legacy"

utype values could be used to identify some of the elements. In fact, it may be possible to interpret

some of these lists as providing a simplified model. Also the STC in VOTable proposal may be seen in

these terms.

Main issue here is to define a language for linking derived to original model. GL has pointed to OQL,

but that goes too far at the current stage. In fact one could argue that a VOTable annotated using the

pure utype GROUP approach, could be seen as such a model. [TBD]

Advantage is that protocols could define these derived models formally and link them to the original.

Can we interpret the original SSA+SpectrumDM like such a combination?

7.3 Discussion
NB Points below are mainly directed at proposal 7.2.1 above.

Possible arguments against the use of paths as defined in 7.1.2 for annotating VOTables might be:

1. Structure of data model only implicitly expressed, by path expressions based on a non-

existing serialization. But see counter argument in point 4 below.

2. Harder to code against: a tool that wishes to use the data model structure to

analyse/interpret a VOTable is most naturally coded in a language that easily expresses the

data model, say Java or some other OO language. These naturally map attributes with

structured types to fields with class representing the type. Such a class can easily be coded to

expect a GROUP with structural components based on the definition of the type alone, NOT

of some containing type. So a model importing STC, could also use an STC interpretation

library as part of its own, does not need to write new code. Also, the interpreter only needs

to see a GROUP, interpret its utype to decide whom to pass it on to. Does not first need to

inspect all attribute, group some together to then pass it off to a component that does the

same work anyway.

3. XPath expressions for inferring DM instances can be easily written against a hierarchy as well.

Even easier, as the natural XML structure is more easily queried. Simply search for

appropriate GROUPs.

NOTE here it would have been better had UTYPE-s been element-s rather than attributes.

These could have been given more structure that now must be encoded in @uype syntax.

4. Some Utype-s will only be defined implicitly. The data model itself will NOT contain an

expression indicating explicitly the “attribute-of-attribute”. Hence it cannot be looked up. It

could be derived, but that is unnatural and breaks OO paradigm. Hence path UTYPEs MUST

be parsed.

Counter: can derive all valid paths from VO-DML as shown in various use cases. DM designers

might choose a subset of these that are valid.

5. GROUPs MUST be supported anyway for collections, 0..* attributes, references. Also, for

custom serializations such as those resulting from queries, the utype-s of columns in TABLE

may not be unique, hence a context (through GROUPs) is required to combine those columns

that belong together. So coders must be able to deal with GROUP hierarchies anyway. Even

in the most natural case: mapping a catalogue such as SDSS’s PhotoObjAll, to the sample

Source model.

6. Fact that FITS does not support GROUP-ing should not hold us back. FITS files SHOULD be

wrapped by VOTable anyway in any VO context. [TBD DataLink?]. Its own metadata fields

SHOULD NOT be used for this kind of annotation. We cannot be kept back in the

expressiveness of our metadata by ancient formats as long as we already support wrapping

FITS files anyway.

And see point 5. GROUPs should be supported for other parts of the mapping, so a solution

must be found anyway. That same solution can be applied to structured attributes.

7. Fact that TAP_SCHEMA does not support GROUPs should not be a problem either. Most

obvious solution is to extend the TAP_SCHEMA. Alternative is to provide TAP_SCHEMA with a

VOTable annotation similar to FITS. Each TAP service SHOULD be able to give a VOTable with

TABLE definitions for each table in the database. There everything is available. Alternatively

this could be added to VODataService or whatever other metadata format is desired. Note

that querying a hierarchical data structure in tables is not supported naturally as it requires

recursive queries. Since common table expressions are not part of ADQL this might be

difficult. However see 8.1 for a possible schema extension that makes it still quite easy to

find all groups in a table.

And see point 5. GROUPs should be supported for other parts of the mapping, so a solution

must be found anyway. That same solution can be applied to structured attributes.

8. Formally there should not be existing usage, as there is no spec dealing with utypes. That

spec is what we’re trying to define and existing usage may indeed have to be re-

implemented. Hopefully we can find a more friendly solution. In particular the fact that in the

solution proposed here utype-s do not have a prescribed syntax (apart from prefix-> model

and possible concatenation), may allow some existing utypes to be interpreted as identifiers

into a model in the prescribed way. Particularly since the models do not have a VO-DML

representation that might be possible. One way might be to provide the utype-s list in these

models a translation in terms of a GROUP structure.

