
1

 International

 Virtual

 Observatory

Alliance

VO-DML: a consistent modeling language for
IVOA data models

Version 1.0-20160923

Proposed Recommendation 2016 September 23

This version:
 1.0-20160923
Latest version:
 1.0-20160330
Previous version(s):

Editors:
 Gerard Lemson
Omar Laurino

Authors:
Gerard Lemson, Omar Laurino, Laurent Bourges, Mark Cresitello-Dittmar, Mark
Markus Demleitner, Tom Donaldson, Patrick Dowler, Matthew Graham, Norman
Gray, Laurent Michel, Jesus Salgado

Abstract

This document defines a standard modelling language, or meta-model, for
expressing data models in the IVOA. Adopting such a uniform language for all
models allows these to be used in a homogeneous manner and allows a
consistent definition of reuse of one model by another. The particular language
defined here includes a consistent identification mechanism for model which

2

allows these to be referenced in an explicit and uniform manner also from other
contexts, in particular from othe IVOA standard formats such as VOTable.
The language defined in this specification is named VO-DML (VO Data Modeling
Language). VO-DML is a conceptual modeling language that is agnostic of
serializations, or physical representations. This allows it to be designed to fit as
many purposes as possible. VO-DML is directly based on UML, and can be seen
as a particular representation of a UML2 Profile. VO-DML is restricted to
describing static data structures and from UML it only uses a subset of the
elements defined in its language for describing "Class Diagrams". Its concepts
can be easily mapped to equivalent data modelling concepts in other
representations such as relational databases, XML schemas and object-oriented
computer languages.
VO-DML has a representation as a simple XML dialect named VO-DML/XML
that must be used to provide the formal representation of a VO-MDL data model.
VO-DML/XML aims to be concise, explicit and easy to parse and use in code that
needs to interpret annotated data sets.
VO-DML as described in this document is an example of a domain specific
modeling language, where the domain here is defined as the set of data and
meta-data structures handled in the IVOA and Astronomy at large. VO-DML
provides a custom representation of such a language and as a side effect allows
the creation and use of standards compliant data models outside of the IVOA
standards context.

Status of This Document

This is an IVOA Proposed Recommendation made available for public review. It
is appropriate to reference this document only as a recommended standard that
is under review and which may be changed before it is accepted as a full
Recommendation.

A list of current IVOA Recommendations and other technical documents can be
found at http://www.ivoa.net/Documents/.

http://www.ivoa.net/Documents/

3

Contents

VO-DML: a consistent modeling language for IVOA data models 1

1 Introduction 5
1.1 The role in the IVOA architecture 6

2 Data Integration 7
3 VO-DML, VO-UML, VO-DML/Schema and VO-DML/XML 11
3.1 VO-DML/XML + VO-DML/Schema 12

3.2 VO-DML + VO-UML 12
3.3 This specification 13

4 VO-DML Language Specification [NORMATIVE] 15
4.1 ReferableElement 17

4.1.1 vodml-id : VODMLID [1] 18
4.1.2 name : xsd:NCName [1] 18
4.1.3 description : string [0..1] 18

4.2 ElementRef 19
4.2.1 vodml-ref : string [1] 20

4.3 Package extends ReferableElement 20

4.3.1 objectType : ObjectType[] [0..*] 21
4.3.2 dataType : DataType[] [0..*] 21
4.3.3 primitiveType : PrimitiveType[] [0..*] 21
4.3.4 enumeration : Enumeration[] [0..*] 21
4.3.5 package : Package[] [0..*] 21

4.4 Model 22
4.4.1 name : string [1] 23
4.4.2 description : string [0..1] 23
4.4.3 title : string [1] 23
4.4.4 author : string[0..*] 23
4.4.5 version : string [1] 23
4.4.6 previousVersion : anyURI [0..1] 23
4.4.7 lastModified : dateTime [1] 23
4.4.8 import : ModelImport [0..*] 23
4.4.9 package : Package[] [0..*] 23
4.4.10 objectType : ObjectType[] [0..*] 23
4.4.11 dataType : DataType[] [0..*] 23
4.4.12 enumeration : Enumeration[] [0..*] 23
4.4.13 primitiveType : PrimitiveType[] [0..*] 23

4.5 ModelImport 26
4.5.1 name : string [1] 27
4.5.2 version : string [1] 27
4.5.3 url : anyURI [1] 27
4.5.4 documentationURL : anyURI [1] 27

4.6 Type extends ReferableElement 29
4.6.1 extends : ElementRef [0..1] 30
4.6.2 constraint : Constraint [0..*] 30

4.7 ValueType extends Type 32
4.8 PrimitiveType extends ValueType 32

4

4.9 Enumeration extends ValueType 33
4.9.1 literal : EnumLiteral [1..*] 33

4.10 EnumLiteral extends ReferableElement 35
4.11 DataType extends ValueType 35

4.11.1 attribute: Attribute [0..*] 36
4.11.2 reference: Reference [0..*] 36

4.12 ObjectType extends Type 37
4.12.1 attribute : Attribute [0..*] 38
4.12.2 collection : Composition [0..*] 38
4.12.3 reference: Reference [0..*] 38

4.13 Role extends ReferableElement 40
4.13.1 datatype : ElementRef 40
4.13.2 multiplicity: Multiplicity 40

4.14 Attribute extends Role 41
4.14.1 semanticconcept : SemanticConcept [0..1] 41

4.15 SemanticConcept 42
4.15.1 vocabularyURI: anyURI [0..1] 43
4.15.2 topConcept: anyURI [0..1] 43

4.16 Relation extends Role 45

4.17 Composition extends Relation 46
4.18 Reference extends Relation 47

4.19 Multiplicity 48
4.19.1 minOccurs: nonnegativeInteger [0..1] 49
4.19.2 maxOccurs: integer [0..1] 49

4.20 Constraint 51
4.21 SubsettedRole extends Constraint 52

4.21.1 role: ElementRef 52
4.21.2 datatype: ElementRef 52
4.21.3 semanticconcept : SemanticConcept 52

5 Procedure for defining data models in the IVOA 53

5.1 Rules 53
5.2 Suggestions 54

6 References 55

Appendix A Relation to UML 57

Appendix B Mapping to serialization meta-models 60

Appendix C vodml-id generation rules 63

Appendix D Example Source data model 63

Appendix E The ‘ivoa’ model 64

5

1 Introduction
The key element for achieving interoperability among actors sharing data is the
definition of shared Standard Data Models.

The Wikipedia entry for Standard Data Model states:
A standard data model or industry standard data model (ISDM) is a data model
that is widely applied in some industry, and shared amongst competitors to some
degree. They are often defined by standards bodies, database vendors, or
operating system vendors.
When in use, they enable easier and faster information sharing because
heterogeneous organizations have a standard vocabulary and pre-negotiated
semantics, format, and quality standards for exchanged data. The
standardization has an impact on software architecture as solutions that vary
from the standard may cause data sharing issues and problems if data is out of
compliance with the standard.1

Interoperable modeling is a much more challenging enterprise than usual
application- or organization-centric data modeling in that the standard data
models need to be adopted in many different contexts, like software applications,
database management systems, serialization formats, web services, and across
different organizations, programming languages, operating systems. For this
reason, stricter rules should be imposed on standard data models so that a broad
range of applications can be supported.

This specification has three main goals:

1. Provide a set of formal rules for data modeling in the IVOA in order to
ensure that the resulting models can be consistently used by many
different actors, from data publishers to end users, including application
developers, and using different technologies.

2. Provide a standard, machine-readable representation for IVOA Data
Models.

3. Define portable Data Model references for pointing to Data Models and
the elements they define.

Item 3 is particularly important because it takes into account the existing file
formats in use in Astronomy that cannot be replaced by XML or other common
languages for representing data models. So, while VO-DML makes indeed use of
XML, it also defines standardized portable pointers that can be used in many
serialization formats to refer to Data Models and their elements.

Section 2 more formally and technically introduces how VO-DML is relevant to
the IVOA from a Data Integration perspective. Section 3 describes the contents

1 http://en.wikipedia.org/wiki/Standard_data_model

6

of this specification and some non-normative aspects, while Section 4 contains
the normative part of this specification. Section 5 contains guidelines for the
proper data modeling process in the IVOA, endorsed by the IVOA Data Modeling
Working Group.

Various appendices provide supplementary material that may help in using this
specification.

Appendix A contains a table that for each important VO-DML concept lists the
corresponding UML concept with hyperlink and short comment. This could be
used as a summary of the main specification. One may wish to compare VO-
DML and VO-DML/Schema to alternative languages such as RDF-Schema or
OWL [19], or similar approaches to designing domain-specific modeling
languages such as Ecore [18].

A short overview how one might map VO-DML data models to meta-models for
application specific serialization and/or instantiation formats is given in Appendix
B. Such a mapping can be considered physical models implementing a logical
model defined in VO-DML. Examples discussed there are mappings to XSD, to
the relational database model and Java. That appendix also contains a
discussion on the possible need for and a design of an application neutral
serialization language specifically tailored to VO-DML, referred to as VO-DML/I.

Serialization of Data Model instances in VOTable format is provided in a related
document [3]. It is important to note, however, that any number of serialization
strategies can be created for any number of corresponding file formats using the
portable references (vodml-id) defined in this specification. Such strategies only
need to be defined once and for all for each format, and apply to all Data Models,
as long as they are formally described in a VODML/XML document.

Appendix C discusses a possible set of rules for deriving the vodml-id of a

model element from the actual model.

Appendix D introduces the sample data model that is used in this specification.

Appendix E finally shows a special data model, named 'ivoa', that predefines a
number of standard primitive types and some types representing IVOA-like
quantities (with UCD and unit). All other IVOA data models SHOULD use this
model, as it allows one to have a consistent set of the types at the leaves of the
type definition hierarchies.

1.1 The role in the IVOA architecture

This specification defines a language for expressing data models for the IVOA
and is the core of the mapping specification language for expressing how data
model instances are stored in VOTables and other tabular serializations such as
TAP.

7

Note that in the diagram not all existing DMs are represented. This specification
is supposed to apply to all models.

2 Data Integration
The home page of the IVOA web site states that:
The Virtual Observatory (VO) is the vision that astronomical datasets and other
resources should work as a seamless whole.2

While Wikipedia states that:

Virtual observatory (VO) is a collection of interoperating data archives and
software tools which utilize the internet to form a scientific research environment
in which astronomical research programs can be conducted.

These characterizations of the VO are very similar to the various definitions of
data integration one encounters when searching the web, such as

2 http://www.ivoa.net/

8

Data integration involves combining data residing in different sources and
providing users with a unified view of these data.3

Data integration involves combining data from several disparate sources, which
are stored using various technologies and provide a unified view of the data4.

And from Chapter 9 in [1], which we will use in much of this introduction

The goal of data integration is to provide a uniform access to a set of
autonomous and possibly heterogeneous data sources in a particular application
domain.

In fact the Virtual Observatory can be seen as what [1] calls a virtual data
integration effort: the data remain in their data sources; the integration is
performed only when the data is needed, say during a query. The unified view of
the data in such data integration projects is provided by what is commonly called
a global schema. The global schema aims to represent, in a unified view, the
information contained in the source databases pertaining to a certain domain, or
universe of discourse.
The goal of data integration projects such as the VO is to provide end users with
a view of the source databases based on this schema. For example users could
be allowed to submit queries phrased in terms of this schema rather than in
terms of the schemas of the underlying databases. Or serialized data sets should
be expressed using terms of the global schema. Or it should be possible to write
code against programming APIs designed according to the global schema.

