
1

 International

 Virtual

 Observatory

Alliance

UTYPEs: Portable Data Model References

Version 1.0-20130509
Working Draft 2013 May 09

This version:
 1.0-20130509
Latest version:

-
Previous version(s):

Editors:
 Omar Laurino
 Gerard Lemson

Authors:
 UTYPEs tiger team: Patrick Dowler, Makus Demleitner, Matthew Graham, Omar
Laurino, Gerard Lemson, Jesus Salgado.

Abstract
Data providers and curators provide a great deal of metadata with their data files: this
metadata is invaluable for users and for Virtual Observatory software developers. In
order to be interoperable, the metadata must refer to common Data Models. We propose
a scheme for annotating data files in a standard, consistent, interoperable fashion, so
that each piece of metadata can unambiguously refer to the correct Data Model element
it expresses. We also describe in detail how to represent Data Model instances in the
VOTable format. The mapping is operated through opaque, portable strings: UTYPEs.

2

Status of This Document

This is an IVOA Working Draft for review by IVOA members and other interested parties.
It is a draft document and may be updated, replaced, or obsoleted by other documents
at any time. It is inappropriate to use IVOA Working Drafts as reference materials or to
cite them as other than “work in progress”.

A list of current IVOA Recommendations and other technical documents can be found at
http://www.ivoa.net/Documents/.

3

Contents
1	 Introduction 4	
2	 Use Cases 6	
3	 The need for a mapping language 7	
4	 The @utype attribute: Mapping types, roles, and inheritance. 9	
4.1	 The UTYPE format (Alternative 1) 10	
4.2	 The UTYPE format (Alternative 2) 11	

4.2.1	 The Namespace URI 11	
4.2.2	 How to look for a UTYPE in a document 11	
4.2.3	 Extended notation for portable use: UTYPEs as URIs 12	

4.3	 The VO-DML preamble 12	
5	 Examples: Mapping VO-DML ⇒ VOTable 12	
5.1	 Sample model and instances 13	
5.2	 Data carriers in VOTable 16	
5.3	 Mapping ObjectType 16	
5.4	 Mapping Attribute 18	
5.5	 Mapping Reference 20	
5.6	 Mapping Collection 21	
5.7	 Mapping value types 24	
5.8	 Mapping Inheritance 25	

6	 Patterns for annotating VOTable: specification 27	
6.1	 Model 28	

6.1.1	 Model to GROUP in VOTABLE 28	
6.2	 DataType 29	

6.2.1	 DataType to GROUP in RESOURCE 30	
6.2.2	 DataType to GROUP in TABLE 31	
6.2.3	 DataType to GROUP in a GROUP with no @utype 31	

6.3	 Attribute 32	
6.3.1	 Attribute to FIELDref in GROUP 32	
6.3.2	 Attribute to PARAM in GROUP 32	
6.3.3	 Attribute to PARAMref in GROUP 33	
6.3.4	 Attribute to GROUP in GROUP 33	

6.4	 ObjectType 34	
6.5	 Reference 34	

6.5.1	 Reference (from Object|DataType to ObjectType) to GROUP 34	
6.5.2	 Reference (from Object|DataType to ObjectType) to TR 35	

6.6	 Collection 35	
6.6.1	 Collection.item to GROUP in GROUP 36	

6.7	 Extends, inheritance 36	
6.8	 Value, Unit, UCD 37	
6.9	 ORM Mapping Patterns [TBD] 37	

7	 Notable absences 38	
7.1	 Atomic Types: support for custom and legacy UTYPEs 38	
7.2	 Packages 39	
7.3	 ObjectType to TABLE 39	
7.4	 Attribute to FIELD|PARAM in TABLE 39	

8	 Serializing to other file formats [TBD] 39	
Appendix A.	 List of all valid mapping patterns [TBD] 40	
Appendix B.	 Growing complexity: naïve, advanced, and guru clients 40	
Appendix C.	 Frequently Asked Questions 41	

4

1 Introduction
Data providers put a lot of effort in organizing and maintaining metadata that precisely
describes their data files. This information is invaluable for users and for software
developers that provide users with user-friendly VO-enabled applications. For example,
such metadata can characterize the different axes of the reference system in which the
data is expressed, or the history of a measurement, like the publication where the
measurement was drawn from, the calibration type, and so forth. In order to be
interoperable, this metadata must refer to some Data Model that is known to all parties:
the IVOA defines and maintains such standardized Data Models that describe
astronomical data in an abstract, interoperable way.

We will argue that, in order to enable such interoperable, extensible, portable annotation
of data files, one needs:

i) Pointers	 linking	 a	 specific	 piece	 of	 information	 (data	 or	 metadata)	 to	 the	 Data	 Model	

element	 it	 represents	 (UTYPEs).	
ii) A	 language	 to	 describe	 Data	 Models	 and	 their	 valid	 pointers,	 so	 to	 support	 extensibility	

and	 efficient	 software	 development	 (VO-‐DML)	

iii) A	 mapping	 specification	 that	 unambiguously	 describes	 the	 mapping	 patterns	

Without a consistent language for describing Data Models, pointers alone are
ambiguous and redundant: as such, they may have limited value. On the other hand, the
language must be expressive and formal enough to enable the serialization of data types
of growing complexity and the development of reusable, extensible software
components and libraries that can make the technological uptake of the VO standards
seamless and scalable.

Also, one needs to map the abstract Data Model to a particular format meta-model. For
instance, the VOTable format defines RESOURCEs, TABLEs, PARAMs, FIELDs, and so
forth, and provides explicit attributes such as units, UCDs, and utypes: in order to
represent instances of a Data Model, one needs to define an unambiguous mapping
between these meta-model elements and the Data Model language, so to make it
possible for software to be able to parse a file according to its Data Model and to Data
Providers to mark up their data products.

While one might argue that a standard for portable, interoperable Data Model
representation would have been required before one could think about such a mapping,
we are specifying it only at a later stage. This means that several different interpretations
of UTYPEs have been proposed and used: some explicitly require the parsing of the
UTYPEs strings, others make UTYPEs very redundant, by defining many UTYPEs (as
many as hundreds) for expressing the same concept (e.g. the accuracy of a
measurement) in different contexts. For instance, the accuracy of the measurement on
the spectral axis, the accuracy of the measurement on the time axis, the overall
accuracy on the spectral axis for a dataset, an accuracy provided by a service response
or the one provided by a standalone file, all have different UTYPEs, while an error bar is

5

an error bar regardless of the quantity to which it is referred, or whence the response
originally came from1.

Any standard trying to reconcile these very different usages must take them into account
and make the transition from the current usages to the new standard as seamless as
possible. For this reason, this document also shows how the current UTYPEs usages
can be seamlessly integrated with the new scheme, so to minimize the transition effort.

Actually, since this standardization is required by new, more complex Data Models (such
as data cubes and their projections, like SEDs or Time Series) than the ones already
defined, it will be possible to adopt this standard only in the new Data Models and Data
Access Services, thus avoiding any transition efforts. Legacy services can add metadata
to their files in order to make them compatible with the new standard, but they do not
need to change them in such a way that would make them incompatible with existing
software.

This is a very technical and formal document that can enable the development of flexible,
reusable, user-friendly libraries and applications that abstract and generalize the
input/output access to VO compliant files, thus facilitating the uptake of the VO in the
astronomical community, and the simplification of the process for publishing data to the
VO. However, several sections of this document are utterly informative: in particular, the
appendices provide more information about the impact of this specification to the current
and future IVOA practices.

This document defines the scope and usage of standardized UTYPEs as means to
annotate and describe Data Model instances.

It also describes how to represent Data Model instances using the VOTable schema.
This representation uses UTYPE attributes and the structure of the VOTable meta-
model elements to indicate how instances of data models are stored in VOTable
documents. We show many examples and give a complete listing of allowed mapping
patterns. We believe this approach to be a complete and in a certain sense most explicit
mapping language.

In sections 1-5 we give an introduction to the UTYPEs approach and several examples
that illustrate the mapping.
Section 6 aims to be a more rigorous listing of all valid annotations. Appendix A contains
the complete list of the mapping patterns supported by this specification. Section 7
describes what patterns and usages this specification doesn’t cover; moreover, it
describes how legacy and custom UTYPEs can be treated in this specification’s
framework: as such, this section actually describes the transition from the current
usages and this specification.

To illustrate both the problem and the solution, throughout the document we will
refer to some real or exemplar Data Models. Please remember that the example
Data Model have been designed to be fairly simple, yet complex enough to
illustrate all the possible constructs that this specification covers. They are not to

1 See the Current Usages Note:
http://www.ivoa.net/documents/Notes/UTypesUsage/20130213/NOTE-utypes-usage-1.0-
20130213.pdf

6

be intended as actual DMs, nor, by any means, this specification suggests their
adoption by the IVOA or by users and or Data Providers. In some cases we refer to
actual DMs in order to provide an idea of how this specification relates to real life
cases involving actual DMs.

2 Use Cases
The use cases enabled by this mapping definition are limitless. This bold statement can
be easily validated by considering that what we describe is analogous to the natural
mapping between Data Models and XSD schemata, where instances are expressed in
XML documents. XML is widely used in so many ways that it is impossible to list them all.
As a matter of fact, XML can even express lists of its own use cases.

However, to give a sense of what it is possible to accomplish with this specification, we
provide some explicit use cases relative to the VO domain.

Find a value by UTYPE. Given a VOTable annotated using UTYPEs, a client can
extract a piece of information by finding a PARAM or FIELDref annotated with a
predefined UTYPE. For example, the client can find the luminosity measurement by
looking for the element with UTYPE src:source.LuminosityMeasurement.value. The
predefined UTYPE is invariant in the Data Models that reuse a particular concept.

Find an object by UTYPE(s). Given a VOTable annotated using UTYPEs, a client can
build in memory the instance of an Object defined by some Data Model, assuming the
knowledge of a finite set of UTYPEs. For example, the client can find all the information
about a Source by looking at a GROUP annotated with the UTYPE src:source.Source,
and interpret its components (PARAMs and FIELDrefs) as the attributes of the object,
identified by their UTYPE strings.

Translation from VOTable to Data Model instance. A universal translator interpreter
can parse Data Model descriptions and a VOTable document and translate the
document in a valid set of instances, by using UTYPEs and a standard specification for
model-to-model mapping.

VO-enabled plotting and fitting applications. An application whose main requirement
is to display, plot, and/or fit data cannot be required to be aware of all data models.
However, if these data models share some common representation of quantities, their
errors, and their units, the application can discover these pieces of information and
structure a plot, or perform a fit, with minimal user input: each point will be associated
with an error bar, upper/lower limits, and other metadata. The application remains mostly
Data Model-agnostic: it wouldn’t need to understand concepts like Spectrum, or
Photometry.

Validators. The existence of an explicit Data Model representation language and of a
precise, unambiguous mapping specification using UTYPEs enables the creation of
universal validators, just as it happens for XML and XSD: the validator can parse the
Data Model descriptions imported by the VOTable and check that the file represents
valid instances of the Data Model.

7

VO Publishing Helper. A universal publisher application allows Data Providers to
interactively create custom Data Models importing the standard IVOA ones, and to
represent them in a standardized description language. The application also helps Data
Providers in interactively mapping Data Models elements to their files or DB tables,
either producing a VOTable template with the appropriate UTYPEs annotation, or by
creating a DAL service on the fly. The VO Publisher application is not required to be DM-
aware, since it can get all the information from the standardized description files.

VO Importer. Users and Data Providers have files that they want to make VO-compliant:
a DM-unaware Importer application allows them to convert the file to a supported format.
After that, or if the file is already in a supported format, it allows the user to interactively
map the data and metadata in their files to a standardized DM representation, using
UTYPEs for annotating the file.
Extensibility. Most often each astronomical facility, instrument, or mission needs to
express measurements and metadata attributes that are unique to the facility, instrument,
or mission. A Data Provider may want to extend a Data Model, adding to the common
information about astronomical sources and data products the metadata that is specific
for their instruments or domain. The added metadata can be described in a standardized
fashion so that the user can take advantage of the information.

3 The need for a mapping language

When encountering a data container, i.e. a file or database containing data, one may
wish to interpret its contents according to some external, predefined data model. That is,
one may want to try to identify and extract instances of the data model from amongst the
information. For example in the “global as view” approach to information integration, one
identifies elements (e.g. tables) defined in a global schema with views defined on the
distributed databases2.
If one is told that the data container is structured according to some standard
serialization format of the data model, one is done. I.e. if the local database is an exact
implementation of the global schema, one needs no special annotation mechanism to
identify these instances. An example of this is an XML document conforming to an XML
schema that is an exact physical representation of the data model.
But in an information integration project like the IVOA, which aims to homogenize access
to many distributed heterogeneous data sets, databases and documents are in general
not structured according to a standard representation of some predefined, global data
model. The best one may hope for is to obtain an interpretation of the data set, defining
it as a custom serialization of the result of a transformation of the global data model3. For
example, even if databases themselves are exact replications of a global data model,
results of general queries will be such custom serializations.
To interpret such a custom serialization one generally needs extra information that can
provide a mapping of the serialization to the original model. If the serialization format is
known, this mapping may be given in phrases containing elements both from the
serialization format and the data model. For example if our serialization contains data
stored in ‘rows’ in one or more ‘tables’ that each have a unique ‘name’ and contain
‘columns’ also with a ‘name’, you might be able to say things like:

2 See, for example, http://logic.stanford.edu/dataintegration/chapters/chap01.html
3 Or alternatively as a transformation of a (standard) serialization of the data model.