Note that this is only necessary for legacy implementations that should formally not have

been there yet. SO another way to deal with existing utype-s lists is that utypes have to be

interpreted in the context of the model that must be provided. IF the model (maybe extra

meta-data field) does not have a VO-DML representation, in any case all spec is off. Special

code only needs to be written against those models explicitly. We do not have to take them

into account in the spec. A migration path exists to re-express all models in terms of VO-DML

after which VOTables using these new versions of the model can also start using the formal

version of the utype mapping spec.

9. ...

TBD

8 Notes, issues, questions, comments
Serializing data models after a transformation contains many possible complications. Some have

been treated above, others still need discussions. Here are a few:

 Same VOTable component may be annotated in multiple ways. For example a “name”
column (FIELD) can be given a utype of an Attribute, as well as of the ID of its ObjectType.

(See example TBD). How shall we do that? Using multiple FIELDref-s, or using a
concatenation of utype-s?

 Single attribute could be represented in multiple ways in the same serialization, say position

in multiple coordinate systems, or in degrees and HMS.

 Some serialization (to VOTable) Map [x y z] to an array?

 @unit: Some data models support the storage of quantities and have an explicit ‘unit’

attribute. The sample data model in

 Can a FIELD have multiple annotations from a GROUP, for example being identified with a

‘name’ attribute and the ID attribute? Maybe only for ID can reuse a given FIELD? See
example of Source. If OK, should there be multiple FIELDref-s or should we add utypes
separated by ‘;’ (not ‘+’)?

 Non-standard models. CAN be easily

8.1 A compromise?
Short report on a discussion between Mireille Louys and GL , 2013-03-26 on a possible compromise:

The main issue with a pure GROUP based approach seems to be that people might wish to look only

for atomic elements, i.e. FIELDs or PARAMs and understand from their annotation what they are.

The current proposal declares that FIELDs and standalone PARAMs (i.e. PARAMs not in a GROUP)

should NOT be annotated with a utype.

So might a compromise be that on FIELDs and standalone PARAMs the utype attribute MAY be used

but MUST (but see below) then have the syntax of a path following the grammar above and

described in 7.1.2?

At the same time, the annotation using GROUPs is also valid, and they and their contents MUST

follow the spec in this document.

One problem with this is that the paths depend on an existing VO-DML representation. What if that

does not exist? One approach is to create a VO-DML representation asap., possibly as an addendum

to the main model. But even so, existing usage of utype-s may not correspond to the approved

syntax for paths in terms of such a model. In that case we could allow a separate file that lists

"custom" utypes and defines them in terms of properly specified path expressions, i.e. they can serve

as a sort of alias. One might even express them in terms of VO-DML directly, as exemplified by the

file https://volute.googlecode.com/svn/trunk/projects/dm/vo-

dml/models/photdm/PhotDM.paths.xml .

Appendix A. VO-DML/XML version of sample model

Here is the Sample model in the XML representation of VO-DML. Note that this model imports two

other models, the IVOA Profile and a simple STC model. Those are not [TBD yet?] replicated here.

Note, this representation is likely out of date soon after updating it in this text. Hence it is better to

to examine the model in

https://volute.googlecode.com/svn/trunk/projects/dm/vo-dml/models/sample/Sample.vo-dml.xml

<?xml version="1.0" encoding="UTF-8"?>

<vo-dml:model xmlns:vo-dml="http://volute.googlecode.com/dm/vo-dml/v0.9">

 <identifier id="eee_1045467100313_135436_1">

 <utype>SAMPL</utype>

 </identifier>

 <name>Sample</name>

 <description>This is a sample data model. It contains the IVOA UML Profile and imports the

IVOA_Profile data model with primitive types.

It has some sample relationships etc to be used in documentation etc.</description>

 <title>Sample VO-DML data model.</title>

 <version>0.x</version>

 <lastModified>2013-02-08T17:03:40</lastModified>

 <import>

 <identifier id="_12_1_1dfa04c4_1360333713314_831168_335">

 <utype>bSTC</utype>

 </identifier>

 <name>basicSTC</name>

https://volute.googlecode.com/svn/trunk/projects/dm/vo-dml/models/photdm/PhotDM.paths.xml
https://volute.googlecode.com/svn/trunk/projects/dm/vo-dml/models/photdm/PhotDM.paths.xml
https://volute.googlecode.com/svn/trunk/projects/dm/vo-dml/models/sample/Sample.vo-dml.xml