The central problem of both IVOA and data integration in general is that the
source databases generally do not conform to any common schema one might
wish to design. The source databases have generally been created to serve the
purposes of the entity/organization that owns them, without coordination between
the different providers to align their designs. This shows itself in two ways: First is
what one might call technical heterogeneity, source databases are built using
different technologies or use different formats. Experience in the VO shows that
this can be solved: owners of the data are willing to describe their data holdings
in some standardized format and abide by some standard access protocols (e.g.
TAP), or send their data over the net in some standardized serialization format
(e.g. VOTable).

What is much harder to solve and is the target of the current work as well as the
related Mapping to VOTable specification [3], is what is called in [1] semantic
heterogeneity. Source databases contain information from possibly overlapping
but not identical subsets of the whole problem domain, and even where there is
overlap in contents, the design will generally be different. The source databases
were generally built according to local specifications, targeting different subsets

3 http://en.wikipedia.org/wiki/Data_Integration
4 http://www.dataintegration.info/data-integration

http://en.wikipedia.org/wiki/Data_Integration
http://www.dataintegration.info/data-integration

9

of the overall domain (Astronomy for the VO), and the designs use particular
views of the schema optimized for particular applications and/or implementations.
So even if all source databases are relational, the actual data models they use
are different and data providers will in general be unwilling or unable to change
the structural design of their data holdings, or the contents of the serializations, to
conform to some uniform, global design. Instead a mapping must be provided
between the source schemas and the global schema. In the literature the
components providing this mapping are often referred to as mediators.

The link between the global schema and the various data models defined in the
IVOA is easy to see. Similar to global schemas, data models in the IVOA have a
particular goal, namely to facilitate interoperability of distributed data sources.
They can provide serialization formats for the results of protocols such as the
spectrum data model in SSAP [23] or can provide a common relational schema
as in ObsCore+ObsTAP [24].
Mediators are not as easily identified or isolated, but they must be hidden
somewhere inside the different implementations of the various IVOA access
protocols. For example in an implementation of SSAP a special code component
may translate some native representation of a spectrum into one of the few
allowed forms allowed by the protocol. And in ObsTAP one may be able to define
database views on the native schema to represent the ObsCore table(s).

The two examples mentioned above, SpectrumDM+SSAP and
ObsCore+ObsTAP, are not the only, or even most common data integration
patterns in the IVOA. What distinguishes these from other approaches is that a
data model is represented faithfully, i.e. the protocol serializations produced by
the protocol, or the database design exposed by the data providers, is basically a
one-to-one representation of the common data model defined by the standard.
Especially ObsTAP is a nice example of a pattern that is equivalent to the data
integration pattern called global-as-view. The global schema can sometimes
literally be implemented as a collection of database views on the source
schemas. These views show how the entities from the global schema are
represented in and how they can be extracted from the source database5.

In the IVOA this pattern is still rare. The more common way by which one may
obtain knowledge about the contents of some data source in standardized terms
is through annotations. Data sets are represented in some standardized format
that includes hooks for associating terms from a standardized source of semantic
information. In the IVOA the main representations that allow this are VOTable [4]
and TAP_SCHEMA6 [5]. Each of these contains hooks for linking certain data
components to the UCD semantic vocabulary (see [6] and [7]). Associating a
term from that controlled list to say a FIELD (VOTable) or column (TAP) indicates
that those elements represent the concept identified by the term.

5 For the use of the view concept in data and information integration see [2].
6 Note, in this document, we use the term TAP_SCHEMA for the way metadata about a TAP
service is represented, not necessarily only about the actual TAP_SCHEMA tables.

10

It was recognized that apart from the controlled vocabularies, also the various
data models defined for varying purposes within the IVOA contain semantic
information. Maybe it would be possible to provide a mechanism similar to the
UCD annotations that would allow one to associate elements from a data source
with elements inside these models. The utype attribute was defined in VOTable
to represent such "pointers into a data model".

What these were supposed to point at was left unspecified, this specification
provides that definition. This specification defines a formal language for defining
IVOA data models. Data models defined in this language contain explicitly
identified data model elements that can be formally referenced using a
namespace-like mechanism for avoiding name clashes among different Data
Models.7

The language defined here is called VO-DML, which stands for Virtual
Observatory Data Modeling Language. VO-DML is designed to satisfy the
following requirements. It should

1. Support the specification of serialization strategies for serializing instances
of data models into different file formats;

2. Be rich enough to represent existing IVOA data models;
3. Support model reuse;
4. Be implementation-neutral, but...
5. Be flexible enough to be mapped to important physical representations, in

particular XML schema, relational model (TAP), object-oriented languages
(Java, Python...), and at the same time...

6. Be as minimal as possible, avoiding redundancy, adding restrictions
where possible, with the aim of simplifying the work of modelers by
offering few and obvious (sic) choices;

7. Be based on accepted standards for data modeling, but ...
8. Not rely on external modeling tools8, but be sufficiently compatible with

them so that such tools MAY be used when representing models;
9. Support runtime model interpretation;

The data modeling language defined in this document fulfills these requirements.

The language is explicitly implementation neutral, but has been successfully
used as the source for transformation scripts that produce various
representations such as a fully hyper-linked HTML document and Java classes
used to infer data model instances form suitably mapped VOTables9. The formal

7 Note that a separate specification is in preparation to define how precisely to map data models
to VOTables. That specification does actually not use the utype attribute, but introduces a new
<VODML> element that is more expressive and tuned to the VO-DML language.
8 In particular graphical UML tools.
9 This work again is not complete, but an earlier version of VO-DML was used to generate XSD
and RDB representations used in proof-of-concept implementations for the the Simulation Data

11

representation language is XML that can be easily hand coded, but also has a
non-normative UML representation that can be translated into VO-DML
automatically. Finally the model representation language can be used in
validating VOTables annotated using vodml-ids.
Applications making use of VO-DML XML descriptions can be agnostic of the
actual models, but can successfully retrieve, parse and load those at runtime.

The VO-DML specification consists of a conceptual part and a serialization
language. The latter defines an XML format and this specification states that all
data models in the IVOA MUST have a representation in that format. The
conceptual part of the spec goes by the name of VO-DML, short for VO Data
Modeling Language. The serialization language goes by the name of VO-
DML/Schema and an XML document conforming to this standard defines a data
model, and is referred to as the VO-DML/XML representation of that data model.
The language can be expressed graphically using a subset of UML. For this
purpose a UML Profile is defined that represents the VO-DML concepts in. This
is referred to as VO-UML, but is informative, not a normative part of the spec.
These four different representations will be discussed in more detail in the next
section. Section 3 then defines each modeling concept in detail and illustrates
their usages in the different representations. Section 4 defines normative rules
how to define data models in the IVOA and gives some non-normative best
practices guide lines. Auxiliary material is contained in the appendices.

3 VO-DML, VO-UML, VO-DML/Schema and
VO-DML/XML

This specification distinguishes between the conceptual meta-model, VO-DML
and the XML based serialization language for expressing data models, referred
to as VO-DML/XML. The latter is defined using an XML schema together with a
Schematron10 file defining further constraints and is referred to in combination as
VO-DML/Schema. The relation between VO-DML and VO-DML/XML is
equivalent to the relation between a UML [12] (see also [16]) model and its
representation as a file in the XML serialization format XMI [15]. VO-DML is
directly derived from UML in the sense that most of its modeling constructs have
a counterpart in UML. One can in fact interpret VO-DML as a UML Profile11 [16],
a domain specific "dialect" of UML. This is made explicit in this specification by
providing a (non-normative) UML representation of VO-DML, referred to as VO-
UML.

model specification[8]. which gave rise to the VO-URP framework to generate a complete set of
representations.
10 http://www.schematron.com/
11 http://www.uml-diagrams.org/profile-diagrams.html

12

These different components of the specification are discussed in some more
detail in the next subsections.

3.1 VO-DML/XML + VO-DML/Schema

For most use cases a VO-DML data model must be serialized in a computer
readable format. The serialization language to be used for this is referred to as
VO-DML/XML. A VO-DML/XML document is an XML document that must
conform to a formal syntax defined by an XML schema12, vo-dml.xsd13 and must
further validate under the rules defined in an associated Schematron file, vo-
dml.sch.xml14. These files implement all the concepts described in section 4 The
schema files are self-documented as much as possible, and in what follows only
a few details of the overall design, focusing on technical aspects of the
implementation, are given.
VO-DML/XML is a simple representation of a VO-DML model as an XML
document. The fact that this specification defines a custom designed serialization
language rather than using some existing language could be seen as an
unnecessary complication. One could for example also consider using XMI as
the standard for serializing VO-DML models. However, XMI is a rather unwieldy
format that hides many of the features that are made explicit in this specification.
Hence as a language from which to derive information of the model without very
sophisticated tools it is ill-suited. Also one should not assume all users have
access to a UML modeling tool that can support all the UML modeling features
needed to create VO data models, and hand-editing XMI is nigh impossible. It is
also foreseen that users may want to derive models from other representations
(e.g. XML schema, or RDF) and XMI as target language for such a tool requires
deep understanding of its format, which is not necessary for the simple language
proposed here.
VO-DML/XML is a useful language for serializations, in particular because, being
completely under control of the IVOA DM WG, it can be tailored to the
requirements deriving from its usage in the IVOA. This provides more freedom to
restrict the format and implement the appropriate constraints. This is formal in the
sense that VO-DML/XML files MUST conform to these specifications. The
implementation of VO-DML provided by these files is referred to as VO-
DML/Schema. VO-DML/Schema is a direct implementation of the VO-UML
profile: it exposes all modeling concepts explicitly, and ignores the many
UML/XMI features that are not needed.

3.2 VO-DML + VO-UML

VO-DML defines the concepts used to create data models in the IVOA. It uses a
small subset of the components from UML Class Diagrams15 and hence follows

12 XML Schema was chosen as the core language for VO-DML/XML, as it was felt it is more
familiar to the IVOA community than Schematron.
13 http://volute.g-vo.org/svn/trunk/projects/dm/vo-dml/xsd/vo-dml.xsd
14 http://volute.g-vo.org/svn/trunk/projects/dm/vo-dml/xsd/vo-dml.sch.xml
15 All formal references are to version 2.4.1 of the UML spec, though the components used in VO-
DML are standard since at least version 2.0.

http://volute.g-vo.org/svn/trunk/projects/dm/vo-dml/xsd/vo-dml.xsd
http://volute.g-vo.org/svn/trunk/projects/dm/vo-dml/xsd/vo-dml.sch.xml

13

an object-oriented approach. VO-DML restricts itself to structural constructs only;
operations are explicitly excluded from our language. Constraints are supported,
but in a very limited manner.
A great strength of UML is its formal graphical language and though only a VO-
DML/XML representation of a model will be required for IVOA data models,
human-readable graphical representations are extremely useful to interpret and
understand a model. Until a graphical VO-DML tool exists, modelers can use one
of the many available UML modeling tools to create such a representation.
VO-UML has been expressed at least in one such UML modeling tool as a UML
profile, using stereotypes with tag definitions to enable modeling of domain
specific components in the graphical tool and to facilitate automated generation
of VO-DML/XML from the XMI in which the UML model was serialized.
But note, though VO-UML is used for illustrations, and has been used to define
some models, the VO-DML specification is not dependent on UML or any tools
for defining models in UML. VO-DML data models need not have a UML
representation, but they MUST have a serialization in terms of VO-DML/XML
(see section 5 for details on how to define data models). Hence the VO-UML part
in this spec is INFORMATIVE, not NORMATIVE. But if a UML representation is
provided, it SHOULD restrict oneself to those UML elements that match the VO-
DML concepts as defined in this specification.