8

− The	 rows	 in	 this	 table	 named	 SOURCE	 contain	 instances	 of	 object	 type	 ‘Source’	 as	 defined	 in	
data	 model	 ‘SourceDM’	 (SourceDM	 is	 an	 example	 model	 formally	 defined	 later	 in	 this	

document).	
− The	 type’s	 ‘name’	 attribute	 (having	 datatype	 ‘string’,	 a	 primitive	 type)	 also	 acts	 as	 the	

identifier	 of	 the	 Source	 instances	 and	 is	 stored	 in	 the	 single	 column	 with	 name	 ID.	

− The	 type’s	 ‘classification’	 attribute	 is	 stored	 in	 the	 table	 column	 CLASSIFICATION	 (from	 the	
data	 model	 we	 know	 its	 datatype	 is	 an	 enumeration	 with	 certain	 values,	 e.g.	 ‘star’,	 ‘galaxy’,	
‘agn’).	

− The	 type’s	 ‘position’	 attribute	 (being	 of	 structured	 data	 type	 ‘SkyCoordinate’	 defined	 in	
model	 ‘SourceDM’)	 is	 stored	 over	 the	 two	 columns	 RA	 and	 DEC,	 where	 RA	 stores	 the	
SkyCoordinate’s	 attribute	 ‘longitude’,	 DEC	 stores	 the	 ‘latitude‘	 attribute.	 Both	 must	 be	

interpreted	 using	 an	 instance	 of	 the	 SkyCoordinateSystem	 type,	 This	 instance	 is	 stored	 in	 1)	
another	 document	 elsewhere,	 referenced	 by	 a	 reference	 to	 a	 URI,	 or	 2)	 in	 this	 document,	 by	
means	 of	 an	 identifier.	

− Instances	 from	 the	 collection	 of	 luminosities	 of	 the	 Source	 instances	 are	 stored	 in	 the	 same	
row	 as	 the	 source	 itself.	 Columns	 MAG_U	 and	 ERR_U	 give	 the	 ‘magnitude’	 and	 ‘error’	
attributes	 of	 type	 LuminosityMeasurement	 in	 the	 “u	 band”,	 an	 instance	 of	 the	 Filter	 type.	

(stored	 elsewhere	 in	 this	 document	 (‘a	 reference	 to	 this	 Filter	 instance	 is	 ...’).	 Columns	
MAG_G	 and	 ERR_G	 ...	 etc.	

− Luminosity	 instances	 also	 have	 a	 filter	 relation	 that	 points	 to	 instances	 of	 the	

PhotometryFilter	 structured	 data	 type,	 defined	 in	 the	 IVOA	 PhotDM	 model,	 whose	 package	
is	 imported	 by	 the	 SourceDM.	

In this example the underlined words refer to concepts defined in VO-DML, a meta-
model that is used as a formal language for expressing data models. The use of such a
modeling language lies in the fact that it provides formal, simple and implementation
neutral definitions of the possible structure, the ‘type’ and ‘role’ of the elements from the
actual data models that one may encounter in the serialization (SourceDM). This can be
used to constrain or validate the serialization, but more importantly it allows us to
formulate mapping rules between the serialization format (itself a kind of meta-model)
and the meta-model, independent of the particular data models used; for example rules
like:
− An	 object	 type	 MUST	 be	 stored	 in	 a	 ‘group’.	
− A	 ‘primitive	 type’	 MUST	 be	 stored	 in	 a	 ‘column’.	
− A	 reference	 MUST	 identify	 an	 object	 type	 instance	 represented	 elsewhere,	 either	 in	 another	

‘table’,	 possibly	 in	 the	 same	 table,	 possibly	 in	 another	 document.	
− An	 attribute	 SHOULD	 be	 stored	 in	 the	 same	 table	 as	 its	 containing	 object	 type.	
− etc	

Clearly free-form English sentences as the ones in the example are not what we’re after.
If we want to be able to identify how a data model is represented in some custom
serialization we need a formal, computer readable mapping language.
One part of the mapping language should be anchored in a formally defined serialization
language. After all, for some tool to interpret a serialization, it MUST understand its
format. A completely freeform serialization is not under consideration here. This

9

document assumes VOTable, even though a discussion on other formats is provided in
Section 8.

The mapping language must support the interpretation of elements from the serialization
language in terms of elements from the data model. If we want to define a generic
mapping mechanism, one by which we can describe how a general data model is
serialized inside a VOTable, it is necessary to use a general data model language as the
target for the mapping, such as the one described above. This language can give formal
and more explicit meaning to data modeling concepts, possibly independent of specific
languages representation languages such as XML schema, Java or the relational model.
This document uses VO-DML as the target language.4

The final ingredient in the mapping language is a mechanism that ties the components
from the two different meta-models together into "sentences". This generally requires
some kind of explicit annotation, some meta-data elements that provide an identification
of source to target structure. The ‘utype’ VOTable attribute can provide this link in a
rather simple manner:

• The	 value	 of	 a	 utype	 attribute	 must	 correspond	 to	 the	 VODML-‐ID	 identifier	 of	 an	
element	 explicitly	 defined	 in	 VO-‐DML/XML.	

• The	 VOTable	 element	 owning	 the	 utype	 attribute	 is	 said	 to	 represent	 the	 identified	 VO-‐
DML	 data	 model	 element.	 It	 identifies	 one	 or	 more	 instances	 of	 the	 data	 model	
element,	 the	 identification	 depends	 on	 the	 kind	 of	 element	 and	 on	 the	 context	 in	 which	

it	 appears.	
• There	 is	 a	 set	 of	 rules	 that	 constrain	 which	 VOTable	 elements	 can	 be	 identified	 with	

which	 type	 of	 VO-‐DML	 element	 and	 how	 the	 context	 plays	 a	 role	 here.	

This solution is sufficient and it is in some sense the simplest and most explicit
approach for annotating a VOTable. It may not be the most natural or suitable approach
for other meta-models such as FITS or TAP_SCHEMA. For example the current
approach relies heavily using on GROUPs to identify most of the structural mapping.
FITS and TAP_SCHEMA do not currently possess such a construct. We will discuss this
at the end of this document.

4 The @utype attribute: Mapping types, roles, and
inheritance.

A mapping pattern from VOTable to VO-DML uses a @utype attribute of a VOTable
element to identify the role of the VO-DML element it represents. These @utype-s
always point to an role definitions.

A single attribute in a Data Model is characterized by its role in the Data Model itself and
by its type. The role of the attribute allows a reader to attach the instance as an attribute
of the right element. Its type allows the reader to cast the instance to the right class. The

4 A complete reference of VO-DML is provided by this document (please note that the document
is still in a state of flux): http://volute.googlecode.com/svn/trunk/projects/dm/vo-dml/doc/VO-DML-
WD-v.0.x.pdf

10

importance of these annotations may vary according to the programming language
and/or use case, but including complete and explicit annotations for both the type and
role of each property enables the maximum flexibility.

A typical usage scenario may be a VOTable naïve (see Appendix B) client that is
sensitive to certain models only, say STC. Such a tool can be written to understand
annotation with STC types. Finding an element mapped to a type definition from STC it
might infer for example that it represents a coordinate on the sky and use this
information according to its requirements.

Such a tool would not necessarily understand other models where such an STC type is
used as a role. So, if the annotation refers to both the attribute’s role and type, even a
naïve client can trivially find the information it needs. A more advanced client may want
to read the Data Model Description File that describes the Data Model in a standardized,
machine readable, fashion.

Other scenarios involve inheritance and polymorphism. Inheritance allows models to
extend classes defined in other data models. Polymorphism is the common object-
oriented design concept that says that the declared type of a property may not be the
same as the type of an instance of that property that is actually serialized. In particular,
the value of a property may be an instance of a subtype of the declared type. So in
general it is not enough to know the type of the attribute (for example) to uniquely know
which type of instance to expect. And it may also not be possible to infer the instance
type uniquely from the contents of the element representing the attribute.

Hence a single @utype attribute with value indicating only the role may not be sufficient
to infer all DM information about a VOTable element.5

Typed languages such as Java support a casting operation, which provides more
information to the interpreter about the type it may expect a certain instance to be.

The following two sections describe two different scenarios for the UTYPEs format: they
both have pros and cons, and we need more discussion and feedback from the
community in order to adopt only one of the two.

4.1 The UTYPE format (Alternative 1)
Prefixes are sequences of [A-Za-z0-9_-], and they are case sensitive.

It is recommended to form non-REC DM prefixes as <author-acronym>_<dm-name>;
thus, NED's derivation of spec could have ned_spec as a prefix, CDS's derivation
cds_spec.

5 In fact, we deem utype should actually be a VOTable element with a structure of its own, rather
than an attribute, in order to effectively represent the complex information it has to carry. However,
we decided to find a solution that would not require any changes to other specifications. An
alternative solution might have been to use utypes concatenation, but this was deemed as too
complicated for naïve clients, even though such mechanism is already in place for UCDs. The
solution employed here is the best solution we could come up with, given the above limitations. It
is less elegant and compact, but it conveys all the needed information.

11

Prefixes correspond to major versions for the corresponding data models. Thus, utypes
remain constant over "compatible" changes in the sense of [DOCSTD]. In consequence,
clients must assume a compatible extension when encountering an unknown utype with
a known prefix (and should in general not fail).

Another consequence of this rule is that there may be several VO-DML URLs for a given
prefix. To identify a data model, use the prefix, not the VO-DML URL, which is intended
for retrieval of the data model definition exclusively. In case a client requires the exact
minor version of the data model, it must inspect SOMETHING ELSE.

4.2 The UTYPE format (Alternative 2)

The VOTable specification defines the @utype attribute and its requirements.
Documents implementing this specification, however, MUST comply with a restricted
syntax. When we use the terms UTYPEs and @utype we will refer to string complying
with this specialized syntax.

UTYPEs have the form:

UTYPE ::= prefix ‘:’ localname

Prefixes are sequences of [A-Za-z0-9_-], and they are case sensitive.

Localnames are also case sensitive and they have the same syntax of URI fragments.

UTYPEs are always considered opaque, meaning that clients have no reason to parse
them. They are identifiers mapping VOTable elements to VO-DML elements through
their VODML-ID. Thus, they must follow the same syntax rules defined in the VO-
DML/Schema document.

4.2.1 The Namespace URI

The UTYPE prefix is a reference to a namespace URI defined in a VO-DML preamble
(see 4.3).

The namespace URI MUST be an IVOA Resource Name (IVORN) in the form
ivo://authorityID/DM-ID

4.2.2 How to look for a UTYPE in a document

Clients may match UTYPEs by the simple string comparison of the @utype attribute
value in a VOTable with UTYPEs defined in the Data Models descriptions.

Clients need to look for the Data Models they are interested in by parsing the VO-DML
preamble (see 4.3) and matching the Model’s URI with the ones declared in the
preamble. The preamble maps the Model to a prefix string. This string must be attached
to the id part according to the prefix:localname syntax before it can be compared to the
UTYPEs in the document.

12

4.2.3 Extended notation for portable use: UTYPEs as URIs

In order to make UTYPEs portable outside of the VOTable @utype semantics, we define
an extended URI notation for UTYPEs by stringing together the namespace URI and the
local name of their QName compact notation: the local name will be the fragment part of
the URI.

Thus, the extended notation for a UTYPE with local name ‘local’ will be:
ivo://authorityID/DM-ID#local

Such IDs can be referenced in any context and can be resolved to the VO-DML
document description using the standard mechanism for resolving IVORNs in Resource
Registries.

4.3 The VO-DML preamble

In order to signal the reader that a document falls under this specification, a VOTable
instance MUST declare all the Data Models it includes, the UTYPEs prefixes for this
model, and the URI of the Data Model. They SHOULD also declare the actual URL of
the VO-DML/XML description as a shortcut.

Any number of such declarations can be included in a document.