 <url>https://volute.googlecode.com/svn/trunk/projects/dm/vo-dml/models/simple-STC/bSTC.vo-

dml.xml</url>

 <documentationURL>https://volute.googlecode.com/svn/trunk/projects/dm/vo-

dml/models/simple-STC/bSTC.html</documentationURL>

 </import>

 <import>

 <identifier id="_12_1_1dfa04c4_1352203901356_512837_228">

 <utype>ivoa_1.0</utype>

 </identifier>

 <name>IVOA_Profile</name>

 <url>http://volute.googlecode.com/svn/trunk/projects/dm/vo-

dml/models/profile/IVOA_Profile.vo-dml.xml</url>

 <documentationURL>http://volute.googlecode.com/svn/trunk/projects/dm/vo-

dml/models/profile/IVOA_Profile.html</documentationURL>

 </import>

 <package>

 <identifier id="_12_1_1dfa04c4_1354861906481_784028_160">

 <utype>SAMPL:source/</utype>

 </identifier>

 <name>source</name>

 <description>

 TODO : Missing description : please, update your UML model asap.

 </description>

 <objectType>

 <identifier id="_12_1_1dfa04c4_1354024794825_962426_779">

 <utype>SAMPL:source/LuminosityMeasurement</utype>

 </identifier>

 <name>LuminosityMeasurement</name>

 <description>

 TODO : Missing description : please, update your UML model asap.

 </description>

 <container>

 <identifier id="_12_1_1dfa04c4_1354024794825_962426_779_CONTAINER">

 <utype>SAMPL:source/LuminosityMeasurement.CONTAINER</utype>

 </identifier>

 <collectionref idref="_12_1_1dfa04c4_1354024798700_361746_809">

 <utyperef>SAMPL:source/Source.luminosity</utyperef>

 </collectionref>

 </container>

 <attribute>

 <identifier id="_12_1_1dfa04c4_1354024679187_898957_712">

 <utype>SAMPL:source/LuminosityMeasurement.value</utype>

 </identifier>

 <name>value</name>

 <description>

 TODO : Missing description : please, update your UML model asap.

 </description>

 <datatype idref="_12_1_1dfa04c4_1352203901371_896288_236">

 <modelUtypeRef>ivoa_1.0</modelUtypeRef>

 <utyperef>ivoa_1.0:stdtypes/real</utyperef>

 </datatype>

 <multiplicity>1</multiplicity>

 </attribute>

 <attribute>

 <identifier id="_12_1_1dfa04c4_1354024689314_287467_716">

 <utype>SAMPL:source/LuminosityMeasurement.error</utype>

 </identifier>

 <name>error</name>

 <description>

 TODO : Missing description : please, update your UML model asap.

 </description>

 <datatype idref="_12_1_1dfa04c4_1352203901371_896288_236">

 <modelUtypeRef>ivoa_1.0</modelUtypeRef>

 <utyperef>ivoa_1.0:stdtypes/real</utyperef>

 </datatype>

 <multiplicity>0..1</multiplicity>

 </attribute>

 <attribute>

 <identifier id="_12_1_1dfa04c4_1354024901425_195936_860">

 <utype>SAMPL:source/LuminosityMeasurement.description</utype>

 </identifier>

 <name>description</name>

 <description>

 TODO : Missing description : please, update your UML model asap.

 </description>

 <datatype idref="_12_1_1dfa04c4_1352203901364_557823_229">

 <modelUtypeRef>ivoa_1.0</modelUtypeRef>

 <utyperef>ivoa_1.0:stdtypes/string</utyperef>

 </datatype>

 <multiplicity>0..1</multiplicity>

 </attribute>

 <attribute>

 <identifier id="_12_1_1dfa04c4_1355248682629_78694_413">

 <utype>SAMPL:source/LuminosityMeasurement.type</utype>

 </identifier>

 <name>type</name>

 <description>

 TODO : Missing description : please, update your UML model asap.

 </description>

 <datatype idref="_12_1_1dfa04c4_1355248550530_805055_254">

 <utyperef>SAMPL:source/LuminosityType</utyperef>

 </datatype>

 <multiplicity>1</multiplicity>

 </attribute>

 <attribute>

 <identifier id="_12_1_1dfa04c4_1360336457973_924434_666">

 <utype>SAMPL:source/LuminosityMeasurement.unnamed1</utype>

 </identifier>

 <name>unnamed1</name>

 <description>

 TODO : Missing description : please, update your UML model asap.