3.3 This specification

Section 4 defines all the major components of the VO-DML meta-model. Each
subsection defines a concept in its title and contains a description of its meaning
at the conceptual, VO-DML level. In appropriately titled sub-sub-sections it lists
and describes all the sub-components.
As the VO-DML modeling language can and be interpreted as a subset of the
UML modeling language, this document is basically a listing of those UML
components that are part of the language with a description how they are used,
restricted and in some cases renamed. This link is made explicit in the sections
headed with the phrase VO-UML. Those sections identify the UML concepts, or
meta-class, from UML version 2.4.1 [13] that is closest in meaning to the VO-
DML concept and also provide hyperlinks to the rather more readable UML
Diagrams website [16].
Where appropriate 16 the VO-UML section also contains a sample graphical
representation of the concept using snippets from a sample UML model
described in Appendix D. This is a toy data model for astronomical Source-s and
is designed specifically to illustrate most of the modeling constructs. See the
appendix for details on where its different representations can be found. The
diagrams for this model were created using a particular UML modeling tool
(MagicDraw Community Edition 12.1). This version supports UML 2.0 17 ,

16 Not all UML concepts have a graphical representation.
17 http://schema.omg.org/spec/UML/2.0. The graphical elements are available in both UML 2.0
and 2.4.1, but MagicDraw CE 12.1 only supported 2.0.

http://schema.omg.org/spec/UML/2.0

14

serializing its models to XMI 2.118. An explicit UML Profile19 was created to
represent also those VO-DML concepts that do not have a direct UML
counterpart. This Profile contains definitions for stereotypes with tags that allow
us to extend the definition of certain UML elements so that these can be directly
mapped to VO-DML.
Implementations may use this Profile during the automated generation of a VO-
DML/XML representation directly from the UML model. They may, for example,
use the XMI serialization of the UML model as source for an XSLT script. UML
modeling tools may support a similar Profile-based approach, or may have to use
different means by which to capture those VO-DML concepts that do not directly
map to the UML version they support20.
This graphical representation of VO-UML is not normative, but modelers are
strongly urged that if they use UML to illustrate their models they use its design
principles in constructing the diagrams. In particular they should have a mapping
from VO-DML concepts to UML and obey the constraints implied by this
mapping21.
In spite of its relation to UML, ultimately VO-DML should be expressed in a VO-
DML/XML document conforming to the formal VO-DML/Schema documents.
This specification document can therefore also be seen as an explanation of
those documents. Each VO-DML concept listed in the next section has a
counterpart in the schema, which is replicated in shortened form in the section
headed with the term VO-DML/SCHEMA. The full definition can be found in the
corresponding schema documents that accompany this specification. To repeat,
this schema is normative. I.e. all VO-DML models MUST be defined by a VO-
DML/XML document, which MUST conform to the schema and schematron files,
as well as by any rules and constraints written in the current document that may
not have been implemented explicitly in the schema.
Most subsections will also contain a section headed VO-DML/XML, which
contains an example XML snippet extracted from the VO-DML/XML
representation of the sample model in Appendix D.
The fact that different representations of VO-DML are used, sometimes in the
same sentences, could make it difficult to understand which representation one is
referring to when using a named concept. In an attempt to prevent this, the
following notation is used to indicate which representation is intended: references
referring to a VO-DML concept are in boldface; references to an XML schema

implementation of a concept are in courier font; references to a UML concept

are in italics.

18 http://schema.omg.org/spec/XMI/2.1.
19 See http://www.uml-diagrams.org/profile-diagrams.html#profile
20 It should once more be made clear that the current spec does not mandate the use of some
particular UML modeling tool. But a UML representation different from VO-UML MUST NOT be
used to define an IVOA data model without an explicit mapping to VO-DML.
21 E.g. as VO-DML does not allows multiple inheritance, the UML diagrams should not use this
feature either.

15

4 VO-DML Language Specification [NORMATIVE]
This section defines all the elements from the VO-DML meta-model. The order in
which the elements appear is roughly based on an dependency hierarchy
between the meta-elements, which is visualized in the diagram in Figure 1. That
diagram shows a representation of the VO-DML meta-model as a UML-like
diagram. It leaves out most of the details, focusing on the inheritance hierarchy
between the meta-model concepts represented by the boxes. This diagram is
inspired by the first diagram in [18], which shows the components of the Ecore
meta-model used in the Eclipse Modeling Framework22.

Figure 1 UML-like diagram of the main components of the VO-DML meta-model.

A more detailed diagram is shown in Figure 3 and Figure 3. These diagrams also
show the attributes and non-inheritance relations between the concepts. Note
that these diagrams are not VO-UML diagrams and certain rules of VO-DML are
not obeyed here23. It is purely meant to illustrate the meta-model and allow
comparison with the similar diagrams in the Ecore meta-model in [18].

22 https://www.eclipse.org/modeling/emf/
23 For example Attribute is contained by both ObjectType and DataType and Package contains
itself. As this meta-model is not supposed to be a model of a data structure, but of a language,
and moreover since the diagram is meant for illustration only, this should not give rise to
confusion.

https://www.eclipse.org/modeling/emf/

16

Figure 2 The structure of a Model, consisting of packages, various types and possibly
imported models.

The subsections in this chapter have titles that name the concepts. Abstract
elements have a slanted title. Child components have in general a title that
follows the name of the element, separated by a colon. References to other
elements are implemented as much as possible using hyperlinks. When primitive
types are needed, the names from the basic "IVOA" data model introduced in
Appendix E are used. These names are common and the model is not really
required to understand their meaning. Ultimately the XSD representation of each
element is normative and it uses the standard set of primitive types such as

xsd:string etc.

17

Figure 3 Detailed view of the meta-model hierarchy below ReferableElement. Composition
and reference relation are indicated as well as attributes.

4.1 ReferableElement

A data model consists of model elements of various types. In the VO-DML/XML
serialization almost all of these MUST have an explicit identifier element that
makes it possible for them to be explicitly referenced, either from inside the
model, or from an external context. VO-DML/Schema defines the abstract type

ReferableElement that is a super-type of all types representing such referable

concepts. It contains an identifier element named vodml-id that MUST be

unique within the model.

Note that for convenience vodml-id SHOULD be human-readable, following to

the grammar defined in Appendix C. While this is not obligatory, since vodml-

ids are only required to be unique in a model, it is convenient for a human

18

confronted by such an identifier to intuitively infer its meaning. Following a
standard grammar improves consistency among data models.

All referable elements also have a name, and a description. The name
SHOULD be used to derive the vodml-id from the structure of the model, as
described in Appendix C.
The name must often be unique within the direct context where a particular
referable element is defined. For example all Types defined as direct children of
a Package must have a name that is unique in the context of that package.
Similarly Attributes must be unique in the definition of the Type they are defined
in; in fact this must be true for the whole collection of Roles in the inheritance
hierarchy of the type.

4.1.1 vodml-id : VODMLID [1]
Identifier for the containing model element. Syntax in VO-DML\XML defined by

the VODMLID type, as shown in the VO-DML\Schema snippet below.

This element MUST be formatted according to the regular expression in the XML
schema:

[\w\._-]+

4.1.2 name : xsd:NCName [1]
The name of the model element. The name MUST conform to the following XML
Schema pattern defined in the VO-DML/XSD:

[a-zA-Z][\w_]*

Names are often restricted by uniqueness constraints in subclasses of
ReferableElement. For examples names of Types must be unique within their
containing Package, Role names must be unique within their containing Type
etc.

4.1.3 description : string [0..1]
Human readable description of the model element. Note the multiplicity
constraints. In principle every model element SHOULD have a meaningful
description, but no tool will be able to check whether a certain description is
correct. Since a meaningless string can easily be provided if one wants to evade
a possible not null constraint, the description may be null.

VO-UML
Closest UML meta-class: NamedElement. [§7.3.34 in [13]24].

ReferableElement does not have its own graphical element, but has a
representation in VO-UML as the stereotype <<modelelement>>. That stereotype
defines a tag 'vodml-id'. When assigning the stereotype to a particular model
element one can (but in general SHOULD NOT) define an explicit value for the
vodml-id of the element, rather than the default value that is the one generated
by the VO-UML itself using the grammar described in Appendix C below.

24 The reference to the UML specification [13] will be left out from now on.

http://www.uml-diagrams.org/uml-core.html#named-element

19

Figure 4 VO-UML type with an explicit <<modelelement>> stereotype. This allows one to
explicitly assign a vodml-id, possibly overriding the one that would be automatically
assigned using the algorithm in Appendix C.

VO-DML/Schema

All main modeling elements in the VO-DML XSD (apart from Model) extend

ReferableElement. This abstract base class has an identifier element

<vodml-id>, the value of which must be unique in the model. This means that

these elements can be referenced using this identifier. In VO-DML this is used

explicitly in the ElementRef type that expresses such references inside the

meta-model using a <vodml-ref> element. The type definitions for vodml-id is

that of a restricted string, the details of which are expressed in the following XML
Schema snippet.

<xsd:simpleType name="VODMLID" >

 <xsd:restriction base="xsd:string">

 <xsd:pattern value="[\w\._-]+"/>

 </xsd:restriction>

</xsd:simpleType>

<xsd:complexType name="ReferableElement" abstract="true">

 <xsd:sequence>

 <xsd:element name="vodml-id" type="VODMLID" minOccurs="1"/>

 <xsd:element name="name" type="xsd:string" minOccurs="1"/>

 <xsd:element name="description" type="string" minOccurs="0"/>

 </xsd:sequence>

</xsd:complexType>

VO-DML/XML

As ReferableElement is abstract, there are no direct examples of its usage,

only through types derived from it.

4.2 ElementRef

To refer to a ReferableElement from inside a VO-DML\XML data model

document, for example to indicate the data type of an Attribute or other Role,

one must use an ElementRef. This contains a single element named vodml-

ref, the value of which must be the vodml-id of the referenced element,

prefixed by the name of the model the referenced element belongs to. This can
be the same model as the one containing the referencing element, or it may be a
model imported by the current model25.

25 TBD It is still a matter of discussion how the prefix is assigned. The current doc assumes that
models have a universally unique name and this MUST be used as prefix. Obvious alternative is
to add a declaration of the prefix that is used as part of the model import statement.

20

4.2.1 vodml-ref : string [1]
The element identifying the referenced target element. The syntax of the vodml-
ref consists of the name of the model, a colon ':' and the vodml-id of the
referenced element. In mock BNF:

<vodml-ref> :== <model-name> ':' <vodml-id>

VO-UML

This type has not explicit counterpart in VO-UML, though XMI's xmi:idref is

similarly playing the role of referring to other elements in the model. In VO-DML,
ElementRef-s may refer to elements defined in an external, imported model
without explicit representation in the model that uses the type.