<GROUP utype="vo-dml:Model" name="src">
 <PARAM utype="vo-dml:Model.uri" name="uri" datatype="char" arraysize="*"
value="ivo://ivoa.net/SourceDM" />
 <PARAM utype="vo-dml:Model.url" name="url" datatype="char" arraysize="*"
value="https://volute.googlecode.com/svn/trunk/projects/dm/vo-
dml/models/sample/Source.vo-dml.xml" />
</GROUP>

The above example introduces the Source Data Model, assigns the prefix “src” (the
Model name) to its UTYPEs, and refers to the VO-DML/XML description of the Data
Model. Notice the “vo-dml:Model” special utype that annotates the GROUP element to
introduce the declaration. Notice that the vo-dml: UTYPEs point to an implicitly declared
actual VO-DML/XML description.

The preamble GROUPs MUST be direct children of the VOTABLE element.

The following section shows examples of mappings as they may occur in realistic
VOTables, using example Data Models. We will describe how the different VO-DML
elements must be serialized and how annotations employing the @utype attribute and
other meta-data elements can help one interpret the VOTable. In the later normative
section we turn this around and explicitly list all legal annotations, their constraints and
interpretation.

5 Examples: Mapping VO-DML ⇒ VOTable
In this section we list some mappings from VO-DML to VOTable. We use examples
extracted from a sample model with sample instances described in the next section.
These should be seen as an introduction to the complete and formal specification in

13

section 5.8 on how one SHOULD use utypes in VOTable to indicate mapping to VO-
DML.

5.1 Sample model and instances
For examples we use a highly simplified version of a possible Source data model,
illustrated by its UML representation in Figure 1. It has a VO-DML representation, which
is reproduced in.

Figure 1 Example data model used in example. It represents a simplified Source data
model, containing luminosities that refer to the imported PhotDM. It also defines a
simplistic version of an STC model with some types for defining coordinates on the sky,
for the sake of simplicity and just for example purposes.

The model defines some types allowing one to define a Source with position on the sky
and a collection of luminosities. The position is modeled as a DataType, ‘SkyCoordinate’.
SkyCoordinate has a reference to a coordinate frame that is required to interpret its
longitude and latitude attributes. The luminosities are really measurements of
luminosities in a given filter that is indicated by a reference to a PhotometryFilter, which
is imported from the PhotometryDM; hence they have a value and an error. A Quantity
DataType is introduced that provides a real value and a unit.
The models are by no means meant to be comprehensive and include some admittedly
artificial elements such as an Equinox PrimitiveType, which is supposed to be a simple

14

string and might carry enough semantic value of its own to use it as an annotation on
PARAM elements for example.
Note that this sample model defines a Package that contains all the types. This package
shows up in the values of the utype-s we use to identify the different elements. The
values we use for these utype identifiers are generated from the VO-DML using a
particular grammar: they are path-like expressions that are guaranteed to be unique and
give some impression of the location in the data model.

We also use some sample instances of the models. These are here illustrated by UML
instance diagrams. The diagram in Figure 2 represents the first two lines returned from a
query to the SDSS DR7 database.

15

Figure 2 Instance diagram representing SDSS objetcs as sources in the sample data
model. The first few results are represented from the default radial SDSS query at
http://skyserver.sdss.org/dr7/en/tools/search/radial.asp corresponding to the SQL query:

SELECT top 10 p.objID, p.run, p.rerun, p.camcol, p.field, p.obj,
 p.type, p.ra, p.dec, p.u,p.g,p.r,p.i,p.z,
 p.Err_u, p.Err_g, p.Err_r,p.Err_i,p.Err_z
 FROM fGetNearbyObjEq(195,2.5,3) n, PhotoPrimary p
 WHERE n.objID=p.objID

16

5.2 Data carriers in VOTable
VO-DML describes four different kinds of types: PrimitiveType (PT), Enumeration (E),
DataType (DT) and ObjectType (OT). PT, E and DT are value types; OT is an object - or
reference type. PT and E are atomic, their values consist of a single value; DT and OT
are structured, they are built from multiple values, organized as attributes, and possibly
of reference relations to OTs. An OT can also have collections of other OTs, and can
have an identifier, an attribute of undetermined type that is implicitly defined for
ObjectTypes.

To store instances (values and objects) of these types in a VOTable various options are
available. Atomic values (i.e. instances of PT and E) are stored in cells in a row in a
table (i.e. a TD) or in the value attribute of a PARAM (@value). To store an instance of a
structured type one must store its components. To identify the structured instance in a
serialization one must be able to identify the individual components and how they are to
be combined. This last identification is done by the GROUP element. It is the main
representation of structured types, both ObjectType and DataType. It is also used to
represent relations to object types. These may be stored using foreign-key-like
mechanisms or through some kind of hierarchy.

In fact in the approach described here virtually all mapping of VOTable to VO-DML is
performed by GROUP elements and their components. They identify which elements are
to be combined to create the object or DataType instance, what the roles are that these
components play (attribute, reference), by simply using the utype attribute.

In the next few subsections we provide some examples how this mapping can be
performed. It starts with the ObjectType and then discusses its components, Attribute,
Reference and Collection. The mapping of the value types is discussed in the mapping
of Attributes. The mapping of Reference and Collection relations is the most complex
part of the whole mapping story and treated separately.

5.3 Mapping ObjectType
ObjectTypes consist of Attributes, References and Collections. How these are mapped
is described in more detail below. But the important part for representing structured
instance like an object is that these components must be combined together to construct
a complete instance. In VOTable this is done using a GROUP element.

In the representation of ObjectType instances, GROUPs can be used in two different
modes that are distinguished by the way the instance’s data are ultimately stored. If all
values are eventually stored exclusively in @value attributes of PARAM elements in the
GROUP (or possibly outside the GROUP but accessed through PARAMrefs), the
GROUP represents a complete instance directly. If even only one of the attributes is
stored in a FIELD and accessed through a FIELDref, the GROUP is said to indirectly
represent possibly multiple instances, one for each TR.

We will use these terms, “direct GROUP” and “indirect GROUP” as shorthand phrases
for these representations all through the document. This freedom of choice where to
store objects complicates the mapping of relations between objects, as many different
referencing mechanisms must be taken into account. This is particularly important when
discussing how to represent References in section 6.5
.

17

We illustrate the two modes of mapping by showing an example how each mode may
represent exactly the same object. For this we use the object type in Figure 3 and a
corresponding instance in Figure 4.

Figure 3 ObjectType representing a Source. [TBD Update]

Figure 4 Instance of Source ObjectType. [TBD Update]

Indirect serialization to a TABLE:
Source instance from Figure 4 is stored in the first TR below. The TABLE is annotated
using a GROUP with utype attribute set to “Instance.root”, which is a special role for root
elements. The actual type is stored in the value of a PARAM with an Instance.type utype.
Some atomic attributes are stored in FIELDs annotated by FIELDref-s, some in
PARAMs; the child GROUP with its attributes annotated by FIELDref represents a
structured attribute. Also, the SkyCoordinate.frame property is an example of GROUP
reference. (for discussion see section 5.5):
<TABLE>
<GROUP utype="vo-dml:Instance.root" ID="_source">
 <PARAM name="type" utype="vo-dml:Instance.type" value="src:source.Source"
datatype="char" arraysize="*"/>
 <FIELDref ref="_designation" utype="vo-dml:ObjectType.ID" />
 <FIELDref ref="_designation" utype="src:source.Source.name" />
 <GROUP utype="src:source.Source.position">
 <PARAM utype="vo-dml:Instance.type" value="src:source.SkyCoordinate"
name="datatype" datatype="char" arraysize="*"/>
 <FIELDref ref="_ra" utype="src:source.SkyCoordinate.longitude" />
 <FIELDref ref="_dec" utype="src:source.SkyCoordinate.latitude" />
 <GROUP ref="_icrs" utype="src:source.SkyCoordinate.frame" />
 </GROUP>
</GROUP>
<FIELD name="designation" ID="_designation" .../>
<FIELD name="ra" ID="_ra" unit="deg" .../>
<FIELD name="dec" ID="_dec" unit="deg" .../>
<TR><TD>08120809-0206132</TD><TD>123.033734</TD><TD>-2.103671</TD></TR>
...
</TABLE>

Note the special representation of the identifier of the Source object. This attribute is not
defined explicitly in the model; hence no utype exists for it there. We can interpret each

18

ObjectType as ultimately being a subclass of some ObjectType class (just as in Java all
classes ultimately extend java.lang.Object, generally implicitly). In VO-DML we can
represent this by allowing an ObjectType to have a component of as yet unspecified type,
which represents the ID attribute (implicitly) defined on this base class. We use a special
utype for this attribute: vo-dml:ObjectType.ID, obtained from the VO-DML model
discussed in the VO-DML reference document.

Direct serialization to a GROUP:
Here the instance is directly represented by a GROUP containing only PARAMs for the
atomic attributes, and a GROUP with PARAMs for the structured attribute (and again a
reference, see section 5.5).
<GROUP utype="vo-dml:Instance.root" >
 <PARAM name=”type” utype=”vo-dml:Instance.type” value=”src:source.Source”
datatype=”char” arraysize=”*”/>
 <PARAM utype=”vo-dml:ObjectType.ID" value=”08120809-0206132” .../>
 <PARAM utype=”src:source.Source.name" value=”08120809-0206132” .../>
 <PARAM utype=”src:source.Source.classifiication” value=”galaxy” .../>
 <GROUP utype="src:source.Source.position">
 <PARAM name=”type” utype=”vo-dml:Instance.type” value=”src:source.SkyCoordinate”
datatype=”char” arraysize=”*”/>
 <PARAM utype="src:source.SkyCoordinate.longitude" value=”123.033734” .../>
 <PARAM utype=”src:source.SkyCoordinate.latitude" value=”-2.103671” .../>
 <GROUP ref="_icrs" utype=" src:source.SkyCoordinate.frame"/>
 </GROUP>
</GROUP>

Details on the mapping of the components are discussed next.

5.4 Mapping Attribute
An attribute is the role a value type plays in the definition of a structured type. They may
represent atomic or may represent structured (Data)types themselves. These are
represented differently.

Figure 5 The ObjectType Source and the DataType SkyCoordinate both define attributes.
Attributes can represent a PrimitiveType (‘name’ and ‘description’ in Source, ‘longitude’
and ‘latitude’ in SkyCoordinate), an Enumeration (‘classification’ in Source), or a
structured DataType (‘position’ in Source).

PrimitiveType attribute as FIELDref, Enumeration as PARAM:
In the indirect representation of the ObjectType below a FIELDref indicates that an
attribute is stored in field with ID=”_designation”. It does so using the utype of the
attribute: SAMPL:source/Source.name, identifiying the name attribute of the Source type.
Note that in our example we use a utype syntax derived from the VO-DML model itself.
From this string one can here infer directly that some role with name ‘name’ defined on a
type named Source is represented. But that is all one might infer. In principle this could
have been a string like ‘src:123456789’. In both cases one would need to inspect the
formal data model to find out precisely what kind of model element this utype represents.

19

Another attribute, ‘classification’, is represented by a PARAM through its utype value
src:source.Source.classification and assigns it the value ‘galaxy’. The attribute has as
datatype an Enumeration, SourceClassification and indeed the PARAM defines a
VALUES element with various OPTIONs (note that that is almost useless for a PARAM
that represents a single value directly anyway). Its set of Literals indeed contains a value
‘galaxy’. In general however, especially for existing “legacy” databases, one cannot
expect that enumerated values will exactly correspond to those in a model. Some type of
mapping might be required, however OPTION does not support this in VOTable (i.e. has
no @utype attribute). The fact that this attribute is stored in a PARAM in the GROUP
indicates also that all Source instances stored in the TABLE are classified as galaxies. A
more realistic case would require the use of a FIELDref to assign a TD value to each
instance (row) in the table.

<TABLE>
<GROUP utype="vo-dml:Instance.root" >
 <PARAM name=”type” utype=”vo-dml:Instance.type” value=”src:source.Source”
datatype=”char” arraysize=”*”/>
 <FIELDref ref="_designation" utype=" vo-dml:ObjectType.ID"/>
 <FIELDref ref="_designation" utype="src:source.Source.name"/>
 <PARAM name=”type” utype=”src:source.Source.classification” value=”galaxy”>
 <VALUES><OPTION value=”galaxy”/><OPTION value=”star”/>...</VALUES></PARAM>
 <GROUP utype="src:source.Source.position">
 <PARAM name=”type” utype=”vo-dml:Instance.type” value=”src:source.SkyCoordinate”
datatype=”char” arraysize=”*”/>
 <FIELDref ref="_ra" utype="src:source.SkyCoordinate.longitude"/>
 <FIELDref ref="_dec" utype="src:source.SkyCoordinate.latitude"/>
 <GROUP ref="_icrs" utype="src:source.SkyCoordinate.frame"/>
 </GROUP>
</GROUP>
<FIELD name="designation" ID="_designation" .../>
<FIELD name="ra" ID="_ra" unit="deg" .../>
<FIELD name="dec" ID="_dec" unit="deg" .../>
<TR><TD>08120809-0206132</TD><TD>123.033734</TD><TD>-2.103671</TD></TR>
...
</TABLE>

DataType attribute as GROUP:
As DataType-s are structured, their natural representation in a VOTable is as a GROUP,
whether used directly or indirectly. Hence if an attribute is defined in a VO-DML data
model as representing a DataType, it is most naturally represented by a GROUP
embedded in the GROUP of the structured type owning the attribute.