 </description>

 <datatype idref="_12_1_1dfa04c4_1355248550530_805055_254">

 <utyperef>SAMPL:source/LuminosityType</utyperef>

 </datatype>

 <multiplicity>0..1</multiplicity>

 </attribute>

 <reference>

 <identifier id="_12_1_1dfa04c4_1354024794871_921971_802">

 <utype>SAMPL:source/LuminosityMeasurement.filter</utype>

 </identifier>

 <name>filter</name>

 <description>

 TODO : Missing description : please, update your UML model asap.

 </description>

 <datatype idref="_12_1_1dfa04c4_1354024631268_183610_685">

 <utyperef>SAMPL:source/PhotometryFilter</utyperef>

 </datatype>

 <multiplicity>1</multiplicity>

 </reference>

 </objectType>

 <objectType>

 <identifier id="_12_1_1dfa04c4_1354024243598_413443_421">

 <utype>SAMPL:source/Source</utype>

 </identifier>

 <name>Source</name>

 <description>

 TODO : Missing description : please, update your UML model asap.

 </description>_12_1_1dfa04c4_1354024272942_181358_515

 <attribute>

 <identifier id="_12_1_1dfa04c4_1354024272942_181358_515">

 <utype>SAMPL:source/Source.name</utype>

 </identifier>

 <name>name</name>

 <description>

 TODO : Missing description : please, update your UML model asap.

 </description>

 <datatype idref="_12_1_1dfa04c4_1352203901364_557823_229">

 <modelUtypeRef>ivoa_1.0</modelUtypeRef>

 <utyperef>ivoa_1.0:stdtypes/string</utyperef>

 </datatype>

 <multiplicity>1</multiplicity>

 </attribute>

 <attribute>

 <identifier id="_12_1_1dfa04c4_1354024284245_914170_519">

 <utype>SAMPL:source/Source.description</utype>

 </identifier>

 <name>description</name>

 <description>

 TODO : Missing description : please, update your UML model asap.

 </description>

 <datatype idref="_12_1_1dfa04c4_1352203901364_557823_229">

 <modelUtypeRef>ivoa_1.0</modelUtypeRef>

 <utyperef>ivoa_1.0:stdtypes/string</utyperef>

 </datatype>

 <multiplicity>0..1</multiplicity>

 </attribute>

 <attribute>

 <identifier id="_12_1_1dfa04c4_1354024509379_61210_633">

 <utype>SAMPL:source/Source.position</utype>

 </identifier>

 <name>position</name>

 <description>

 TODO : Missing description : please, update your UML model asap.

 </description>

 <datatype idref="_12_1_1dfa04c4_1354024389551_634626_529">

 <modelUtypeRef>bSTC</modelUtypeRef>

 <utyperef>bSTC:SkyCoordinate</utyperef>

 </datatype>

 <multiplicity>1</multiplicity>

 </attribute>

 <attribute>

 <identifier id="_12_1_1dfa04c4_1354971231645_872982_332">

 <utype>SAMPL:source/Source.classification</utype>

 </identifier>

 <name>classification</name>

 <description>

 TODO : Missing description : please, update your UML model asap.

 </description>

 <datatype idref="_12_1_1dfa04c4_1354971184783_199418_302">

 <utyperef>SAMPL:source/SourceClassification</utyperef>

 </datatype>

 <multiplicity>1</multiplicity>

 </attribute>

 <collection>

 <identifier id="_12_1_1dfa04c4_1354024798700_361746_809">

 <utype>SAMPL:source/Source.luminosity</utype>

 </identifier>

 <name>luminosity</name>

 <description>

 TODO : Missing description : please, update your UML model asap.

 </description>

 <datatype idref="_12_1_1dfa04c4_1354024794825_962426_779">

 <utyperef>SAMPL:source/LuminosityMeasurement</utyperef>

 </datatype>

 <multiplicity>0..*</multiplicity>

 </collection>

 </objectType>

 <objectType>

 <identifier id="_12_1_1dfa04c4_1354024631268_183610_685">

 <utype>SAMPL:source/PhotometryFilter</utype>

 </identifier>

 <name>PhotometryFilter</name>

 <description>

 TODO : Missing description : please, update your UML model asap.