VO-DML/Schema
<xsd:simpleType name="VODMLREF">

 <xsd:restriction base="xsd:string">

 <xsd:pattern value="[a-zA-Z][\w_-]*:[\w\._-]+" />

 </xsd:restriction>

</xsd:simpleType>

 <xsd:complexType name="ElementRef">

 <xsd:sequence>

 <xsd:element name="vodml-ref" type="VODMLREF">

 </xsd:element>

 </xsd:sequence>

 </xsd:complexType>

VO-DML/XML
Any usage of one type by another type, be it as data type of an attribute, or as
target type of a relation, will give rise to an ElementRef definition in the
corresponding VO-DML/XML. This generally just means the element contains a

<vodml-ref> element that must conform to the syntax in the schema. See

examples further on in this specification.

4.3 Package extends ReferableElement

Packages divide the set of types in a model in subsets that are semantically
related26 , providing these with a common namespace: their names must be
unique in this context only. A package may contain child packages. This concept
is similar to for example an XML namespace, a Java package or a schema in a

relational database.

26 http://www.uml-diagrams.org/package-diagrams.html#package

http://www.uml-diagrams.org/package-diagrams.html#package

21

A package has separate collections for each of the type classes. This avoids the

need for xsi:type casting in serializations and facilitates tracing path

expressions.

4.3.1 objectType : ObjectType[] [0..*]
Collection of ObjectTypes defined in this package.

4.3.2 dataType : DataType[] [0..*]
Collection of DataTypes defined in this package.

4.3.3 primitiveType : PrimitiveType[] [0..*]
Collection of PrimitiveTypes defined in this package.

4.3.4 enumeration : Enumeration[] [0..*]
Collection of Enumerations defined in this package.

4.3.5 package : Package[] [0..*]
Collection of child packages defined in this package.

VO-UML
UML meta-class: Package [§7.3.38]
The graphical representation of a Package in UML is a tabbed rectangle with
name in the top of the rectangle as shown in Figure 5. Types owned by the
package may be shown inside the symbol. Types may also have the package
name placed within parentheses below the name of the type. See the Source
type in the figure for an example of the latter.

Figure 5 A package is represented by a tabbed rectangle. Types belonging to it can be
drawn inside it.

http://www.uml-diagrams.org/package-diagrams.html#package

22

VO-DML/Schema

In VO-DML/Schema, Package is represented by a complexType of the same

name and extends ReferableElement.
<xsd:complexType name="Package">

 <xsd:complexContent>

 <xsd:extension base="ReferableElement">

 <xsd:sequence>

 <xsd:element name="objectType" type="ObjectType" minOccurs="0"

 maxOccurs="unbounded"/>

 <xsd:element name="dataType" type="DataType" minOccurs="0"

 maxOccurs="unbounded"/>

 <xsd:element name="enumeration" type="Enumeration"

 minOccurs="0" maxOccurs="unbounded"/>

 <xsd:element name="primitiveType" type="PrimitiveType"

 minOccurs="0" maxOccurs="unbounded"/>

 <xsd:element name="package" type="Package" minOccurs="0"

 maxOccurs="unbounded"/>

 </xsd:complexContent>

 </xsd:extension base="ReferableElement">

</xsd:complexType>

VO-DML/XML
<package>

 <vodml-id>source</vodml-id>

 <name>source</name>

 <description>...</description>

 <objectType>

 <vodml-id>source.LuminosityMeasurement</vodml-id>

 <name> LuminosityMeasurement</name>

...

4.4 Model

A Model represents a complete data model. It represents a coherent set of type
definitions, by which it represents the concepts that have an explicit place in its
universe of discourse, i.e. the set of concepts one can talk/"discourse" about in
the model's context. In VO-DML each data model is defined in a single
document, but Model is an explicit concept 27 in VO-DML that is particularly
important for supporting model reuse through the import feature (see 4.4.8).
Note that although the vodml-id of model elements MUST NOT have the prefix,
references from model elements to other elements inside the same model MUST
use the full vodml-ref definition 4.2.1 , i.e. MUST include the model's name as
prefix.
Model has the following components, which have a 1-1 correspondence in the
VO-DML/Schema. See there for more extensive comments.

27 Rather than just the container of its content.

23

4.4.1 name : string [1]
The short name and identifier for this model. This is assumed to be globally
unique in the IVOA. Model definitions that are not part of the IVOA standards
SHOULD use the underscore character and a unique prefix for their models, e.g.
“gaia_src” in order to avoid name clashes with other extensions from other
authors. The name/identifier is also used as the prefix in the construction of

strings referencing the model with that name, e.g. “src:Source”.

For its role as prefix in VODMLREFs we restrict the valid values of the model
name to the following XML Schema pattern (defined in the ModelName type in
the VO-DML/XSD):

[a-zA-Z][\w_-]*

4.4.2 description : string [0..1]
long description for the Model

4.4.3 title : string [1]
Long name for the Model.

4.4.4 author : string[0..*]
List of names of authors who have contributed to this model.

4.4.5 version : string [1]
Label indicating the version of this model.

4.4.6 previousVersion : anyURI [0..1]
URI identifying a VO-DML model that is the version from which the current
version of model is derived.

4.4.7 lastModified : dateTime [1]
Timestamp when the last change to the current model was mad.

4.4.8 import : ModelImport [0..*]
An 'import' element indicates a dependency on an external, predefined VO-DML
data model. Types from that model may be referenced, extended, or assigned to
attributes as data types. Types from the external model MUST NOT be used for
composition relationships.

4.4.9 package : Package[] [0..*]
Collection of child packages defined in this model.

4.4.10 objectType : ObjectType[] [0..*]
Collection of ObjectTypes defined directly under the model.

4.4.11 dataType : DataType[] [0..*]
Collection of DataTypes defined directly under the model.

4.4.12 enumeration : Enumeration[] [0..*]
Collection of Enumerations defined directly under the model.

4.4.13 primitiveType : PrimitiveType[] [0..*]
Collection of PrimitiveTypes defined directly under the model.

24

VO-UML
Derived from UML element: Model [§17.3.1].

In UML a Model 28 is a special kind of Package and is represented by the
package symbol with a triangle in the top right as shown in Figure 6

Figure 6 UML representation of a Model as a special kind of package.

In the Profile used for these diagrams the root of the document represents the
model and a separate graphical element is not required29, as shown in Figure 7.
The VO-UML profile contains a <<model>> stereotype that can be assigned to a
Model and which defines tags which allow one to define extra metadata about
the model and which correspond to the metadata elements defined in the
subsections below.

28 http://www.uml-diagrams.org/package-diagrams/model.html
29 But see ModelImport.

http://www.uml-diagrams.org/package-diagrams/model.html

25

Figure 7 In MagicDraw the root model can be named and represents the VO_DML model.
This is not generally possible in all UML modeling tools, e.g. Modelio names the root of the
model Root, which cannot be changed.

VO-DML/Schema

In VO-DML/Schema Model is represented by a complexType Model. It contains

definitions for model specific meta-data elements. Model is furthermore

represented by the single root element defined in the schema, named model.

This has type Model and has a uniqueness constraint defined on the vodml-id-s

of all its contained elements.

<xsd:complexType name="Model">

 <xsd:sequence>

 <xsd:element name="name" type="ModelName" minOccurs="1"

 maxOccurs="1"/>

 <xsd:element name="description" type="xsd:string" minOccurs="0"

 maxOccurs="1"/>

 <xsd:element name="title" type="xsd:string" minOccurs="1"

26

 maxOccurs="1"/>

 <xsd:element name="author" type="xsd:string" minOccurs="0"

 maxOccurs="unbounded"/>

 <xsd:element name="version" type="xsd:string" minOccurs="1"/>

 <xsd:element name="previousVersion" type="xsd:anyURI"

 minOccurs="0"/>

 <xsd:element name="lastModified" type="xsd:dateTime"/>

 <xsd:element name="import" type="ModelImport" minOccurs="0"

 maxOccurs="unbounded"/>

 <xsd:element name="package" type="Package" minOccurs="0"

 maxOccurs="unbounded"/>

 <xsd:element name="objectType" type="ObjectType" minOccurs="0"

 maxOccurs="unbounded"/>

 <xsd:element name="dataType" type="DataType" minOccurs="0"

 maxOccurs="unbounded"/>

 <xsd:element name="enumeration" type="Enumeration" minOccurs="0"

 maxOccurs="unbounded"/>

 <xsd:element name="primitiveType" type="PrimitiveType"

 minOccurs="0" maxOccurs="unbounded"/>

 </xsd:sequence>

</xsd:complexType>

VO-DML/XML

 <vo-dml:model

 xmlns:vo-dml="http://www.ivoa.net/xml/VODML/v1.0">

 <name>src/name>

 <description>This is a sample data model. ...

 </description>

 <title>Sample VO-DML data model.</title>

 <version>0.x</version>

 <lastModified>2013-05-04T19:24:52</lastModified>

 <import>

 <name>photdm-alt</name>

 <version>1.0</version>

 <url>https://volute.g-vo.org/svn/trunk/projects/dm/vo-

dml/models/photdm-alt/PhotDM-alt.vo-dml.xml</url>

<documentationURL>https://volute.g-vo.org/svn/trunk/projects/dm/vo-

dml/models/photdm/PhotDM.html</documentationURL>

 </import>

...

4.5 ModelImport

A Model can import (see 4.4.8) another Model. This implies that elements of the
imported Model are used in the definition of elements in the current Model. In a
VO-DML model document the imported Model is represented by a ModelImport
element that contains metadata components describing the remote model and its
documentation, as well as its name that must be used as prefix when referring to
elements in the imported model.

27

Note that only models directly used, or whose types are extended must be
imported, and there is no need to explicitly import models recursively. In other
words, if model A uses model B, and model B uses model C (but model A does
not), only model B must be imported in model A.

4.5.1 name : string [1]
Name by which imported model is used in the current model and its
documentation. This name MUST be the same as the 'name' given to the
imported model in the VO-DML document from which it is imported. Each vodml-
ref (4.2.1) pointing to an element in the imported model MUST use this name as
prefix.

4.5.2 version : string [1]
Version of the imported model.

4.5.3 url : anyURI [1]
URL from which the imported VO-DML model document can be downloaded.

4.5.4 documentationURL : anyURI [1]
URL where a documentation HTML file for the remote model can be downloaded.
This SHOULD be a document that contains anchors for each element that has as
name attribute the vodml-id of that element. I.e. it is assumed that the vodml-id-s
of the imported types can be added onto this documentationURL as fragments so
that a direct link to the documentation for a referenced data model element can
be found.

VO-UML
Relevant UML meta-classes: Model. [§17.3.1], PackageImport [§7.3.40],

ElementImport [§7.3.15]

A ModelImport is represented by a child Model element with IVOA-Profile
stereotype <<modelimport>>. Graphically it is represented by a Model element
(see Figure 6) that may contain type proxies. The latter are a pure VO-UML
feature and not part of the VO-DML language. They are types that MUST use
IVOA-Profile stereotype <<modelelement>> and provide a value for the 'vodml-id'
tag.

http://www.uml-diagrams.org/package-diagrams/model.html
http://www.uml-diagrams.org/package-diagrams.html#package-import
http://www.uml-diagrams.org/package-diagrams.html#element-import

28

Figure 8 Definition of IVOA-Profile stereotype <<modelimport>> together with the

tags that can be associated to it and map to the attributes of VO-DML's
ModelImport.

Figure 9 Graphical representation of an imported model. Note the usage of the
stereotype <<modelimport>> and the values assigned to the various tags. Also
shown is a type imported with the model. It must have an explicit vodml-id
assigned, which is accomplished using the <modelelement>> stereotype (see 4.1
).