The example below shows in red a GROUP representing the attribute ‘position’
(identified by utype src:source.Source.position) that has as data type a SkyCoordinate,
which itself consists of a ‘longitude’ and ‘latitude’ attribute (we defer discussing the
reference to the next section). Note their structure indicates only their relation to their
defining type, src:source.SkyCoordinate (though this, as discussed above, is
unimportant for the current approach which, apart from the prefix, assigns no importance
to the syntax of the utype identifiers in VO-DML models).
<TABLE>
<GROUP utype="vo-dml:Instance.root" >
 <PARAM name=”type” utype=”vo-dml:Instance.type” value=”src:source.Source”
datatype=”char” arraysize=”*”/>
 <FIELDref ref="_designation" utype=" vo-dml:ObjectType.ID"/>
 <FIELDref ref="_designation" utype="src:source.Source.name"/>
 <PARAM name=”type” utype=”src:source.Source.classification” value=”galaxy”>
 <VALUES><OPTION value=”galaxy”/><OPTION value=”star”/>...</VALUES></PARAM>

20

 <GROUP utype="src:source.Source.position">
 <PARAM name=”type” utype=”vo-dml:Instance.type” value=”src:source.SkyCoordinate”
datatype=”char” arraysize=”*”/>
 <FIELDref ref="_ra" utype="src:source.SkyCoordinate.longitude"/>
 <FIELDref ref="_dec" utype="src:source.SkyCoordinate.latitude"/>
 <GROUP ref="_icrs" utype="src:source.SkyCoordinate.frame"/>
 </GROUP>
</GROUP>
<FIELD name="designation" ID="_designation" .../>
<FIELD name="ra" ID="_ra" unit="deg" .../>
<FIELD name="dec" ID="_dec" unit="deg" .../>
<TR><TD>08120809-0206132</TD><TD>123.033734</TD><TD>-2.103671</TD></TR>
...
</TABLE>
<FIELD name="dec" ID="_dec" unit="deg" .../>
<TR><TD>08120809-0206132</TD><TD>123.033734</TD><TD>-2.103671</TD></TR>
...
</TABLE>

In this example the utype of the child GROUP only indicates its role in the definition of its
parent GROUP, namely the attribute src:source.Source.position. It does not indicate the
type, which is instead indicated by the PARAM with name “type”.

5.5 Mapping Reference

Referencing as ”GROUPref” to direct GROUP:
The example below uses a GROUP+@ref to represent the reference from a position
object stored in a TABLE to a SkyCoordinateFrame stored in a direct GROUP. Hence all
rows in the table use the same frame and the reference needs no structure.
<GROUP utype="vo-dml:Instance.root" ID="_icrs">
 <PARAM name=”type” utype=”vo-dml:Instance.type” value=”src:source.SkyCoordinateFrame”
datatype=”char” arraysize=”*”/>
 <PARAM utype="src:source.SkyCoordinateFrame.name" value="ICRS" .../>
 <PARAM utype="src:source.SkyCoordinateFrame.equinox" value="J2000.0" .../>
</GROUP>

<TABLE>
<GROUP utype="src:source.Instance.root" id="_source">
 <PARAM name=”type” utype=”vo-dml:Instance.type” value=”src:source.Source”
datatype=”char” arraysize=”*”/>
 <FIELDref ref="_designation" utype="vo-dml:ObjectType.ID"/>
 <FIELDref ref="_designation" utype="src:source.Source.name"/>
 <GROUP utype="src:source.Source.position">
 <PARAM name=”type” utype=”vo-dml:Instance.type” value=”src:source.SkyCoordinate”
datatype=”char” arraysize=”*”/>

21

 <FIELDref ref="_ra" utype="src:source.SkyCoordinate.longitude"/>
 <FIELDref ref="_dec" utype="src:source.SkyCoordinate.latitude"/>
 <GROUP ref="_icrs" utype="src:source.SkyCoordinate.frame"/>
 </GROUP>
</GROUP>
<FIELD id="_ designation " name="parentId" datatype="char"/>
<FIELD id="_ra" name="ra" datatype="float"/>
<FIELD id="_dec" name="dec" datatype="float"/>
...
<DATA><TABLEDATA>
<TR><TD>08120809-0206132</TD><TD>123.034</TD><TD>-2.1037</TD>...</TR>
...
</TABLEDATA></DATA>
</TABLE>

5.6 Mapping Collection
A collection is a composition relation between a parent ObjectType and a child, or part,
ObjectType. The fact that objects can be stored in different ways implies many different
ways in which the relation may need to be expressed. In XML serializations of a data
model (such as used in VO-URP and the Simulation Data Model) one may choose to
have the contained objects serialized inside the serialization of the parent. It is possible
to do so in VOTable as well using child GROUPs representing a complete child object
embedded in the GROUP representing the parent object. This is natural for this
relationship because a collection element is really to be considered as a part of the
parent object.
This may be used to represent flattening of the parent-child relation. One or more child
objects may be stored together with the parent object in the same row in a TABLE. Such
a case is actually very common, for example when interpreting tables in typical source
catalogues. These generally contain information of a source together with one or more
magnitudes. The latter can be seen as elements form a collection of photometry points
contained by the sources.
Hence a GROUP inside another GROUP MAY represent a collection. It can do so in
different modes that are illustrated by the following examples and described in more
detail in section 0.

22

Container and contained objects in same row in same TABLE:
A very typical case is the following example, which shows a Source object serialized in
the same row as its luminosities. The Source data model models luminosity
measurements as a collection, which is flexible and allows measurements from different
source to be combined in a natural manner. But for a given catalogue such as SDSS or
2MASS, it is known a priori how many magnitudes will be supplied and which bands they
will correspond to. Hence for a given catalogue the natural representation is to simply
add these as attributes to their model. Interestingly enough, the approach proposed here
is able to support this mapping without any problem, even making a natural link to the
actual photometry filter used for the measurements.

<TABLE>
<GROUP utype="vo-dml:Instance.root">
 <PARAM utype="vo-dml:Instance.type" value="src:source.Source" . . ./>
 <FIELDref ref="_designation" utype="src:source.Source.name"/>
 <GROUP utype="src:source.Source.position">
 <PARAM utype="vo-dml:Instance.type" value="src:source.SkyCoordinate" . . ./>
 <FIELDref ref="_ra" utype="src:source.SkyCoordinate.longitude"/>
 <FIELDref ref="_dec" utype="src:source.SkyCoordinate.latitude"/>
 <GROUP ref="_icrs" utype="src:source.SkyCoordinate.frame"/>
 </GROUP>
 <GROUP utype="src:source.Source.luminosities">
 <PARAM utype="vo-dml:Instance.type" value="vo-dml:Collection" . . ./>
 <GROUP utype="vo-dml:Instance.item”>
 <PARAM utype="vo-dml:Instance.type" value="src:source.LuminosityMeasurement" .
. ./>
 <FIELDref ref="_magJ" utype="src:source.LuminosityMeasurement.value"/>
 <FIELDref ref="_errJ" utype="src:source.LuminosityMeasurement.error"/>
 <GROUP ref="2massJ" utype="src:source.LuminosityMeasurement.filter"/>
 </GROUP>
 <GROUP utype="vo-dml:Instance.item”>
 <PARAM utype="vo-dml:Instance.type" value="src:source.LuminosityMeasurement" .
. ./>
 <FIELDref ref="_magK" utype="src:source.LuminosityMeasurement.value"/>
 <FIELDref ref="_errK" utype="src:source.LuminosityMeasurement.error"/>

23

 <GROUP ref="2massK" utype="src:source.LuminosityMeasurement.filter"/>
 </GROUP>
 <GROUP utype="vo-dml:Instance.item">
 <PARAM utype="vo-dml:Instance.type" value="src:source.LuminosityMeasurement" .
. ./>
 <FIELDref ref="_magH" utype="src:source.LuminosityMeasurement.value"/>
 <FIELDref ref="_errH" utype="src:source.LuminosityMeasurement.error"/>
 <GROUP ref="2massH" utype="src:source.LuminosityMeasurement.filter"/>
 </GROUP>
 </GROUP>
</GROUP>
<FIELD name="designation" ID="_designation" utype="ivoa_1.0:stdtypes/string">
<DESCRIPTION>source designation formed from sexigesimal coordinates</DESCRIPTION>
</FIELD>
<FIELD name="ra" ID="_ra" unit="deg">
<DESCRIPTION>right ascension (J2000 decimal deg)</DESCRIPTION>
</FIELD>
<FIELD name="dec" ID="_dec" unit="deg">
<DESCRIPTION>declination (J2000 decimal deg)</DESCRIPTION>
</FIELD>
<FIELD name="magJ" ID="_magJ">
<DESCRIPTION>J magnitude</DESCRIPTION>
</FIELD>
<FIELD name="errJ" ID="_errJ" unit="deg">
<DESCRIPTION>J magnitude error</DESCRIPTION>
</FIELD>
FIELD name="magH" ID="_magH">
<DESCRIPTION>H magnitude</DESCRIPTION>
</FIELD>
<FIELD name="errH" ID="_errH" unit="deg">
<DESCRIPTION>H magnitude error</DESCRIPTION>
</FIELD>
FIELD name="magK" ID="_magK">
<DESCRIPTION>K magnitude</DESCRIPTION>
</FIELD>
<FIELD name="errK" ID="_errK" unit="deg">
<DESCRIPTION>K magnitude error</DESCRIPTION>
</FIELD>
<TR>
<TD>08120809-0206132</TD><TD>123.033734</TD><TD>-2.103671</TD><TD>23.2</TD><TD>.04</TD>
 <TD>23.0</TD><TD>.03</TD> <TD>23.5</TD><TD>.03</TD>
</TR>
...
</TABLE>

Container and collection all as direct instances in GROUPs:
When not using tables at all in a mapping, the individual elements form a collection can
be directly represented inside the parent GROUP. To indicate this explicitly the utype
attributes MUST be concatenations of the role (the collection) and the type.
<GROUP utype="src:source.Source.luminosities">
 <PARAM utype="vo-dml:Instance.type" value="vo-dml:Collection" . . ./>
 <GROUP utype="vo-dml:Instance.item”>
 <PARAM utype="vo-dml:Instance.type" value="src:source.LuminosityMeasurement" .
. ./>
 <PARAM value=”23.2” utype="src:source.LuminosityMeasurement.value" …/>
 <PARAM value=”.04” utype="src:source.LuminosityMeasurement.error" …/>
 <GROUP ref="2massJ" utype="src:source.LuminosityMeasurement.filter"/>
 </GROUP>
. . .
</GROUP>

24

5.7 Mapping value types
The examples above started from the assumption that the basis of a serialization was an
ObjectType. Value types only show up as attributes. There may be some use cases
however where one wishes to indicate only that a certain column or set of column
represent some known value type. One reason may be that a standard, global data
model does not exist that defines ObjectType-s matching the one in one’s serialization,
but that one can identify some sub-components that could be mapped to a DataType for
example.
In fact the SourceDM used here is an example. It is a model for Source-s. The IVOA
does currently not have an accepted model for this concept, though attempts in this
direction have been made6. This implies many tables of interest in the VO can currently
not formally declare they store instances of a Source. However they could declare they
have columns that together correspond to a coordinate on the sky in the STC model.
This could lead to a VOTable fragment as the following, which is a version of an
example in 5.4, but with altered utypes, and removal of the GROUP representing the
Source.
<TABLE>
<GROUP utype="vo-dml:Instance.root">
 <PARAM name=”type” utype=”vo-dml:Instance.type” value=”src:source.SkyCoordinate”
datatype=”char” arraysize=”*”/>
 <FIELDref ref="_ra" utype="src:source.SkyCoordinate.longitude"/>
 <FIELDref ref="_dec" utype="src:source.SkyCoordinate.latitude"/>
 <GROUP ref="_icrs" utype="src:source.SkyCoordinate.frame"/>
</GROUP>
<FIELD name="designation" ID="_designation" .../>
<FIELD name="ra" ID="_ra" unit="deg" .../>
<FIELD name="dec" ID="_dec" unit="deg" .../>
<TR><TD>08120809-0206132</TD><TD>123.033734</TD><TD>-2.103671</TD></TR>
...
</TABLE>

Tools that understand STC may be able to do something with this annotation, even
though they cannot know what role the coordinate plays.
Another example arises from a possible access protocol specification. Say Simple Cone
Search (SCS) would declare that the result of a request MUST be a VOTable with a
GROUP representing the actual request consisting of a position and a search radius. It
could insist the position must be serialized using a GROUP representing an STC
coordinate following our data modeling serialization prescription. E.g. as in the following
example:
<GROUP utype="src:source.SkyCoordinateFrame" ID="_icrs">
 <PARAM utype="src:source.SkyCoordinateFrame.name" value="ICRS" .../>
 <PARAM utype="src:source.SkyCoordinateFrame.equinox" value="J2000.0" .../>
</GROUP>
...
<GROUP name="SCS">
 <INFO value="The SCS request "/>
 <PARAM name="SR" datatype="float" utype="ivoa_1.0:stdtypes/real"/>
 <GROUP name="center" utype="vo-dml:Instance.role">
 <PARAM name=”type” utype=”vo-dml:Instance.type” value=”src:source.SkyCoordinate”
datatype=”char” arraysize=”*”/>
 <INFO value="The center coordinate of the simple cone search"/>
 <PARAM name="ra" utype="src:source.SkyCoordinate.longitude" value="123.00000"
datatype="float"/>
 <PARAM name="dec" utype="src:source.SkyCoordinate.latitude" value="-2.10000"
datatype="float"/>
 <GROUP ref="_icrs" utype="src:source.SkyCoordinate.frame"/>

6 See http://wiki.ivoa.net/twiki/bin/view/IVOA/IVAODMCatalogsWP.

25

 </GROUP>
</GROUP>
...