 </description>

 <attribute>

 <identifier id="_12_1_1dfa04c4_1354024640339_537847_704">

 <utype>SAMPL:source/PhotometryFilter.name</utype>

 </identifier>

 <name>name</name>

 <description>

 TODO : Missing description : please, update your UML model asap.

 </description>

 <datatype idref="_12_1_1dfa04c4_1352203901364_557823_229">

 <modelUtypeRef>ivoa_1.0</modelUtypeRef>

 <utyperef>ivoa_1.0:stdtypes/string</utyperef>

 </datatype>

 <multiplicity>1</multiplicity>

 </attribute>

 <attribute>

 <identifier id="_12_1_1dfa04c4_1354024652194_944567_708">

 <utype>SAMPL:source/PhotometryFilter.location</utype>

 </identifier>

 <name>location</name>

 <description>

 TODO : Missing description : please, update your UML model asap.

 </description>

 <datatype idref="_12_1_1dfa04c4_1354024536493_847273_638">

 <utyperef>SAMPL:source/Quantity</utyperef>

 </datatype>

 <multiplicity>1</multiplicity>

 </attribute>

 <attribute>

 <identifier id="_12_1_1dfa04c4_1359623493483_897112_274">

 <utype>SAMPL:source/PhotometryFilter.referenceURL</utype>

 </identifier>

 <name>referenceURL</name>

 <description>

 TODO : Missing description : please, update your UML model asap.

 </description>

 <datatype idref="_12_1_1dfa04c4_1352203901371_161532_239">

 <modelUtypeRef>ivoa_1.0</modelUtypeRef>

 <utyperef>ivoa_1.0:stdtypes/anyURI</utyperef>

 </datatype>

 <multiplicity>0..1</multiplicity>

 </attribute>

 </objectType>

 <dataType>

 <identifier id="_12_1_1dfa04c4_1354024536493_847273_638">

 <utype>SAMPL:source/Quantity</utype>

 </identifier>

 <name>Quantity</name>

 <description>

 TODO : Missing description : please, update your UML model asap.

 </description>

 <attribute>

 <identifier id="_12_1_1dfa04c4_1354024546380_605494_656">

 <utype>SAMPL:source/Quantity. value</utype>

 </identifier>

 <name> value</name>

 <description>

 TODO : Missing description : please, update your UML model asap.

 </description>

 <datatype idref="_12_1_1dfa04c4_1352203901371_896288_236">

 <modelUtypeRef>ivoa_1.0</modelUtypeRef>

 <utyperef>ivoa_1.0:stdtypes/real</utyperef>

 </datatype>

 <multiplicity>1</multiplicity>

 </attribute>

 <attribute>

 <identifier id="_12_1_1dfa04c4_1354024559196_962262_660">

 <utype>SAMPL:source/Quantity.unit</utype>

 </identifier>

 <name>unit</name>

 <description>

 TODO : Missing description : please, update your UML model asap.

 </description>

 <datatype idref="_12_1_1dfa04c4_1352203901364_557823_229">

 <modelUtypeRef>ivoa_1.0</modelUtypeRef>

 <utyperef>ivoa_1.0:stdtypes/string</utyperef>

 </datatype>

 <multiplicity>0..1</multiplicity>

 </attribute>

 </dataType>

 <enumeration>

 <identifier id="_12_1_1dfa04c4_1354971184783_199418_302">

 <utype>SAMPL:source/SourceClassification</utype>

 </identifier>

 <name>SourceClassification</name>

 <description>

 TODO : Missing description : please, update your UML model asap.

 </description>

 <literal>

 <identifier id="_12_1_1dfa04c4_1354971208510_856613_324">

 <utype>SAMPL:source/SourceClassification.star</utype>

 </identifier>

 <value>star</value>

 <description>

 TODO : Missing description : please, update your UML model asap.

 </description>

 </literal>

 <literal>

 <identifier id="_12_1_1dfa04c4_1354971211833_964999_326">

 <utype>SAMPL:source/SourceClassification.galaxy</utype>

 </identifier>

 <value>galaxy</value>

 <description>

 TODO : Missing description : please, update your UML model asap.

 </description>

 </literal>

 <literal>

 <identifier id="_12_1_1dfa04c4_1354971215359_844385_328">

 <utype>SAMPL:source/SourceClassification.AGN</utype>

 </identifier>

 <value>AGN</value>

 <description>

 TODO : Missing description : please, update your UML model asap.