VO-DML/Schema
<xsd:complexType name="ModelImport">

 <xsd:sequence>

 <xsd:element name="name" type="xsd:string" minOccurs="1"/>

 <xsd:element name="version" type="xsd:string" minOccurs="1"/>

 <xsd:element name="url" type="xsd:anyURI" />

 <xsd:element name="documentationURL" type="xsd:anyURI" />

 </xsd:sequence>

 </xsd:complexType>

VO-DML/XML

29

See 4.4.8.

4.6 Type extends ReferableElement

The ultimate goal of any VO-DML data model is to describe a part of the world.
The world is assumed to consist of objects of some type or another. Instead of
objects one could use the terms individuals (see OWL for example), or entities
(entity-relationship models).
The most important way the modeling language has for describing this world of
objects is by defining subsets of all these objects. In VO-DML these subsets are
referred to as Types. The Type defines a set of properties that all objects in the
set, also called instances of the Type, possess. VO-DML assumes that every
instance in the Universe of Discourse, i.e. every object "worth talking about" in
the context of the model, must be explicitly assigned to one Type.
Type is abstract and is extended by ultimately four concrete subtypes.
The most important30 categorization of Types is that between so called object
types and value types.
An object type represents a full-fledged, possibly very complex concept in the
real world and is built from properties and relations to other object types. An
important feature of object types as opposed to ValueType-s (see below) is that
instances of ObjectTypes, i.e. objects, have their own, explicit identity31 that is
defined independent of the state of the object.
A value type represents a simple concept that is generally used as building
block for defining more complex concepts up to object types. In contrast to the
latter, instances of ValueType-s, i.e. values need not be explicitly identified. They
are identified by their value alone. For example an integer is a value type; all
instances of the integer value '3' represent the same integer. Not all value types
are atomic though, see DataType below.

Another way to express the difference between value types and object types lies
at the heart of why and how databases are built. The extent of a value type, i.e.
its set of valid instances/values, is self-evident from its definition. That is, from
the definition one can infer exactly which values exist in the set defined by the
value type. Hence one can identify the instance by its value.
This is not the case for object types. Though one can define a Person object type
with say a name and a date-of-birth for example, one cannot be sure that any
combination of a name and a date will correspond to an existing person.
Moreover, two existing instances named 'Jane' born on Jan 12 1965 are not by
definition the same (instance of) Person. For object types it is therefore first a
meaningful, non-trivial statement to make that some instance exists, and second
to assign an identity to these instances that is independent of the state of the
instance.
And this is precisely what a database does. One will never create a database
and store in it all integers, or all points on the unit sphere, simply to make the

30 and evidently confusing for non-initiated.
31 This is admittedly a somewhat theoretical but important object-oriented concept.

30

statement that each of these exists. Their existence is pre-defined by the
definition of the sphere.
In contrast, one does create databases with information about persons, possibly
containing an integer attribute age. Or ones that store sources observed on the
sky, with their position represented by a point on the sphere and an explicit
identifier. Hence sources and persons are represented by object types integers
and "points-on-the-unit-sphere" by a value type (a PrimitiveType for the former, a
DataType for the latter to be precise).

4.6.1 extends : ElementRef [0..1]
VO-DML supports the object-oriented concept of inheritance, or generalization,
between Types. Generalization is a directed binary association between a
specialized sub-type and its more general super-type (the target) identified
through the extends property, which is a reference to the target element.
It defines a sub-set relation between the set of instances defined by the super-
type and that of the sub-type: every instance of a sub-type is also an instance of
the super-type. In contrast to UML, VO-DML does not support multiple
inheritance, i.e. a type can have at most one direct super-type. Furthermore
ObjectTypes can only extend ObjectTypes, DataTypes can only extend
DataTypes etc.
Instances of sub-types inherit all the Roles and Constraints (see below) defined
on the super-type. This inheritance is applied recursively, i.e. a type also inherits
the roles and constraints its super-type has inherited.

4.6.2 constraint : Constraint [0..*]
Instances of a Type can be constrained by rules that define whether they are
valid instances. VO-DML allows two types of constraints: Generic expressions in
some computer-readable language, defined by the Constraint type itself, or
SubsettedRole-s, which offers a way to constrain elements of inherited Roles.

VO-UML
Relevant UML meta-classes: Type [§7.3.52], Classifier [§7.3.8], Generalization
[§7.3.20].

Type and Classifier are abstract meta-classes in UML and have no graphical
representation of their own. Classifier extends Type and is itself the super-type of
UML meta-classes Class and DataType which are represented in VO-DML by
ObjectType and the value types PrimitiveType, Enumeration and DataType
respectively. All these types are represented graphically by rectangles with at
least the name of the type and possibly the stereotype defining the particular
"type of the type", as shown in Figure 10.

Figure 10 Examples of the four different classes of types supported by VO-DML and their

representation. See the definition of the types for more details.

http://www.uml-diagrams.org/uml-core.html#type
http://www.uml-diagrams.org/classifier.html
http://www.uml-diagrams.org/generalization.html

31

The inheritance relationship is represented in UML by the Generalization meta-
class and graphically by an arrow (always red in our profile) with a hollow arrow
head from sub-type to super-type. In UML Generalization is a special relation
between types, in VO-DML it is simply a pointer (ElementRef) from sub-type to
super-type, owned by the sub-type.

VO-DML/Schema
In VO-DML/Schema Type is represented by an abstract complexType named

Type. It is the base-type of all more concrete type definitions. It extends

ReferableElement, hence all type definitions can be referenced and MUST

have a <vodml-id> element. Types may be abstract, in which case no

instances can be produced (similar to for example abstract classes in Java).

They may also extend another type, which will be referred to as the super-type.

The super-type is identified by an ElementRef.

 <xsd:complexType name="Type" abstract="true">

 <xsd:complexContent>

 <xsd:extension base="ReferableElement">

 <xsd:sequence>

 <xsd:element name="extends" type="ElementRef" minOccurs="0"/>

 <xsd:element name="constraints" type="Constraint"

 minOccurs="0" maxOccurs="unbounded"/>

 </xsd:sequence>

 <xsd:attribute name="abstract" type="xsd:boolean"

 default="false" use="optional" />

 </xsd:extension>

 </xsd:complexContent>

 </xsd:complexType>

VO-DML/XML
For examples of type definitions see the definitions of the concrete sub-types of
Type. The following snippet is an example of the extends relationship.

 <objectType>

 <vodml-id>source.Source</vodml-id>

 <name>Source</name>

...

32

 <extends>

 <vodml-ref>src:source.AstroObject</vodml-ref>

 </extends>

...

4.7 ValueType extends Type

A ValueType is a special kind of Type, one whose instances are values. See the
discussion in the definition of Type for the details on why ValueType is defined.

VO-UML
Nearest UML meta-class: DataType. [§7.3.11]
VO-DML has a special concept to represent all value types, whereas UML uses
DataType for this. VO-DML defines DataType (see 4.11) as a special kind of
ValueType.

VO-DML/Schema
 <xsd:complexType name="ValueType" abstract="true">

 <xsd:complexContent>

 <xsd:extension base="Type">

 </xsd:extension>

 </xsd:complexContent>

 </xsd:complexType>

4.8 PrimitiveType extends ValueType

A PrimitiveType represents an atomic piece of data, a value with no structure.
Examples are the standard types like integer, boolean, real, and string (which is
treated as an atomic value, not an array of characters) and so on.
A primitive type can be an extension of another primitive type, but must then
always be considered a restriction on the possible values of that type. The
particular restriction SHOULD be identified using an explicit Constraint (see 4.20
) defined on the type.

VO-UML
Derived from UML meta-class: Primitive Type [§7.3.44].
A primitive type is represented graphically by an UML DataType, which is a
rectangle containing the name of the type and stereotype <<primitive>> placed
above the name. If it extends an existing type, the Constraint defining the
restriction may be represented by text below the type name as in the example in
the figure.

http://www.uml-diagrams.org/class-diagrams.html#data-type
http://www.uml-diagrams.org/class-diagrams.html#primitive-type

33

VO-DML/SCHEMA
 <xsd:complexType name="PrimitiveType">

 <xsd:complexContent>

 <xsd:extension base="ValueType">

 </xsd:extension>

 </xsd:complexContent>

 </xsd:complexType>

VO-DML/XML
<primitiveType>

 <vodml-id>quantity/Unit</vodml-id>

 <name>Unit</name>

 <description>

 Must conform to definition of unit in VOUnit spec.

 </description>

 <extends>

 <vodml-ref>ivoa:string</vodml-ref>

 </extends>

</primitiveType>

4.9 Enumeration extends ValueType

An Enumeration is a PrimitiveType with a finite list of possible values, the
Literals. This list restricts the domain of possible instances of the type. Common
usage is to identify different categories of a structured ObjectType or DataType
that uses the Enumeration as an Attribute. The literals are meant to identify these
distinct categories.
Care should be taken in defining Enumerations and Attributes using them. In
particular a choice must be made between introducing such a new type in the
model and assigning a semantic vocabulary to the attribute (see 4.14.1). In
particular if the set of concepts or categories might change over time it is better
to use the latter approach.
An important consideration is whether the definition of the type defines
automatically all its instances, the characteristic of a ValueType..

4.9.1 literal : EnumLiteral [1..*]
An Enumeration is defined by a collection of literal-s, basically just names with
a vodml-id and a description. The literals are modeled as strings, as the actual
value of an enumeration literal is not important, only its meaning and the fact that

34

the values must be distinct. Similar to the interpretation of the inheritance
relationship of PrimitiveTypes, a sub-type of an Enumeration must restrict the
set of accessible values and should explicitly define the literals it allows among
the literals defined by the super-type.

VO-UML
Essentially equivalent to UML meta-class Enumeration [§7.3.16]

An enumeration is represented graphically by the element for a UML DataType
with the stereotype <<enumeration>> above the name of the type. Below the
name the literals are listed.

Figure 11 Example enumeration listing a number of literals representing source

classifications.

VO-DML/XSD
 <xsd:complexType name="Enumeration">

 <xsd:complexContent>

 <xsd:extension base="PrimitiveType">

 <xsd:sequence>

 <xsd:element name="literal" type="EnumLiteral"

 maxOccurs="unbounded">

 </xsd:element>

 </xsd:sequence>

 </xsd:extension>

 </xsd:complexContent>

 </xsd:complexType>

VO-DML/XML
 <enumeration>

 <vodml-id>source.SourceClassification</vodml-id>

 <name>SourceClassification</name>

 <literal>

 <vodml-id>source.SourceClassification.star</vodml-id>

 <name>star</name>

 <description>...</description>

 </literal>

 <literal>

 <vodml-id>source.SourceClassification.galaxy</vodml-id>

 <name>galaxy</name>

 <description>...</description>

 </literal>

...

http://www.uml-diagrams.org/class-diagrams.html#enumeration

35

4.10 EnumLiteral extends ReferableElement

EnumLiteral does not add any new features to ReferableElement. Note that the
literal's value is defined by the name attribute inherited from ReferableElement. A
literal is-a ReferableElement because we may want to refer to it. The main use
case for this is where an existing data(base) model for example has its own list of
values which are not identical to the values used in the Enumeration. An explicit
mapping to the enumeration literals allows one to make the required translation.
Because of its likely use in defining the vodml-id, the literal has the same
restrictions defined by the VODMLNAME pattern.