Note, this example even assigns a utype for the search radius SR, identifying it as the
PrimitiveType “ivoa_1.0:stdtypes/real”. This shows that also PrimitiveType-s and
Enumerations could be used directly, i.e. outside of a role they play.
One could argue that alternatively a standard protocol like SCS might define a little
standard data model to represent its full request and use it in the serialization of result.
In that case also the parent group, currently named “SCS’’, could have been declared to
represent say an “scs:Request”, as follows:
 <GROUP utype="src:source.SkyCoordinateFrame" ID="_icrs">
 <PARAM utype="src:source.SkyCoordinateFrame.name" value="ICRS" .../>
 <PARAM utype="src:source.SkyCoordinateFrame.equinox" value="J2000.0" .../>
</GROUP>
...
<GROUP name="SCS" utype=”vo-dml:Instance.root”>
 <PARAM name=”type” utype=”vo-dml:Instance.type” value=”scs:Request” datatype=”char”
arraysize=”*”/>
 <INFO value="The SCS request"/>
 <PARAM name="SR" datatype="float" utype="scs:Request.SR "/>
 <GROUP name="center" utype="scs:Request.center">
 <PARAM name=”type” utype=”vo-dml:Instance.type” value=”src:source.SkyCoordinate”
datatype=”char” arraysize=”*”/>
 <INFO value="The center coordinate of the simple cone search"/>
 <PARAM name="ra" utype="src:source.SkyCoordinate.longitude" value="123.00000"
datatype="float"/>
 <PARAM name="dec" utype="src:source.SkyCoordinate.latitude" value="-2.10000"
datatype="float"/>
 <GROUP ref="_icrs" utype="src:source.SkyCoordinate.frame"/>
 </GROUP>
</GROUP>
...

5.8 Mapping Inheritance

We have introduced the Source Data Model to provide concrete mapping examples.
Let’s now assume that a Data Provider has some information that pertains to
astronomical sources, such as the redshift of the source, and they want to serialize this
information in their files. The Source class in Source DM does not provide such a field.
The solution is for the Data Provider to extend the Source class in Source DM.

Notice that the Data Provider might as well decide to include the information in a
customized fashion, for example setting a particular name for the redshift column.
However, this customized annotation requires readers to know the specifics of each
custom file and their annotation. Instead, by adopting a common framework and this
mapping language, the information can be provided to the user interactively and
consistently, even by model-agnostic clients.

It is important that naïve clients find the information about the parent class without
needing to parse anything but the VOTable. Advanced applications must be able to
provide the information about the child class fields dynamically, while provider specific
libraries can be derived from standard libraries to implement new functions.

First of all, the Data Provider must include a VO-DML declaration pointing to the
description file and introducing a custom prefix:

26

<GROUP utype="vo-dml:Model" name="Source">
 <PARAM utype="vo-dml:Model.url" name="url" datatype="char" arraysize="*"
value="https://volute.googlecode.com/svn/trunk/projects/dm/vo-
dml/models/sample/Sample.vo-dml.xml" />
 <PARAM utype="vo-dml:Model.prefix" value="src" name="prefix" datatype="char"
arraysize="*" />
</GROUP>
<GROUP utype="vo-dml:Model" name="ExtendedSource">
 <PARAM utype="vo-dml:Model.url" name="url" datatype="char" arraysize="*"
value="https://volute.googlecode.com/svn/trunk/projects/dm/vo-
dml/models/sample/ExtendedSource.vo-dml.xml" />
 <PARAM utype="vo-dml:Model.uri" name="uri" datatype="char" arraysize="*"
value="ivo://ivoa.net/std/ExtendedSourceDM" />
 <PARAM utype="vo-dml:Model.prefix" value="xsrc" name="prefix" datatype="char"
arraysize="*" />
</GROUP>

In the description document the new field might have the ID ‘source.Source.redshift’,
which translate to the utype ‘xsrc:source.Source.redshift’. This utype can be used to
annotate instances of the extended class, like in the following example:

<TABLE>
<GROUP utype="vo-dml:Instance.root" >
 <PARAM name=”type” utype=”vo-dml:Instance.type” value=”xsrc:source.Source”
datatype=”char” arraysize=”*”/>
 <PARAM name=”type” utype=”vo-dml:Instance.type” value=”src:source.Source”
datatype=”char” arraysize=”*”/>
 <FIELDref ref="_designation" utype=" vo-dml:ObjectType.ID"/>
 <FIELDref ref="_designation" utype="src:source.Source.name"/>
 <FIELDref ref="_z" utype="xsrc:source.Source.redshift"/>
 <PARAM name=”type” utype=”src:source.Source.classification” value=”galaxy”>
 <GROUP utype="src:source.Source.position">
 <PARAM name=”type” utype=”vo-dml:Instance.type” value=”src:source.SkyCoordinate”
datatype=”char” arraysize=”*”/>
 <FIELDref ref="_ra" utype="src:source.SkyCoordinate.longitude"/>
 <FIELDref ref="_dec" utype="src:source.SkyCoordinate.latitude"/>
 <GROUP ref="_icrs" utype="src:source.SkyCoordinate.frame"/>
 </GROUP>
</GROUP>
<FIELD name="designation" ID="_designation" .../>
<FIELD name="ra" ID="_ra" unit="deg" .../>
<FIELD name="dec" ID="_dec" unit="deg" .../>
<FIELD name=”z” ID=”_z” .../>
<TR><TD>08120809-0206132</TD><TD>123.033734</TD><TD>-2.103671</TD><TD>0.123</TD></TR>
...
</TABLE>

Notice that there are now two PARAMs with the vo-dml:Instance.type utype. This explicit
mechanism allows clients to easily discover what types a GROUP serializes. There
MUST be a PARAM for each class in the hierarchy. Multiple inheritance is supported,
since there are no actual methods to implement/inherit apart from the getters and setters
of the fields, for which there is no ambiguity. Another way to see this is that the types are
actually interfaces, and even languages like Java, which do not support multiple
inheritance, allow classes to implement more than one interface.

So, the extending class inherits all of the parent’s attributes and their UTYPEs: this way
a naïve client of SourceDM can find all the src: elements, while a client of the child class
can also look for the xsrc: elements. The knowledge of the Data Model, either hardwired

27

in the reader or dynamically generated using the VO-DML XML description, provides the
client with the ability to look for the UTYPEs it is interested in.

6 Patterns for annotating VOTable: specification
In this section we list all legal mappings where a VOTable element uses its @utype to
identify a VO-DML elements; we describe how such an annotation should be interpreted
and what restrictions there are on the association. In its subsections it explicitly lists
possible annotations of a VOTable with a UTYPE value that one may encounter
following this spec.

The organization of the following sections is based on the different VO-DML concepts
that can be represented. Each of these subsections contains sub-subsections which
represent the different possible ways the concept may be encountered in a VOTable and
discuss rules and constraints on those annotations. We start with Model, and then we
discuss value types (PrimitiveType, Enumeration and DataType) and Attributes. Then
ObjectType and the relationships, Collection, Reference and Inheritance (extends).
Package is not mapped: none of the use cases required this element to be actually
mapped to a VOTable instance.

Each subsection contains a concise, formal description of the mapping, according to a
simple “grammar”: Data Model elements are enclosed in square brackets, inside of
which we describe the mapping pattern from the VO-DML element on the left to the
VOTable element on the right. The mapping is realized by the elements appearing after
the “/”. A possible context is indicated by a ∊ with to its right a container formatted like
the element of the left. Finally, a '→' indicates a relation to another element: this will
generally be defined in the same VOTable, but it might be serialized elsewhere (e.g.
when referencing a PhotometryFilter in a photometry catalog, whereas the actual
serialization of the filter is in a different document).

For example the pattern expression “[GROUP ⇒ ObjectType / @utype=”vo-
dml:Instance.type]” can be read like this: “A GROUP realizes an ObjectType element
with a utype attribute whose value is exactly ‘vodml:Instance.type’”; similarly “[GROUP ⇒
ObjectType] ∊ RESOURCE” represents the same case restricted to GROUPs defined
directly on a RESOURCE, i.e. not on a TABLE or another GROUP.

Appendix A contains the list of all the legal mappings.

Some comments on how we refer to VOTable and VO-DML elements

• When	 referring	 to	 VOTable	 elements	 we	 will	 use	 the	 notation	 by	 which	 these	 elements	
will	 occur	 in	 VOTable	 documents,	 i.e.	 in	 general	 “all	 caps”,	 E.g.	 GROUP,	 FIELD,	 (though	

FIELDref).	
• When	 referring	 to	 rows	 in	 a	 TABLE	 element	 in	 a	 VOTable,	 we	 will	 use	 TR,	 when	 referring	

to	 individual	 cells,	 TD.	 Even	 though	 such	 elements	 only	 appear	 in	 the	 TABLEDATA	

serialization	 of	 a	 TABLE.	 When	 referring	 to	 a	 column	 in	 the	 TABLE	 we	 will	 use	 FIELD,	 also	
if	 we	 do	 not	 intend	 the	 actual	 FIELD	 element	 annotating	 the	 column.	

• When	 referring	 to	 an	 XML	 attribute	 on	 a	 VOTable	 element	 we	 will	 prefix	 it	 with	 a	 ‘@’,	

e.g.	 @utype,	 @ref.	 	

28

• References	 to	 VO-‐DML	 elements	 will	 be	 capitalized,	 using	 their	 VO-‐DML/XSD	 type	
definitions.	 E.g.	 ObjectType,	 Attribute.	

• Some	 mapping	 solutions	 require	 a	 reference	 to	 a	 GROUP	 elsewhere	 in	 the	 VOTable.	 We	
refer	 to	 such	 a	 construct	 as	 a	 “GROUPref”,	 which	 is	 not	 an	 element	 of	 the	 current	
VOTable	 standard	 (v1.3).	 So	 we	 use	 a	 GROUP	 with	 a	 @ref	 attribute,	 which	 must	 always	

identify	 another	 GROUP	 in	 the	 same	 document.	 The	 target	 GROUP	 must	 have	 an	 @id	
attribute.	 In	 cases	 where	 this	 is	 important	 we	 will	 indicate	 that	 this	 combination	 is	 to	 be	
interpreted	 as	 a	 “GROUPref”,	 including	 the	 quotes.	 	

The following list defines some shorthand phrases (underlined), which we use in the
descriptions below:

• Generally	 when	 using	 the	 phrase	 type	 we	 mean	 a	 "kind	 of"	 type	 as	 defined	 in	 VO-‐DML.	
These	 are	 PrimitiveType,	 Enumeration,	 DataType	 and	 ObjectType.	

• With	 atomic	 type	 we	 will	 mean	 a	 PrimitiveType	 or	 an	 Enumeration	 as	 defined	 in	 VO-‐

DML.	
• A	 structured	 type	 will	 refer	 to	 an	 ObjectType	 or	 DataType	 as	 defined	 in	 VO-‐DML.	

• With	 a	 property	 available	 on	 or	 defined	 on	 a	 (structured)	 type	 we	 will	 mean	 an	 Attribute	
or	 Reference,	 or	 (in	 the	 case	 of	 ObjectTypes)	 a	 Collection	 defined	 on	 that	 type	 itself,	 or	
inherited	 from	 one	 of	 its	 base	 class	 ancestors.	 	

• A	 VO-‐DML	 type	 plays	 a	 role	 in	 the	 definition	 of	 another	 (structured)	 type	 if	 the	 former	 is	
the	 declared	 data	 type	 of	 a	 property	 available	 on	 the	 latter.	 	