 </description>

 </literal>

 <literal>

 <identifier id="_12_1_1dfa04c4_1354971218541_706992_330">

 <utype>SAMPL:source/SourceClassification.planet</utype>

 </identifier>

 <value>planet</value>

 <description>

 TODO : Missing description : please, update your UML model asap.

 </description>

 </literal>

 <literal>

 <identifier id="_12_1_1dfa04c4_1354971250162_942097_336">

 <utype>SAMPL:source/SourceClassification.unknown</utype>

 </identifier>

 <value>unknown</value>

 <description>

 TODO : Missing description : please, update your UML model asap.

 </description>

 </literal>

 </enumeration>

 <enumeration>

 <identifier id="_12_1_1dfa04c4_1355248550530_805055_254">

 <utype>SAMPL:source/LuminosityType</utype>

 </identifier>

 <name>LuminosityType</name>

 <description>

 TODO : Missing description : please, update your UML model asap.

 </description>

 <literal>

 <identifier id="_12_1_1dfa04c4_1355248729653_893543_417">

 <utype>SAMPL:source/LuminosityType.magnitude</utype>

 </identifier>

 <value>magnitude</value>

 <description>

 TODO : Missing description : please, update your UML model asap.

 </description>

 </literal>

 <literal>

 <identifier id="_12_1_1dfa04c4_1355248735260_901139_419">

 <utype>SAMPL:source/LuminosityType.flux</utype>

 </identifier>

 <value>flux</value>

 <description>

 TODO : Missing description : please, update your UML model asap.

 </description>

 </literal>

 </enumeration>

 </package>

</vo-dml:model>

Appendix B. Mapping "grammar'

[GL Please ignore this for now]

The following grammar defines the structure of mapping expressions used in some of the titles in

section 5

vot-mapping := element-mapping | relation-mapping

element-mapping := vot-element ['[' '@utype' '⇒' utype-value [constraints] ']' [context]]

relation-mapping := element-mapping '' element-mapping

vot-element := annotated-vot-elemtn | basic-vot-element

basic-vot-element := 'GROUP' | 'FIELDref' | 'PARAM' |'TABLE' | 'FIELD' | '@ref' |'@utype'

utype-value := vo-dml-concept | vo-dml-role '+' vo-dml-type

vo-dml-concept := vo-dml-type | vo-dml-role | vo-dml-types | vo-dml-type-rep | 'Model'

vo-dml-type := 'PrimitiveType' | 'Enumeration' | 'DataType' |' ObjectType' | 'ID'

vo-dml-role := 'Attribute' | 'Reference' | 'Collection' | 'Container' | 'Extends'

vo-dml-type := '(' vo-dml-type ['|' vo-dml-type]* ')'

vo-dml-type-rep := '⟨' vo-dml-type ['|' vo-dml-type]* '⟩'
constraints := and-or constraint [constraints]

and-or := '&' | '|'

constraint := vot-element | '¬' vot-element

context := '∊' element-mapping [context]*

Appendix C. GROUP in TAP_SCHEMA

Following is a possible extension to TAP_SCHEMA that would add GROUP-like annotation to a table.

To query for a complete GROUP hierarchy for a table requires resolution of the GROUP-s nesting. In

absence of common-table –expressions, the parent_table foreign key should allow one easily to

collect all groups for a table and build the nesting in code.

CREATE TABLE tap_schema.group (

 id varchar(128) not null –- unique id of this group

, parent_table varchar(128) not null –- foreign key to table ultimately owning this GROUP

, parent_group varchar(128) -- if not null, id of GROUP owning this group

, utype varchar(128) -– if parent_group is not null, the role the group plays in the parent,

-- possibly concatenated with a utype for the actual type represented by the GROUP.

-- HOWEVER that could be normalized by having a type_utype and a role_utype column instead

)

CREATE TABLE tap_schema.group_field (

 groupId varchar(128) not null – ID of GROUP conainign this field-ref

, columnId varchar(128) not null –- column associated to the group, if null, this row is a

PARAM

, utype varchar(128) –- the utype of the role the field plays in group.

-- Possibly concatenated with type? Or normalized (see above)

, value varchar(8000) -- if this row represents a PARAM, this is its value

)

[NB, this schema implicitly supports stand-alone GROUP-s by not requiring a columnId, but all

GROUP-s must be associated to some TABLE. I.e. standalone instances cannot be freely floating. This

could happen if parent_table is allowed to be NULL.]