VO-UML
EnumLiteral is equivalent to UML meta-class EnumerationLiteral [§7.3.17]

VO-DML/XSD
 <xsd:complexType name="EnumLiteral">

 <xsd:complexContent>

 <xsd:extension base="ReferableElement">

 <xsd:sequence>

 </xsd:sequence>

 </xsd:extension>

 </xsd:complexContent>

 </xsd:complexType>

4.11 DataType extends ValueType

A DataType is a value type with structure. The structure is generally defined by
attributes on the DataType, and possibly references. The state of instance of a
DataType, i.e. a value, consists of the assignment of values to all the attributes
and references. This is similar to ObjectTypes defined below, but in contrast to
ObjectTypes, DataTypes have no explicit identity. As is the case for the other
ValueTypes, DataTypes are defined by their state only. I.e. two DataType
instances with the same state are the same instance. Instead, ObjectTypes with
the same state but different identity are not the same
For example the DataType Position3D, with attributes x, y, and z, is completely
defined by the values of the three attributes. Logically, there are no 2 distinct
instances of this DataType with exact same values (x=1.2, y=2.3, z=3.4). Note,
however, that this statement does not have implications on the implementations:
one might indeed have two instances of a DataType at two distinct memory
locations with the same state. However, an equality test on those concrete
instances should always return ‘true’ as long as they have the same state.
Also, this specification does not provide any requirements regarding the
immutability of DataType instances, i.e. whether or not it is possible to change
one value of a DataType instance without requiring a new concrete instance to
be created from scratch. As far as the VO-DML meta-model is concerned, two
DataType instances with different states are always, logically, distinct instances.

36

However, we do not specify how such behavior has to be interpreted in
implementations. As DataTypes can, in principle, be arbitrarily complex in
structure, an implementation might make their instances mutable for the sake of
simplicity.
DataType can have outgoing references with target an ObjectType. This makes
certain patterns more reusable. The reference is assumed to provide reference
data with respect to which the rest of the value should be interpreted. For

example SkyCoordinate may have a reference to a SkyCoordinateFrame

to help interpret the values of the longitude/latitude attributes.

4.11.1 attribute: Attribute [0..*]
Attributes are structural features of DataTypes and also ObjectTypes. They
represent the role a ValueType plays in the definition of the parent type. They
are like columns in a table, simple elements in XML etc., though of course the
Attribute might itself be a structured DataType.

4.11.2 reference: Reference [0..*]
References represent the role an ObjectType plays in the value of a structured
type. A reference on a DataType is assumed to provide reference data to help
interpreting the values of the attributes of the type. For example a DataType
representing a "position on the sky" needs a reference to a reference frame to

ensure that its attributes longitude and latitude are interpreted properly.

VO-UML
Derived from UML meta-class: Data Type [§7.3.11]
This concept is represented graphically by a box with stereotype <<dataType>>
and possibly attributes and reference relations.
Note that VO-UML enforces a specific notation for attributes that are DataTypes
or ObjectTypes, whereas UML allows some freedom of notation. In particular,
attributes that are DataTypes should always be included in the box representing
the owning type, while attributes that are ObjectTypes should always be
represented as distinct boxes made targets of an association.
As VO-UML is not normative, alternative graphical representations are fine as
long as they conform to UML rules and that they are explicitly noted.

Figure 12 DataType SkyCoordinate is defined as a longitude/latitude pair with a reference

to a reference frame that allows the interpretation of the values of the attributes.

VO-UML/Schema
<xsd:complexType name="DataType">

 <xsd:complexContent>

 <xsd:extension base="ValueType">

 <xsd:sequence>

http://www.uml-diagrams.org/class-diagrams.html#data-type

37

 <xsd:element name="attribute" type="Attribute"

 minOccurs="0" maxOccurs="unbounded"/>

 <xsd:element name="reference" type="Reference"

 minOccurs="0" maxOccurs="unbounded"/>

 </xsd:sequence>

 </xsd:extension>

 </xsd:complexContent>

</xsd:complexType>

VO-UML/XML
<dataType>

 <vodml-id>source.SkyCoordinate</vodml-id>

 <name>SkyCoordinate</name>

 <description>...</description>

 <attribute>

 <vodml-id>source.SkyCoordinate.longitude</vodml-id>

 <name>longitude</name>

 <description>...</description>

 <datatype>

 <vodml-ref>ivoa:quantity.RealQuantity</vodml-ref>

 </datatype>

 <multiplicity>1</multiplicity>

 </attribute>

 <attribute>

 <vodml-id>source.SkyCoordinate.latitude</vodml-id>

 <name>latitude</name>

 <description>...</description>

 <datatype>

 <vodml-ref>ivoa:quantity.RealQuantity</vodml-ref>

 </datatype>

 <multiplicity>1</multiplicity>

 </attribute>

 <reference>

 <vodml-id>source.SkyCoordinate.frame</vodml-id>

 <name>frame</name>

 <description>...</description>

 <datatype>

 <vodml-ref>src:source.SkyCoordinateFrame</vodml-ref>

 </datatype>

 <multiplicity>1</multiplicity>

 </reference>

</dataType>

4.12 ObjectType extends Type

As described in the section of Type next to value types, the other major group of
types are object types. To make this explicit their representation in VO-DML is
named ObjectType. They are the fundamental building blocks of almost every
data model, are in fact the reason most data models get built especially if they

38

aim to serve as the model (schema) of some database. A database is basically a
collection of those objects for which it is meaningful to store special information.
Though generally ignored, the first important statement made of these database
objects is actually simply that they exist, second that they have certain
properties. ObjectType is meant for representing such kind of objects. Those for
which their existence is not self-evident from the definition of the Type they
belong to.

4.12.1 attribute : Attribute [0..*]
Collection of Attribute definitions.

4.12.2 collection : Composition [0..*]
Collection of Composition relations owned by the object type. This relation
between ObjectType indicates that an instance of the owner of the collection,
the parent, is composed of other objects, sometimes referred to as children. This
is a very strong “has-a” relationship. It indicates for example that (in the model)
an instance of the child object type cannot exist without an instance of the
parent32. Also, a child object cannot be swapped between parents during the life
cycle of those. And finally a certain ObjectType can only be contained in one
parent ObjectType. And the counting includes potential containment relations
inherited through a super-type. I.e. if ObjectType A has a collection of B-s, any
sub-type of B is bound by this collection. And no sub-type of B can be the child in
a containment relationship.

These constraints enforce models that are consistent and that can be easily
represented in many different contexts, ranging from database management
systems to object oriented applications. It is easy to find solutions that work
around these constraints if one really needs to, but in general such constraints
are useful to help modelers avoiding modeling solutions that would prove to be
problematic from the interoperability point of view.
Note that implementations of the Composition relationship usually provide
means to navigate from the contained instance to its container. However, this is
left out of this specification and freedom is left to the implementations to provide
such mechanisms. This is also true for serialization strategies, which should
always allow clients to navigate from the contained instances to their containers.

4.12.3 reference: Reference [0..*]
Collection of Reference definitions. The reference relation is the second type of
relation between ObjectTypes. It is a much looser relation than composition. The
interpretation is here more general than the one for the reference collection on
DataType. Relations here can have meaning beyond providing reference data
for interpreting the attributes.
It is important to note that in a Reference relation the life cycles of both ends of
the relation itself are completely independent. This also means that there is, in

32 This does not mean that one cannot have serialized representations of child objects without
their parent. This purely depends on the serialization format and possibly the query producing the
result.

39

general, no way for clients to navigate from the referenced instance to the
instances that reference them, unless the specific implementations provide such
mechanisms according to their requirements.

VO-UML
Derived from UML meta-class Class [§7.3.7].
VO-DML does not follow UML's use of the name Class, as the phrase is too
commonly used in many of the possible serialization contexts. E.g. most if not all
object oriented languages use "class" for all structured types. SmallTalk even
uses it for all types.
VO-UML represents ObjectType graphically by a rectangle with a name and
possibly a custom stereotype such as <<modelelement>>. An ObjectType may
have attributes and be the source or target of relationships.
Note that VO-UML enforces a specific notation for attributes that are DataTypes
or ObjectTypes, whereas UML allows some freedom of notation. In particular,
attributes that are DataTypes should always be included in the box representing
the owning type, while attributes that are ObjectTypes should always be
represented as distinct boxes made targets of a named association.
As VO-UML is not normative, alternative graphical representations are fine as
long as they conform to UML rules and they are explicitly mapped to the VO-UML
notation.

VO-DML/Schema

In XSD the ObjectType is represented by a complexType definition

ObjectType that extends Type.

<xsd:complexType name="ObjectType">

 <xsd:complexContent>

 <xsd:extension base="Type">

 <xsd:sequence>

 <xsd:element name="attribute" type="Attribute"

 minOccurs="0" maxOccurs="unbounded"/>

 <xsd:element name="collection" type="Composition"

 minOccurs="0" maxOccurs="unbounded"/>

 <xsd:element name="reference" type="Reference"

 minOccurs="0" maxOccurs="unbounded"/>

 </xsd:sequence>

 </xsd:extension>

 </xsd:complexContent>

</xsd:complexType>

VO-DML/XML

http://www.uml-diagrams.org/class-diagrams.html#class

40

<objectType>

 <vodml-id>source.Source</vodml-id>

 <name>Source</name>

 <description>...</description>

 <extends>

 <vodml-ref>src:source.AstroObject</vodml-ref>

 </extends>

...

</objcectType>

4.13 Role extends ReferableElement

A Role represents the usage of one type (call it "target") in the definition of
another (type "source"). The "target" type is said to play a role in the definition of
the "source" type. Examples are where the target is the super-type of the source,
or where the target is the data type of an attribute defined on the source.
There are different kinds of roles, in VO-DML defined as sub-types of Role. Role
defines only a "data type" attribute that has an ElementRef as data type, but is
constrained by Schematron rules to reference a Type. Specializations of Role will
introduce further constraints.

4.13.1 datatype : ElementRef
The datatype property of a Role identifies the target type of the role, the one that
actually "plays the role". In VO-DML/Schema it is represented by an

ElementRef that MUST identify a Type.

4.13.2 multiplicity: Multiplicity
Indicates the multiplicity or cardinality of the role. This indicates how many
instances of the target datatype can be assigned to the role property.

VO-UML
Role is similar to the UML concepts Feature [§7.3.19], StructuralFeature
[§7.3.50], TypedElement [§7.3.53] and Property [§7.3.45]. The sub-types of Role
make this correspondence more concrete.

VO-DML/Schema
Role is explicitly represented in the VO-DML/Schema. It contains child elements

datatype that identifies (through a <vodml-ref>) the type that is playing the

role on the parent type containing the role, and multiplicity that defines the
cardinality of the attribute, i.e. how many instances of the data type can be added
to the parent type. Role is abstract, hence only subclasses can be instantiated.
The subclasses define more restrictions on the datatype and multiplicity
attributes.

<xsd:complexType name="Role" abstract="true">

 <xsd:complexContent>

http://www.uml-diagrams.org/uml-core.html#feature
http://www.uml-diagrams.org/uml-core.html#structural-feature
http://www.uml-diagrams.org/uml-core.html#type
http://www.uml-diagrams.org/property.html

41

 <xsd:extension base="ReferableElement">

 <xsd:sequence>

 <xsd:element name="datatype" type="ElementRef" minOccurs="1"/>

 <xsd:element name="multiplicity" type="Multiplicity"

 minOccurs="0"/>

 </xsd:sequence>

 </xsd:extension>

 </xsd:complexContent>

</xsd:complexType>

4.14 Attribute extends Role

An Attribute is the role that a ValueType can play in the definition of a
structured type, i.e. an ObjectType or DataType. It represents a typical property
of the parent type such as age, mass, length, position etc.
Attribute restricts the possible types of the Role's datatype attribute to
ValueType-s only. The multiplicity of Attributes is restricted to be either 0..1, or
n..n where n is a positive integer literal. I.e. open ended collections are not
allowed, nor is 0..n, with n>1.