• When	 writing	 that	 a	 VOTable	 element	 represents	 a	 certain	 VO-‐DML	 type,	 we	 mean	 that	

the	 VOTable	 element	 is	 mapped	 either	 directly	 to	 the	 type,	 or	 that	 it	 identifies	 a	 role	
played	 by	 the	 type	 in	 another	 type’s	 definition.	 	

• A	 descendant	 of	 a	 VOTable	 element	 is	 contained	 in	 that	 element,	 or	 in	 a	 descendant	 of	

that	 element.	 This	 is	 a	 standard	 recursive	 definition	 and	 can	 go	 up	 the	 hierarchy	 as	 well:	
an	 ancestor	 of	 an	 element	 is	 the	 direct	 container	 of	 that	 element,	 or	 an	 ancestor	 of	 that	
container.	

6.1 Model

6.1.1 Model to GROUP in VOTABLE

Pattern expression: [GROUP ⇒ Model / @utype=”vo-dml:Model”] ∊ VOTABLE

A GROUP element with @utype attribute identifying a Model and placed directly under
the root VOTABLE element indicates that the corresponding VO-DML model is used in
@utype associations.
Restrictions

• GROUP	 element	 must	 exist	 directly	 under	 VOTABLE	 and	 have	 @utype=”vo-‐dml:Model”	
• MUST	 have	 child	 PARAM	 element	 with	 @utype=”vo-‐dml:Model.uri”	 and	 @value	 the	 URI	

of	 the	 VO-‐DML	 document	 representing	 the	 model.	 @name	 is	 irrelevant,	

@datatype=”char”	 and	 arraysize=”*”.	 This	 annotation	 allows	 clients	 to	 discover	 whether	
a	 particular	 model	 is	 used	 in	 the	 document,	 the	 prefix	 of	 its	 @utype	 in	 the	 document,	

29

and	 to	 resolve	 the	 Model	 to	 its	 VO-‐DML	 description.	 The	 URI	 MUST	 be	 a	 IVORN	
registered	 in	 the	 VO	 registries.	

• SHOULD	 have	 child	 PARAM	 element	 with	 @utype=”vo-‐dml:Model.url”	 and	 @value	 the	
url	 of	 the	 VO-‐DML	 document	 representing	 the	 model.	 @name	 is	 irrelevant,	
@datatype=”char”	 and	 arraysize=”*”.	 This	 is	 a	 convenient	 shortcut	 for	 the	 resolution	 of	

the	 URI.	 Data	 providers	 should	 make	 sure	 the	 URL	 is	 not	 broken.	 Clients	 should	 make	
sure	 that	 they	 fall	 back	 to	 resolving	 the	 URI	 if	 the	 URL	 is	 broken.	

• MUST	 have	 child	 PARAM	 element	 with	 @utype=”vo-‐dml:Model.name”	 and	 @value	 the	

name	 of	 the	 Model,	 which	 also	 works	 ad	 the	 UTYPE	 prefix	 (see	 Section	 4).	 @name	 is	
irrelevant,	 @datatype=”char”	 and	 arraysize=”*”.	 	

Example
<VOTABLE>
<GROUP utype="vo-dml:Model" name="Sample">
 <PARAM utype="vo-dml:Model.url" name=”url” datatype=”char” arraysize=”*”
value="http://volute.googlecode.com/svn/trunk/projects/dm/vo-dml/models/sample/Source.vo-
dml.xml"/>
 <PARAM utype="vo-dml:Model.uri" name=”uri” datatype=”char” arraysize=”*”
value="ivo://ivoa.net/SourceDM"/>
 <PARAM utype="vo-dml:Model.prefix" name=”prefix” datatype=”char” arraysize=”*”
value="SAMPL"/>
</GROUP>
<GROUP utype="vo-dml:Model" name="IVOA_Profile">
<PARAM utype="vo-dml:Model.url" name=”url” datatype=”char” arraysize=”*”
value="http://volute.googlecode.com/svn/trunk/projects/dm/vo-dml/models/profile/IVOA.vo-
dml.xml"/>
<PARAM utype="vo-dml:Model.prefix" value="ivoa_1.0" name=”prefix” datatype=”char”
arraysize=”*” />
</GROUP>
...

6.2 DataType
A DataType instance (also a value) is structured; it consists of values assigned to each
of its attributes and possibly references. To represent the complete instance of a
DataType the various attributes (and references) must be grouped together; in VOTable
this is done using a GROUP element. GROUPs in fact can play two different roles,
depending on where the instance’s data is really stored. If all values are eventually
stored exclusively in PARAMs in the GROUP, or possibly outside the GROUP but
accessed through PARAMrefs, the GROUP directly represents a complete instance.

If even only one of the attributes is stored in a FIELD and accessed through a FIELDref,
the GROUP indirectly represents possibly multiple instances, one for each TR. This is
also true in any child GROUP containing a FIELDref and so on. We will use these terms,
direct and indirect representation all through the document. And note that this same
classification holds for ObjectTypes discussed in 6.4, though with a twist related to
possible child GROUPs representing Collections.

The attribute values of a DataType are stored according to the prescription for storing
instances of their data type. For attributes with declared data type a PrimitiveType or
Enumeration section provides details. If the attribute’s data type is itself a DataType the
prescription in the current section should be used recursively. DataTypes can also have
References to ObjectTypes, but a discussion of how to store References is deferred to

30

section 6.5, after the discussion of storing ObjectType instances, which is provided in
section 6.4.

A GROUP @utype never identifies a DataType directly. The DataType is identified by a
PARAM with @utype vo-dml:Instance.type. The value of the PARAM is a UTYPE itself,
referencing the DataType.

The GROUP @utype always identifies the role of the instance serialized by the GROUP,
according to the Data Model. However, if the GROUP represents an instance that does
not have a role, then the @utype MUST identify one of the following default Attributes:

• vo-‐dml:Instance.root	 –	 if	 the	 GROUP	 represents	 a	 root	 element	
• vo-‐dml:Instance.attribute	 –	 if	 the	 GROUP	 is	 contained	 in	 a	 GROUP	 that	 does	 not	 identify	

any	 VO-‐DML	 type.	

• vo-‐dml:Collection.item	 –	 if	 the	 GROUP	 represents	 an	 element	 that	 is	 part	 of	 a	 collection	

6.2.1 DataType to GROUP in RESOURCE
Pattern expression: [GROUP ⇒	 DataType	 /	 PARAM(@utype=”vo-‐dml:Instance.type”)]	 ∊
RESOURCE

A GROUP in a RESOURCE cannot have FIELDrefs, only PARAMs, PARAMrefs and
GROUPs. The GROUP represents therefore a single instance of the DataType directly
as defined in 7.2, with the PARAMs etc. providing the values of the components of the
DataType.

The possible role this instance plays in the VOTable document must have been defined
outside of any mapping to a data model. After all, in contrast to instances of ObjectTypes,
the existence of instances of value types need not be explicitly stated (see the
description of value types in section TBD). An example could be a VOTable containing
the result of a simple cone search. A RESOURCE in that document might contain a
GROUP representing the position of the cone, which may be mapped through its
@utype to a DataType “src:source.SkyCoordinate” (if such a type existed: our sample
model contains a type like it).

Clients MUST NOT assume that there is only one instance of the “vo-dml:Instance.type”
PARAM in a GROUP

Example: A GROUP defined as a child of RESOURCE
<RESOURCE>
<GROUP utype="vo-dml:Instance.root">
 <PARAM utype="vo-dml:Instance.type" value="src:source.SkyCoordinate" . . ./>
 <INFO value="The center coordinate of the simple cone search"/>
 <PARAM name="ra" utype="src:source.SkyCoordinate.longitude" value="123.00000" . . ./>
 <PARAM name="dec" utype="src:source.SkyCoordinate.latitude" dec=-2.10000 . . ./>
 <PARAMref ref="_icrs" utype="src:SkyCoordinate.frame" . . ./>
</GROUP>
...

Example: A GROUP defined as a child of a GROUP with no UTYPE
<RESOURCE>

31

<GROUP>
 <GROUP utype="vo-dml:Instance.attribute">
 <PARAM utype="vo-dml:Instance.type" value="src:source.SkyCoordinate" . . ./>
 <INFO value="The center coordinate of the simple cone search"/>
 <PARAM name="ra" utype="src:source.SkyCoordinate.longitude" value="123.00000" . . ./>
 <PARAM name="dec" utype="src:source.SkyCoordinate.latitude" dec=-2.10000 . . ./>
 <PARAMref ref="_icrs" utype="src:SkyCoordinate.frame" . . ./>
 </GROUP>
...

6.2.2 DataType to GROUP in TABLE

Pattern expression: [GROUP ⇒	 DataType	 /	 PARAM(@utype=”vo-‐dml:Instance.type”)]	 ∊
TABLE

A GROUP defined on a TABLE, annotated with a DataType, represents a DataType
instance (directly or indirectly. In the direct case we can then interpret the GROUP
“merely” as a structured PARAM following the VOTable spec [REF] “A PARAM may be
viewed as a FIELD which keeps a constant value over all the rows of a table”. I.e. a
GROUP without FIELDref is a structured set of columns all with the same value in each
row.	 	 The GROUP @utype may refer to an attribute in a DM, or not.

Example
<TABLE>
 <GROUP utype="vo-dml:Instance.root">
 <PARAM utype="vo-dml:Instance.type" value="src:source.SkyCoordinate" . . ./>
 <FIELDref ref="_ra" utype="bSTC:SkyCoordinate.longitude"/>
 <FIELDref ref="_dec" utype="bSTC:SkyCoordinate.latitude"/>
 <GROUP ref="_icrs" utype="bSTC:SkyCoordinate.frame"/>
 </GROUP>
...
<FIELD name="ra" ID="_ra" unit="deg">
<DESCRIPTION>right ascension (J2000 decimal deg)</DESCRIPTION>
</FIELD>
<FIELD name="dec" ID="_dec" unit="deg">
<DESCRIPTION>declination (J2000 decimal deg)</DESCRIPTION>
</FIELD>
...

6.2.3 DataType to GROUP in a GROUP with no @utype

Pattern expression: [GROUP ⇒ DataType] ∊ [GROUP / ¬@utype]

We explicitly mention here a case already defined implicitly in the previous sections.
Notice that by “no @utype” we mean either the case where the @utype is missing or the
case where the @utype has a prefix not declared in the VO-DML preamble.

A GROUP may be defined inside another GROUP and be mapped to a DataType. There
are some restrictions. NONE of its ancestor GROUPs MAY be mapped to a data model
element. This would conflict with rules of mapping such an ancestor GROUP that state
that children of such GROUPs MUST be mapped to properties of the structured type
represented by the containing GROUP (see the restrictions listed in the following
sections).

32

Whether the GROUP represents the DataType instance directly or indirectly is
independent of this embedding in a parent GROUP, only of the existence of a FIELDref
in it or its descendants.

Example A GROUP representing parameters of a Simple Cone Search
<GROUP name="ra"">
...
<GROUP utype="vo-dml:Instance.attribute">
 <PARAM utype="vo-dml:Instance.type" value="src:source.SkyCoordinate" . . ./>
 <INFO value="The center coordinate of the simple cone search"/>
 <PARAM name="ra" utype="src:source.SkyCoordinate.longitude" value="123.00000" . . ./>
 <PARAM name="dec" utype="src:source.SkyCoordinate.latitude" dec=-2.10000 . . ./>
 <PARAMref ref="_icrs" utype="src:SkyCoordinate.frame" . . ./>
 </GROUP>
</GROUP>

6.3 Attribute
An attribute is the role a value type plays in the definition of a structured type. For
instance, ‘longitude’ is an Attribute of the ‘SkyCoordinate’ type, and ‘position’ is an
Attribute of the ‘Source’ type.
An Attribute also has a type, including, in many cases, (structured) DataTypes or
ObjectTypes.
The element representing the attribute MUST be contained in a GROUP that represents
the containing structured type.

6.3.1 Attribute to FIELDref in GROUP

Pattern expression: [FIELDref ⇒ Attribute / @utype = AttributeID & @ref = FIELD-ID] ∊
[GROUP ⇒ ⟨ObjectType | DataType⟩]

A FIELDref contained in a GROUP MUST declare the Attribute serialized by the referred
FIELD.

Restrictions

• The	 Attribute	 MUST	 be	 available	 to	 the	 structured	 type	 represented	 by	 the	 containing	
GROUP.	

• The	 Attribute	 MUST	 have	 an	 atomic	 type.	

• The	 datatype	 of	 the	 referenced	 FIELD	 must	 be	 compatible	 with	 the	 declared	 datatype	 of	
the	 Attribute.	

Example
See example in 5.4.

6.3.2 Attribute to PARAM in GROUP

Pattern Expression: [PARAM ⇒ Attribute / @utype = AttributeID] ∊ [GROUP ⇒
⟨ObjectType | DataType⟩]

33

When defined inside of a GROUP that represents a structured type, a PARAM MAY
represent an Attribute of the type itself. The Attribute is declared by the @utype.