4.14.1 semanticconcept : SemanticConcept [0..1]
If an Attribute definition contains a semanticconcept it implies the value of

the attribute should be able to identify a concept in some semantic vocabulary.
This may be a SKOS vocabulary as in [17], but it may be more general, see the
definition of the SemanticConcept definition. In this case the data type attribute
should be compatible with a string.
VO-UML

Figure 13. The rows in the lower part of the box represent attributes. Their name, datatype
and multiplicity are indicated.

VO-DML/Schema
<xsd:complexType name="Attribute">

 <xsd:complexContent>

 <xsd:extension base="Role">

 <xsd:sequence>

 <xsd:element name="semanticconcept" type="SemanticConcept"

 minOccurs="0"/>

 </xsd:sequence>

 </xsd:extension>

 </xsd:complexContent>

</xsd:complexType>

42

VO-DML/XML
 <objectType>

 <vodml-id>source.Source</vodml-id>

 <name>Source</name>

...

 <attribute>

 <vodml-id>source.Source.name</vodml-id>

 <name>name</name>

 <description>...</description>

 <datatype>

 <vodml-ref>ivoa:string</vodml-ref>

 </datatype>

 <multiplicity>

 <minOccurs>1</minOccurs>

 <maxOccurs>1</maxOccurs>

 </multiplicity>

 </attribute>

...

4.15 SemanticConcept

It is a common pattern in data modeling that one wishes to constrain the set of
values on an attribute to some predefined list. One way to do so is using an
Enumeration as the attribute's datatype. A user of a data model knows
immediately that the elements of the enumeration are exhaustive and exclusive,
and also that they are reasonably slow to change. These features can
sometimes, however, be disadvantages, for example when a list of terms might
be very large and should be allowed to evolve over time, or is predefined and
possibly maintained by another party. In such cases, the values should be
constrained by some external semantic structure, references to which are
supported by the SemanticConcept type.
This mechanism should not be taken as an invitation to subvert the main VO-
DML model by introducing arbitrary external modelling frameworks. The two
mechanisms described below, using SKOS vocabularies and RDFS sub-
classing, are intended to be illustrative rather than exhaustive, and if these are
felt to be insufficient for some reason, the alternative should be compatible in
spirit with these.
SKOS vocabularies: The IVOA Recommendation Vocabularies in the Virtual
Observatory specifies that the format for such vocabularies should be "based on
the W3C's Resource Description Framework (RDF) and the Simple Knowledge
Organization System (SKOS)" [17]. When using a SKOS vocabulary as the
external semantic structure, the topconcept attribute names a SKOS Concept

(that is, an instance of skos:Concept): all of the actual values of the associated
attribute must be narrower than this Concept. To be precise, for a top concept T,
any concept c is a valid value for this property, if either:

 c skos:broaderTransitive T .

43

or if there exists a concept X such that

 c skos:broaderTransitive X. X skos:broadMatch T.

(this just means that, if c is in the same vocabulary as T, then it's connected by a
chain of any number of skos:broader, and if it's in a different vocabulary, then
there is some X which is in the same vocabulary as c, with a cross-vocabulary
link between X and T).
The SKOS thesaurus-based approach is most useful in the context of searching
and browsing of resources. It is not intended to be useful for any sort of
inferencing, and in particular does not support a subclassing or 'Is-A'
relationship. Although it might be tempting to say, for example, something like
'calibration-image' skos:narrower 'dark-image', one is not formally permitted to
conclude from this that a dark is a type of calibration image (even though that is
true).

RDFS ontologies: The RDF Schema standard <http://www.w3.org/TR/rdf-
schema/> provides the minimal structures which are necessary for simple
ontologies, and the inferencing associated with them. It includes domain and
range constraints, and subtyping of classes and properties, but cannot, for
example, express exclusivity of two terms. If the external semantic structure is of
this type, then the topconcept attribute names an rdfs:Class (not an
rdfs:Property), and the actual instances of the associated attribute must be
(transitively) rdfs:subClassOf this class.
It is not necessary to indicate in the VO-DML model which of these options has
been chosen, since the URI which is the value of the attribute will contain its own
typing information.

4.15.1 vocabularyURI: anyURI [0..1]
If this attribute is given a value, it indicates that the attribute to which the
SemanticConcept has been assigned MUST take values from the vocabulary
identified by the URI. It may be possible to define a subset of its values using the
topConcept attribute.

4.15.2 topConcept: anyURI [0..1]
If this attribute is set, the specified URI identifies a semantic concept and the
value of the Attribute to which the SemanticConcept has been assigned must
themselves be semantic concepts that are narrower than this broadest concept in
the sense described above. If also the vocabularyURI is set, the values of the
Attribute must come from the vocabulary identified by that URI as well.
VO-UML
SemanticConcept has no explicit representation in UML.
In VO-UML one may represent it using a stereotype <<semanticconcept>> that
can be assigned to attributes. The stereotype can be given tag definitions for the

http://www.w3.org/TR/rdf-schema/
http://www.w3.org/TR/rdf-schema/

44

vocabularyURI and the topConcept attributes as in the MagicDraw example in
Figure 14.

Figure 14 Definition of a <<semanticconcept>> stereotype with tag definitions for
topConcept and vocabularyURI.

This can now be assigned to an attribute as in the example in Figure 15

Figure 15 Assignment of <<semanticconcept>> stereotype to the attribute label in the
object type AstroObject. Here the vocabularyURI identifies a vocabulary of astronomical
object types.

VO-DML/Schema
 <xsd:complexType name="SemanticConcept">

 <xsd:sequence>

 <xsd:element name="topConcept" type="xsd:anyURI"

 minOccurs="0">

 </xsd:element>

 <xsd:element name="vocabularyURI" type="xsd:anyURI" minOccurs="0"

 maxOccurs="unbounded">

 </xsd:element>

 </xsd:sequence>

 </xsd:complexType>

VO-DML/XML
 <objectType abstract="true">

 <vodml-id>source.AstroObject</vodml-id>

 <name>AstroObject</name>

 <attribute>

 <vodml-id>source.AstroObject.label</vodml-id>

 <name>label</name>

 <description>

...

 </description>

 <datatype>

45

 <vodml-ref>ivoa:string</vodml-ref>

 </datatype>

 <multiplicity>

 <minOccurs>0</minOccurs>

 <maxOccurs>1</maxOccurs>

 </multiplicity>

 <semanticconcept>

 <topConcept>

 http://purl.org/astronomy/vocab/DataObjectTypes/DataObjectType

 </topConcept>

 <vocabularyURI>

 http://purl.org/astronomy/vocab/DataObjectTypes

 </vocabularyURI>

 </semanticconcept>

 </attribute>

 </objectType>

4.16 Relation extends Role

A Relation is a Role played by a (target) ObjectType in the definition of a
(source) ObjectType or DataType. It indicates that the target of the relation is
related in some fashion to the source type. It also implies a relation between
instances of the target and the source. For this reason the Generalization
construct is not a Relation.
VO-DML defines two concrete refinements of Relation, Composition and
Reference that embody the different semantics of composite and shared
relationships. The precise details of a particular Relation defined in a model
must be described using its description attribute.

VO-UML
Relation is a combination of UML's Association and Association End elements:
Whereas in UML associations are first class elements that are directly owned by
a package or model, in VO-DML it is always the source ObjectType that defines
and owns the Relation. This is equivalent to constraining each UML association
to always have a navigable association end.
In VO-UML Relations are indicated by arrows from the source to the target in the
relation with a name and multiplicity written near the target. Details depend on
the type of relation.

VO-XML/Schema
 <xsd:complexType name="Relation" abstract="true">

 <xsd:annotation>

 <xsd:documentation>

 A relation is a Role where the target datatype is an ObjectType.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:complexContent>

 <xsd:extension base="Role">

 <xsd:sequence>

 </xsd:sequence>

 </xsd:extension>

http://purl.org/astronomy/vocab/DataObjectTypes/DataObjectType
http://purl.org/astronomy/vocab/DataObjectTypes
http://www.uml-diagrams.org/association.html
http://www.uml-diagrams.org/association.html#association-end

46

 </xsd:complexContent>

 </xsd:complexType>

4.17 Composition extends Relation

Composition is a special type of Relation that represents the observation that
often an object can be seen to be "composed of" other object. This is often called
a whole-parts relationship. We will also refer to it as a parent-child relation33.
Examples are the relationship between an image and the pixels it is composed
of, or a bit more abstractly, a source catalogue and its sources.
This is quite a strong relationship, stronger than the Reference relation
discussed later. For example the life cycles of the child objects are governed by
that of the parent. When an image is destroyed, so are its pixels; when a source
catalogue is discarded so are its sources. Similarly an object can only be a part
of a single parent, i.e. the relation is not shared.
At the modeling level it is almost invariably true that the part/child types are
defined as a result of an analysis of the parent type. I.e. their definitions are
generally tightly bound. VO-DML formalizes this by adding the constraint that an
ObjectType can only be the target of at most one Composition relation. The
counting should include relationships inherited from a super-type, i.e. if a super-
type is already contained in a parent, then none of its sub-types may be declared
to be contained. This constraint facilitates the analysis of models as well as for
example the mapping to the relational model34.

VO-UML
In VO-UML a collection relation is represented by a composition association, an
arrow with a filled, closed diamond indicating a composition side of the container
and an arrow on the end of the contained class. In the UML Profile used for the
diagrams a blue color is used for this relation

33 One may also say the parent has a collection of the child type, or that the parent contains the
child type.
34 In the relational model a composition relation is generally represented by a foreign key form the
table representing the child to the table representing the parent. See also Appendix B.2.

47

VO-DML/Schema
 <xsd:complexType name="Composition">

 <xsd:complexContent>

 <xsd:extension base="Relation">

 <xsd:sequence>

 <xsd:element name="isOrdered" type="xsd:boolean"

 default="false" minOccurs="0">

 </xsd:element>

 </xsd:sequence>

 </xsd:extension>

 </xsd:complexContent>

 </xsd:complexType>

VO-DML/XML
 <objectType>

 <vodml-id>source.Source</vodml-id>

 <name>Source</name>

...

 <collection>

 <vodml-id>source.Source.luminosity</vodml-id>

 <name>luminosity</name>

 <description>

 Collection of luminosity measurements for the parent source.

 </description>

 <datatype>

 <vodml-ref>src:source.LuminosityMeasurement</vodml-ref>

 </datatype>

 <multiplicity>

 <minOccurs>0</minOccurs>

 <maxOccurs>-1</maxOccurs>

 </multiplicity>

 </collection>

 </objectType>

4.18 Reference extends Relation

A reference is a relation that indicates a kind of usage, or dependency of one object
(the source, or referrer) on another (the target). Such a relation may in general be
shared, i.e. many referrer objects may reference a single target object.

In general a reference relates two ObjectTypes, but DataType-s can have a
reference as well. An example of this is a coordinate on the sky consisting of a

longitude and latitude, which requires a reference to a CoordinateFrame for its

interpretation. I.e. the frame is used as "reference data".