Restrictions

• The	 Attribute	 must	 have	 an	 atomic	 data	 type.	
• The	 PARAM	 @datatype	 SHOULD	 be	 a	 compatible,	 valid	 serialization	 type	 for	 the	 type	 of	

the	 Attribute.	 	

Example
See example in Error! Reference source not found..

6.3.3 Attribute to PARAMref in GROUP

Pattern expression: [PARAMref ⇒ Attribute / @utype = AttributeID & @ref = PARAM-ID]
∊ [GROUP ⇒ ⟨ObjectType | DataType⟩]

Inside a GROUP a PARAMref identifies a PARAM defined inside the same RESOURCE
or TABLE where the GROUP is defined. Using its @utype the PARAMref can annotate
the PARAM as holding the value of an Attribute.
Restrictions

• The	 Attribute	 must	 be	 available	 to	 the	 structured	 type	 represented	 by	 the	 containing	
GROUP.	

• Attribute’s	 data	 type	 must	 be	 atomic.	 	

• The	 PARAM	 must	 obey	 the	 restrictions	 defined	 for	 the	 annotation	 of	 a	 PARAM	 by	 the	
Attribute’s	 type	

Example
See example in 5.4

6.3.4 Attribute to GROUP in GROUP

Pattern Expression: [GROUP ⇒	 DataType	 /	 @utype	 =	 AttributeID	 &	 PARAM(@utype=”vo-‐
dml:Instance.type”)] ∊ [GROUP ⇒ ⟨ObjectType | DataType⟩]

A GROUP representing a structured type can have Attributes that are of a structured
type as well.

This can be simply achieved by nesting a GROUP built according to Section
. However, this time the nested GROUP has a @utype pointing to the Attribute that the
GROUP represents.

Restrictions

• Same	 as	 	

Example
<GROUP utype="vo-dml:Instance.root">
 <PARAM utype="vo-dml:Instance.type" value="src:source.Source" . . ./>

34

 ...
 <GROUP utype="src:source.Source.position">
 <PARAM utype="vo-dml:Instance.type" value="src:source.SkyCoordinate" . . ./>
 <FIELDref ref="_ra" utype="src:source.SkyCoordinate.longitude"/>
 <FIELDref ref="_dec" utype="src:source.SkyCoordinate.latitude"/>
 <GROUP ref="_icrs" utype="src:source.SkyCoordinate.frame"/>
 </GROUP>
...
</GROUP>

6.4 ObjectType
The patterns described for DataType apply to ObjectType as well. More patterns that
apply only to ObjectType are described in the following sections.

Notice that there is a formal difference in VO-DML between DataType and ObjectType.
From a practical point of view, these differences can be summarized as follows:

i) DataType	 does	 not	 inherit	 the	 vo-‐dml:ObjectType.ID	 attribute	
ii) You	 cannot	 Reference	 a	 DataType	 instance	
iii) You	 cannot	 have	 a	 Collection	 of	 DataType	 instances	

[GL thinks that we should disallow “GROUPrefs” for DataTypes. However, it would then
just be consistent to disallow PARAMrefs as well.]

[OL thinks that if we allow PARAMrefs than we should also allow “GROUPrefs” for
DataTypes. In any case the “GROUPref” should not be considered part of the mapping,
but an implementation detail: VOTable parsers should be able to follow VOTable
references anyway.]

6.5 Reference
A Reference is a relation between a structured type (the “referrer”, an ObjectType or
DataType) and an ObjectType, the “target object”, or “referenced object”. The reference
is a property of the referrer: many referrers can reference the same target object.

6.5.1 Reference (from Object|DataType to ObjectType) to GROUP

Pattern Expression: [GROUP ⇒ Reference / @ref=GROUP-ID] ∊ [GROUP ⇒ ObjectType]
→ [GROUP ⇒ ObjectType / @id=GROUP-ID]

This pattern enables using References to other instances stored in the same document.

[TBD External references shall be treated in the ORM section]

A GROUP representing a structured type can refer to another ObjectType serialized in
the same document by using the VOTable @ref -> @id mechanism.

We have to assume that each referenced object has an identifier and each referrer must
somehow have a copy of that identifier. As the definition of identifiers is not exactly
prescribed, neither can we prescribe the form that the reference will take.
Restrictions

35

• GROUP	 identified	 by	 @ref	 MUST	 represent	 an	 ObjectType	 compatible	 with	 the	 data	
type	 of	 the	 Reference,	 i.e.	 either	 the	 same	 type	 of	 some	 of	 its	 subtypes.	

Example
<GROUP utype="phot:PhotometryFilter" ID="_2massJ">
 <PARAM name="name" datatype="char" utype="phot:PhotometryFilter.name"
value="2mass:J"/>
...
</GROUP>
...
 <GROUP utype="src:source/Source.luminosity”>
 <PARAM utype="vo-dml:Instance.type" value="src:source/LuminosityMeasurement" ...
/>
 <FIELDref ref="_magJ" utype="SAMPL:source/LuminosityMeasurement.value"/>
 <FIELDref ref="_errJ" utype="SAMPL:source/LuminosityMeasurement.error"/>
 <GROUP ref=”_2massJ” utype=”src:source/LuminosityMeasurement.filter”/>
 </GROUP>
...

6.5.2 Reference (from Object|DataType to ObjectType) to TR

Pattern expression: [GROUP ⇒ Reference / PARAM(@utype=”vo-dml:Instance.type”,
@value=”vo-dml:Reference”) & PARAM(@utype=”vo-dml:Reference.id”)] ∊ [GROUP ⇒
ObjectType] → [GROUP ⇒ ObjectType / FIELDref(@utype=”vo-dml:ObjectType.ID)]

A GROUP representing a structured type can refer to a particular instance of an
ObjectType indirectly represented by a GROUP, i.e. to a row in a TABLE. For this to be
possible, the referred GROUP must define the instance ID by using a FIELDref with
@utype equals to vo-dml:ObjectType.ID.

Thus, the referrer must have a @utype referencing its role (or a default role), a PARAM
defining the instance type with value “vo-dml:Reference” and a PARAM that actually
contains the ID of the referred object, with @utype “vo-dml:Reference.id”.

6.6 Collection
A Collection is defined in VO-DML as a composition relation between a parent
ObjectType and a child, or part, ObjectType.

In XML serializations of a data model one may choose to have the contained objects
serialized inside the serialization of the parent. It is possible to do so in VOTable as well
using child GROUPs representing a complete child object embedded in the GROUP
representing the parent object. This is natural for this relationship because a collection
element is really to be considered as a part of the parent object. Of course, the
contained object (the item) can be a Reference to an ObjectType described elsewhere.

This may be used to represent flattening of the parent-child relation. One or more child
objects may be stored together with the parent object in the same row in a TABLE. Such
a case is actually very common, for example when interpreting tables in typical source
catalogues. These generally contain information of a source together with one or more
magnitudes. The latter can be seen as elements form a collection of photometry points
contained by the sources.

36

Hence a GROUP inside another GROUP MAY represent a collection. It can do so in
different modes that are described in the following subsections.
Restriction

• The	 parent	 GROUP	 must	 represent	 an	 ObjectType	 that	 can	 contain	 the	 Collection.	

6.6.1 Collection.item to GROUP in GROUP

Pattern expression: [GROUP ⇒ Collection.item / @utype=”vo-dml:Collection.item”] ∊
[GROUP ⇒ Collection / PARAM(@utype=”vo-dml:Instance.type”, @value=”vo-
dml:Collection”)]

Contained group represents an object of the indicated ObjectType that is an element of
the indicated Collection. The GROUP MUST be contained inside of a GROUP that
represents an ObjectType and is a valid Container of the Collection.

Example
See example in 5.6

The items in the collection of the above example are all actually serialized in the
collection. It is also possible to have the items be References to ObjectTypes serialized
elsewhere, following the Reference pattern.

6.7 Extends, inheritance

Pattern expression: [GROUP ⇒ ObjectType ⇑ ObjectType / PARAM(@utype=”vo-
dml:Instance.type”)]

In this case the ⇑ symbol means that the leftmost ObjectType extends the rightmost
ObjectType, adding some Attributes to it. Attributes can be structured or unstructured,
direct or indirect, recursively. This mapping pattern leverages the patterns introduced in
the previous sections.

The extending type inherits all of the parent type’s Attributes and their UTYPEs
(including the prefixes), and adds its own Attributes and their UTYPEs (including the
prefixes).

It is possible that types in a Model extend types in the same Model. In this case one can
already tell them apart from the a priori knowledge of a Model, or by parsing the VO-
DML description of the Model, and UTYPEs cannot clash by definition. So, the pattern
described here only applies to inter-Model extensions.

The extending type also inherits all of the parent’s ancestors, recursively. Thus, the
serialization of the child type MUST include all the ancestors’ declarations of vo-
dml:Instance.type. This makes it possible for clients of any ancestor to recognize the
instance and to correctly apply polymorphism.

For example, assuming that the ExtentedSource Model extends the Source Model
(Attribute source.Source.redshift), and that the ExtendedExtendedSource Model extends

37

the ExtendedSource Model (Attribute source.Source.profile), a serialization will look like
this:

Example
<TABLE>
<GROUP utype="vo-dml:Instance.root" >
 <PARAM name=”type” utype=”vo-dml:Instance.type” value=”xsrc:source.Source”
datatype=”char” arraysize=”*”/>
 <PARAM name=”type” utype=”vo-dml:Instance.type” value=”xxsrc:source.Source”
datatype=”char” arraysize=”*”/>
 <PARAM name=”type” utype=”vo-dml:Instance.type” value=”src:source.Source”
datatype=”char” arraysize=”*”/>
 <FIELDref ref="_designation" utype=" vo-dml:ObjectType.ID"/>
 <FIELDref ref="_designation" utype="src:source.Source.name"/>
 <FIELDref ref="_z" utype="xsrc:source.Source.redshift"/>
 <FIELDref ref="_profile" utype="xxsrc:source.Source.profile"/>
 <PARAM name=”type” utype=”src:source.Source.classification” value=”galaxy”>
 <GROUP utype="src:source.Source.position">
 <PARAM name=”type” utype=”vo-dml:Instance.type” value=”src:source.SkyCoordinate”
datatype=”char” arraysize=”*”/>
 <FIELDref ref="_ra" utype="src:source.SkyCoordinate.longitude"/>
 <FIELDref ref="_dec" utype="src:source.SkyCoordinate.latitude"/>
 <GROUP ref="_icrs" utype="src:source.SkyCoordinate.frame"/>
 </GROUP>
</GROUP>
<FIELD name="designation" ID="_designation" .../>
<FIELD name="ra" ID="_ra" unit="deg" .../>
<FIELD name="dec" ID="_dec" unit="deg" .../>
<FIELD name=”z” ID=”_z” .../>
<FIELD name=”profile” ID=”_profile” .../>
<TR><TD>08120809-0206132</TD><TD>123.033734</TD><TD>-
2.103671</TD><TD>0.123</TD><TD>devaucoulers</TD></TR>
...
</TABLE>

In this example we have assumed that the VO-DML preamble declared the xsrc prefix
for the ExtendedSource Model and the xxsrc prefix for the ExtendedExtendedSource
Model.

6.8 Value, Unit, UCD
Some DataTypes may have attribute names that can be naturally mapped to the
VOTable PARAM and FIELD attributes. In this case, the following rules apply:

i) the	 value	 of	 the	 DataType's	 'value'	 attribute	 is	 stored	 in	 the	 @value	 attribute	 of	 the	

PARAM,	 or	 the	 TD	 corresponding	 to	 the	 annotated	 FIELD.	
ii) the	 value	 of	 the	 DataType’s	 'unit'	 attribute	 is	 represented	 by	 the	 @unit	 attribute	 of	 the	

PARAM,	 or	 the	 annotated	 FIELD.
iii) the	 value	 of	 the	 'ucd'	 attribute	 is	 mapped	 to	 the	 @ucd	 attribute	 of	 the	 annotated	 FIELD	

or	 PARAM

TBD Extend this pattern to datatype, arraysize? ivoa:Quantity DM.

6.9 ORM Mapping Patterns [TBD]
Some use cases (e.g. in SimulationDM) require support for more subtle patterns that are
similar to the standard strategies used to design and implement relational databases.

38

Other, simpler cases, require that some elements’ values refer to other elements defined
elsewhere in the same file or in other files: consider for example a photometry catalog
(or an SED) in which each row contains a reference to the photometry filter used for a
particular measurement.

In these cases, standard strategies of Object-Relational Mapping can be easily
implemented using the VO-DML to VOTable mapping. However, the same problem can
be solved with each of such strategies, opening the door to implementation challenges:
in order to constrain these strategies to a reasonable subset that is both sufficient to
cover the use cases and simple to implement, some analysis is required. Much of this
work has been done by the UTYPEs Tiger Team, but was not mature enough to be
included in this draft.

7 Notable absences
The VOTable schema allows for redundancy in meta-data assignment. For example it
allows assigning a UCD or UTYPE to FIELDrefs, but also to the FIELD it references.
How is one to interpret or use this? Our approach is to try to avoid this redundancy.

The design laid out in the previous sections focuses UTYPE assignments on the
GROUP element and its components. The main reason is that in all but the most
simplistic use cases we will not be able to void the use of GROUPs, and that at the
same time they provide all functionality (and more) that TABLE and FIELD could provide.
Choosing this approach implies client coders do not need to take the possibly conflicting
assignments into account, they only need consider GROUPs.

Here we list a few possible assignments that we avoid, though they might seem valid.

7.1 Atomic Types: support for custom and legacy UTYPEs
It is worth stressing explicitly that some VOTable elements are not covered by this
specification (e.g. TABLE, RESOURCE, INFO, FIELD, and standalone PARAM). Also,
according to this specification some elements will be ignored in the de-serialization of
DM instances if their UTYPEs do not have a prefix declared in the VO-DML preamble.

This is intentional, and its purpose is to achieve full backward compatibility of this
standard with the current non-standardized usages, while enabling new, complex Data
Models to be effectively serialized in a standardized way.

Atomic Types are types referenced by @utype attributes of FIELDs and standalone
PARAMs (i.e. PARAMs not included in GROUPs). Usually these UTYPEs are path-like
strings pointing to some implicit and unspecified meta-model in an atomic fashion. Such
UTYPEs can happily coexist with UTYPEs used according to this specification.

Not only this means that this standard does not break any of the existing standards. Not
only this means that it enables customized use of the @utype attribute in local
implementations. This also means that in order to make a legacy VOTable file compliant
with the new specs, Data Providers will only need, if willing to do so, to add some
GROUP definitions to its header. Old clients of that file will still be able to parse them,
while new generation clients will be able to perform their more advanced usage of the
new specification.

39

7.2 Packages
No use cases require the serialization of Package instances in VOTable. Package
names are encoded in the UTYPE syntax of VO-DML for avoiding name clashes when
two classes in different packages of the same model have the same name (other than
that, UTYPEs are effectively opawue). The use of ‘.’ as the separator for the Package-
>Type relationship (e.g. source.Source) might cause name clashes when a package
contains a Type and a Package with the same name. However, packages cannot be
directly referenced by UTYPEs, so this is not an issue.

7.3 ObjectType to TABLE

Pattern expression: [TABLE ⇒ ObjectType]

There might be some cases where a TABLE could be said to represent a structured type
completely, and where the TABLE @utype attribute could make that identification.
However in probably most cases only part of the TABLE will correspond to the type, or
multiple types (or instances of a type) will be stored inside a single row (e.g. photometry
catalogs).

In all of these cases one can (and MUST) use one or more GROUP elements contained
by the TABLE to make the precise assignment.

By leaving this mapping pattern out of the specs we do not lose any information content.
Also, this way client code only has to deal with GROUPs, with no need to inspect the
TABLE.

7.4 Attribute to FIELD|PARAM in TABLE

Pattern expression: [Field ⇒ Attribute] ∊	 [TABLE	 ⇒ ObjectType]	
Pattern expression: [PARAM ⇒ Attribute] ∊	 [TABLE ⇒ ObjectType]

Assigning an Attribute to a FIELD would only make sense in the context of a structured
container, which can only be TABLE. But as we propose not to use TABLE to represent
a DM element directly, consequently FIELD cannot be an attribute. We use FIELDref for
that. This also enables backward compatibility, since the FIELD @utype can follow
custom or legacy mapping rules.

For the same reason that makes us avoid the assignment of Attribute to FIELD, we
avoid assigning an attribute to a standalone PARAM, i.e. a PARAM that is directly
contained in a TABLE. The context (TABLE) is not used to indicate the type containing
the Attribute. For this element a PARAMref or a PARAM inside a GROUP is to be used.
This enables backward compatibility.

8 Serializing to other file formats [TBD]
VOTable is expressive enough to allow the mapping patterns described in this
specification. Other formats (notably FITS) cannot support such annotations. Notice, for
instance, that a UTYPE can be used to annotate a column (keyword TUTYPn) but
cannot be used as a keyword itself. A solution to this, which is even one of the

40

motivation behind the VOTable specification, is to wrap other format’s tables with
VOTable headers. Some FITS formats also allow a VOTable header to be included in an
HDU, but this solution seems to be less portable, since some FITS readers do not
support these files.

More discussion will be needed to address this issue.

Appendix	 A. List	 of	 all	 valid	 mapping	 patterns	 [TBD]	

Appendix	 B. Growing	 complexity:	 naïve,	 advanced,	 and	 guru	
clients	

This document defines a complete, unambiguous, standard specification that can be
used to serialize and de-serialize instances of Data Model types. It was designed to be
simple and straightforward to implement by Data Providers and by different kind of
clients. We can classify clients in terms of how they parse the VOTable in order to
harvest its content. Of course, in the real word such distinction is somewhat fuzzy, but
this section tries and describe the different levels of usage of this specification.

Naïve clients
We say that a client is naïve if:

i) it	 does	 not	 parse	 the	 VO-‐DML	 description	 file	
ii) it	 assumes	 the	 a	 priori	 knowledge	 of	 one	 or	 more	 Data	 Models	
iii) it	 discovers	 information	 by	 looking	 for	 a	 set	 of	 predefined	 UTYPEs	 in	 the	 VOTable	

In other terms, a naïve client has knowledge of the Data Model it is sensitive to, and
simply discovers information useful to its own use cases by traversing the document,
seeking the elements it needs by looking at their @utype attribute.

Examples of such clients are the DAL service clients that allow users to discover and
fetch datasets. They will just inspect the response of a service and present the user with
a subset of its metadata. They do not reason on the content, and they are not interested
in the structure of the serialized objects.

If such clients allow users to download the files that they load into memory, they should
make sure to preserve the structure of the metadata, so to be interoperable with other
applications that might ingest the same file at a later stage.

Advanced clients
We say that a client is advanced if:

i) it	 does	 not	 parse	 the	 VO-‐DML	 description	 file	
ii) it	 is	 interested	 in	 the	 structure	 of	 the	 serialized	 instances	
iii) can	 follow	 the	 mapping	 patterns	 defined	 in	 this	 specification,	 for	 example	

collections,	 references,	 and	 inheritance	

41

Examples of such clients are science applications that display information to the user in
a structured way (e.g. by plotting it, or by displaying its metadata in a user-friendly
format), that reason on the serialized instances, perform operations on those instances,
and possibly allow the users to save the manipulated version of the serialization.

Notice that the fact that an application does not directly use some elements that are out
of the scope of its requirements does not mean that the application cannot provide them
to the user in a useful way. For example, an application might allow users to build
Boolean filters on a table, using a user-friendly tree representing the whole metadata.
This exposes all the metadata provided by the Data Provider in a way that might not be
meaningful for the application, but that may be meaningful for the user.

Notice, also, that advanced clients may be DM-agnostic: for instance, an Advanced Data
Discovery application may allow the user to filter the results of a query by using a
structured view of its metadata, even though it does not possess any knowledge of Data
Models.

Guru clients
We say that a client falls into this category if:

i) it	 parses	 the	 VO-‐DML	 descriptions	

ii) it	 does	 not	 assume	 any	 a	 priori	 knowledge	 of	 any	 Data	 Models.	

Such applications can, for example, dynamically allow users and Data Providers to map
their files or databases to the IVOA Data Models in order to make them compliant, or
display the content of any file annotated according to this standard.

This specification allows the creation of universal validators equivalent to the XML/XSD
ones.

It also allows the creation of VO-enabled frameworks and universal libraries. For
instance, a Python universal I/O library can parse any VOTable according to the Data
Models it uses, and dynamically build objects on the fly, so that users can directly
interact with those objects or use them in their scripts or in science applications, and
then save the results in a VO-compliant format.

Java guru clients could automatically generate interfaces for representing Data Models
and dynamically implement those interfaces at runtime, maybe building different views of
the same file in different contexts.

Notice that Guru frameworks and libraries can be used to build Advanced or even Naïve
applications in a user-friendly way, abstracting the developers from the technical details
of the standards and using first class scientific objects instead.

Appendix	 C. Frequently	 Asked	 Questions	
Q: I was used to discover elements in a VOTable by trivially matching strings: can
I still do it?
A: Yes, actually even more so: in fact, according to this specification, the very same
string for the very same element will be present in any context that includes such
element. For example, if you want to find the error bar of an element you can simply look
for a UTYPE like Accuracy.StatError, which does not depend on whether the error refers

42

to a Flux or a Wavelength. Consider the real case of SPLAT, a science application that
deals with spectra: in order to use the “old” UTYPEs, SPLAT cannot trivially match
strings, but uses a regular expression (even though very simple) to match the
.Accuracy. portion of a UTYPE. With the new specification in place, SPLAT could just
trivially match strings by checking that they are equal.

Q: Will this specification increase the number of UTYPEs?
A: No. On the contrary, it will dramatically reduce them: consider for instance an
Accuracy type, which basically encodes error bars. It is composed of few attributes that
express symmetric and asymmetric error bars, systematic errors, upper and lower limits.
In the new specification they can be univocally referenced by less than ten UTYPEs. In
the “old” scheme, each of these elements was bound to other elements (e.g. the spectral
axis, the flux axis, and so on): this means that for expressing the same concepts you
needed more than one hundred UTYPEs only in the Spectrum Data Model!
Consider IRIS, an application that deals with SEDs and spectra: in this application about
a thousand UTYPEs needed to be hard-coded in order to fully represent instances and
provide a Java library for their I/O and manipulation. With this specification IRIS would
need one order of magnitude less UTYPEs to be hard-coded, and could actually even
make without them, by simply using the VO-DML description and a set of intelligently
designed Java interfaces and objects.

Q: Will this specification increase the number of Data Models?
A: The simple answer is: No. This spec is agnostic about which data models there are.
However, a whole lot of Data Models are already out there, since basically each
astronomical instrument needs an ad-hoc Data Model. This specification allows such
Data Models to be expressed in a standard, machine-readable format in terms of
common, more generic Data Models defined and maintained by the IVOA. So, the
extended answer is: No, but it will effectively increase the number of interoperable Data
Models, allowing Data Providers to register their own Models in an IVOA registry.

Q: Am I now forced to use UML for using this specification?
A: No. However, part of the larger picture includes UML as a convenient tool to design,
display, document, and register Data Models. The larger picture of which this
specification is part includes a VO-UML specification in the form of a UML profile that
can make the creation of Data Models more standard and easier. However, using VO-
UML is not a requirement.

Q: Am I now forced to use specific software for using this specification?
A: No. However, this specification enables the development of software that can make
the creation and use of Data Models easier. For example, such software might allow the
automatic generation of documentation, code, web applications, and services from a
simple set of UML diagrams. Some software was already created as part of this
specification effort, or other IVOA efforts from which this specification was derived.

Q: Does this specification break the current standards and protocols?
A: No. This specification does not require any changes in services and applications that
implement current IVOA standards and protocols. However, it also enables new, more
complex standards to be designed and implemented. Files complying with old standards
can be made compliant with this specification by simply adding metadata to them.

Q: Can I use UTYPEs in a customized way without violating this specification?

43

A: Yes. This specification explicitly allows custom usage of UTYPEs, under certain
conditions (FIELDs, standalone PARAMs, etc.).

Q: It looks like this specification needs clients to recursively concatenate strings
to build the actual UTYPE. Is this the case?
A: No. UTYPEs are defined so to be opaque strings that do not need to be parsed or to
be concatenated in order to be used. They are simply references that map the VOTable
elements to a standard “model of models”.

Q: This specification is so complicated! Do I need to implement it all, even just for
extracting a flux from a VOTable?
A: No. And it is not that complicated, actually. As a DNA strand is a simple
concatenation of four basic components, but it is used in nature to build complex
organisms, this specification shows how simple identifiers can be used to enable
complex scientific applications. How complex an implementation is depends on the
implementation requirements: if they are simple, the specification enables you to meet
them in a very simple way. For example, you can extract a flux by simply looking for a
@utype attribute like src:source.LuminosityMeasurement.value. If the requirements for
your application are more complex, then this specification makes the best effort to
enable them straightforwardly. If you are a Data Provider and you want to publish
compliant files and databases, the complexity of the task depends pretty much on the
complexity of your files: they might be very simple structures of VOTable groups, or they
could require complicated Object-Relational Mapping patterns. However, software can
be built using this specification in order to make the data publishing process easier.

Q: Should I parse UTYPEs?
A: No. [It is still to be discussed whether prefixes are fixed or not. In the second case,
some strategies, but not all, might require clients to strip the prefix off the ‘localname’ in
order to look it up in the VODML/XML, in a way similar to what happens now, e.g.
obs:Target.Name vd sdm:Target.Name.].