VO-UML

48

A reference is indicated by a green arrow from referrer (an ObjectType or
DataType) to the target (an ObjectType). In UML an association is used, though
the reference is actually most similar to a binary association end.

Figure 16 Reference (green arrow) from an ObjectTYpe to an ObjectType.

Figure 17 Reference from a DataType to an ObjectType

VO-DML/XML
 <dataType>

 <vodml-id>source.SkyCoordinate</vodml-id>

 <name>SkyCoordinate</name>

...

 <reference>

 <vodml-id>source.SkyCoordinate.frame</vodml-id>

 <name>frame</name>

 <description>

...

 </description>

 <datatype>

 <vodml-ref>src:source.SkyCoordinateFrame</vodml-ref>

 </datatype>

 <multiplicity>1</multiplicity>

 </reference>

...

4.19 Multiplicity

Multiplicity is used to indicate the cardinality of a Role defined on an
ObjectType or DataType. It indicates how many values may be assigned to the
role in an instance of the type. VO-DML models this using the same terms as
used in XML schema, namely with a minOccurs/maxOccurs pair of values. The
former indicates the minimum number of instances or values that can be
assigned to a given role, the latter the maximum number. Also XMI supports two
values (named differently) and VO-DML follows its specification in using -1 (or
any negative value) as a possible value for maxOccurs that indicates that there

49

is no limit on the possible number of instances. In XML schema this is indicated

using the string value 'unbounded', in UML diagrams generally with a ''.
A special case is the assignment of a Multiplicity to an Attribute. Users are
strongly encouraged to only use the following combinations of
minOccurs..maxOccurs: 0..1,1..1 (or simply 1), and n..n (or simply n) with n>1.
For multiplicity greater than 1 the attribute can be interpreted as an array of fixed
size. Modelers SHOULD NOT use open ended multiplicities, i.e. with
maxOccurs=-1, but it is not illegal35.
References SHOULD NOT be given multiplicities with maxOccurs > 1, but this
is allowed.36

4.19.1 minOccurs: nonnegativeInteger [0..1]
Indicates the minimum number of values that may be assigned to the Role to
which this Multiplicity is assigned. Must not be larger than maxOccurs unless
that has a negative value. Default value 1.

4.19.2 maxOccurs: integer [0..1]
Indicates the maximum number of values that may be assigned to the Role to
which this Multiplicity is assigned. Must not be smaller than minOccurs unless
one assigns a minimum value to maxOccurs, which indicates that there is no limit
to the allowed number of values.that may be assigned. Default value 1.

VO-UML
In VO-UML the multiplicity, when assigned to an attribute, shows up in square
brackets after the attribute's type. If minOccurs and maxOccurs have the same
value, that single value is shown. If they have different values they show up

separated by two dots, '..'. The value of -1 for maxOccurs is represented by a '':

When the multiplicity is assigned to a relation, a similar pattern is shown near the
name of the relation, close to the target datatype of the relation:

35 Allowing open ended cardinalities for attributes complicates their mapping to (1st normel form-)
relational databases and is almost always observed to indicate a lack of explicitness in the data
model. Especially for data models aiming to support interoperability such patterns should be
avoided. The current specification leaves it up to the actual data modelling efforts to find
alternative solutions where this pattern is used.
36 This is one way in which one might represent a UML aggregation relationship, but preferably
aggregation should be implemented using the pattern described in A.1 and illustrated in Figure
20.

50

Note that the 0..* here indicates minOccurs = 0, maxOccurs = -1.

VO-DML/Schema
 <xsd:complexType name="Multiplicity">

 <xsd:sequence>

 <xsd:element name="minOccurs" type="xsd:nonNegativeInteger"

 default="1"/>

 <xsd:element name="maxOccurs" type="xsd:int" default="1"/>

 </xsd:sequence>

 </xsd:complexType>

VO-DML/XML
<objectType>

 <vodml-id>source.Source</vodml-id>

 <name>Source</name>

...

 <attribute>

 <vodml-id>source.Source.name</vodml-id>

 <name>name</name>

...

 <multiplicity>

 <minOccurs>1</minOccurs>

 <maxOccurs>1</maxOccurs>

 </multiplicity>

 </attribute>

...

 <collection>

 <vodml-id>source.Source.luminosity</vodml-id>

 <name>luminosity</name>

...

 <multiplicity>

 <minOccurs>0</minOccurs>

 <maxOccurs>-1</maxOccurs>

 </multiplicity>

 </collection>

 </objectType>

51

4.20 Constraint

Apart from defining the basic structure in terms of types and their interrelations,
data models generally need to have explicit constraints defined that restrict the
possible objects and their interrelationships or the values of attributes may take
in model instantiations. VO-DML has some specialized support, particular in
multiplicity elements on roles and the possibility of restricting attribute values
through custom enumerated types or the assignment of semantic concepts.
This first version of VO-DML provides support for constraints in a very basic
manner: a Constraint is only a named, referable element whose description
must be used to express the constraint in natural language. It is anticipated that
future versions of the language will elaborate on this, adding for example an
expression element in a particular constraint specification language such as OCL
[21]. In VO-DML constraints can only be added to a Type. If constraints are
required for Roles these must be defined on the containing type, or possibly on a
sub-type.

VO-UML
UML supports a Constraint element as a (possibly named) boolean expressions
in some possibly formal language, in particular OCL. In diagrams the constraint is
generally supposed to be placed close to the name of the element containing it.
In VO-UML this must always be the type.

Figure 18 Example of a constraint applied to a type. Here the language is pseudo code,
where self follows the way OCL allows expressions to refer to the instance of the type.

VO-DML/Schema
The XML schema only defines Constraint with a description element, which
MUST be used to define the constraint expression as a human readable string,
or possibly pseudo code if so desired.
<xsd:complexType name="Constraint">

 <xsd:sequence>

 <xsd:element name="description" type="xsd:string

 minOccurs="0"/>

 </xsd:sequence>

</xsd:complexType>

VO-DML/XML
<dataType>

http://www.uml-diagrams.org/constraint.html

52

 <vodml-id>source.SkyCoordinate</vodml-id>

 <name>SkyCoordinate</name>

...

 <constraint>

 <description>-90<=self.latitude.value<=90 </description>

 </constraint>

 <constraint>

 <description>0<=self.longitude.value < 360 </description>

 </constraint>

 <attribute>

 <vodml-id>source.SkyCoordinate.longitude</vodml-id>

 <name>longitude</name>

...

 </attribute>

 <attribute>

 <vodml-id>source.SkyCoordinate.latitude</vodml-id>

 <name>latitude</name>

...

 </attribute>

4.21 SubsettedRole extends Constraint

A special class of constraints is defined for those restricting the possible values
of Roles defined on a type.

4.21.1 role: ElementRef
Identifies the role that is subsetted. This Role MUST be available on the type
owning the constraint, i.e. it MUST be defined on the type itself or on one of its
super-types.

4.21.2 datatype: ElementRef
The datatype element can be used to indicate that the datatype of the subsetted
Role MUST be a sub-type of the datatype declared for the Role itself. In the
interpretation of Type-s as sets of instances, subtypes define subsets, which
explains the name of this element. This is a common design pattern and directly
borrowed from UML, where it is used as stereotype on a redefinition of the role.
We use a special Constraint to support the same concept. Redefining the Role
would require defining a new vodml-id. This would complicate the implementation
of simple clients that look for instances of the Role, but are agnostic about the
precise type of the owning Type.

4.21.3 semanticconcept : SemanticConcept
Maybe the super type has not defined a semantic concept for the Role, but the
subtype needs that. This attribute allows this assignment. But alse when the
Role on the super-type already has a semanticconcept with a topConcept
defined on it, the subtype may restrict the values to a narrower concept than that
assigned to it on the super-type.

VO-UML

53

To define constraints on a Role, VO-UML uses UML's built-in <<subsets>>
concept. I.e. one MUST redefine the Role, but declare it to be subsetting a role
on the super-type. The datatype of the constrained Role must be a subtype of its
declared datatype. For clarity of interpretation the redefined Role SHOULD use
the same name, but when deriving VO-DML/XML from the UML, the name is
ignored (though it may be used when generating the vodml-id for the role).
Other features of the constrained role may also be redefined as long as the
redefinition constrains the original set of values that is allowed on the constrained
Role.

[TBD image for VO-UML. Note, no example in sample model (yet?)]

5 Procedure for defining data models in the IVOA
Having a standardized data modeling language such as the one defined in this
document allows one to be more formal on what the acceptable end product of
an IVOA data modeling effort should be. This section defines the procedure for
creating an IVOA data model and which products must or may be created
according to the VO-DML philosophy.

5.1 Rules

A new data model MUST have a VO-DML/XML representation. This is an XML
document that MUST be valid with respect to the vo-dml.xsd schema37 and the
rules embodied by the vo-dml.sch.xml38 Schematron file. How this representation
is produced is not important. It may be written by hand, it may be derived from a
UML/XMI representation using an XSLT script39, or by some other means. The
VO-DML/XML document MUST be available online and an accepted version
MUST be available in an IVOA registry with a standard IVO Identifier.
An IVOA data model MUST have an HTML document in which each data model
element is described and is Referable through a URL consisting of a root URL
linking to the HTML document itself followed by a ‘#” sign and the vodml-ref of
the documented element. The XSLT script vo-dml2html.xsl MAY be used to
produce such a document from the VO-DML/XML representation. The HTML
document MUST be made available online and the HTML for the accepted
version MUST be registered in an IVOA registry.
A VO-DML data model can import other data models. This allows it to use
elements from the other data model in the definition of its own. Of particular
importance is the model named "ivoa" which SHOULD be imported by all IVOA

37 The schema is currently available under http://volute.g-vo.org/svn/trunk/projects/dm/vo-
dml/xsd/vo-dml.xsd .
38 The schematron file is currently available under http://volute.g-vo.org/svn/trunk/projects/dm/vo-
dml/xsd/vo-dml.sch.xml. A full validation using both schema and schematron file is part of the ant
build script under https://volute.g-vo.org/svn/trunk/projects/dm/vo-dml/build.xml.
39 Various XSLT scripts for creating VO-DML from UML or creating other products form the VO-
DML are currently available under http://volute.g-vo.org/svn/trunk/projects/dm/vo-dml/xslt

http://volute.googlecode.com/svn/trunk/projects/dm/vo-dml/xsd/vo-dml.xsd
http://volute.googlecode.com/svn/trunk/projects/dm/vo-dml/xsd/vo-dml.xsd
http://volute.googlecode.com/svn/trunk/projects/dm/vo-dml/xsd/vo-dml.sch.xml
http://volute.googlecode.com/svn/trunk/projects/dm/vo-dml/xsd/vo-dml.sch.xml
http://volute.googlecode.com/svn/trunk/projects/dm/vo-dml/xslt

54

data models, the IVOA_Profile40. This model contains a set of predefined data
types, mainly primitive types, such as string, boolean, integer and real. It also
predefines a set of composite Quantity types that can be used to allow mapping
of scientific measurement values directly to FIELD-s and PARAM-s in a
VOTable41. These standard types SHOULD be used to represent these common
concepts in all models.
A data model MAY 42 produce an XML schema that represents a faithful
representation43 of the model. If this is done, the schema MUST allow one to
define XML documents representing instances of the data model in 1-1 mapping.
If the IVOA at some point defines one or more standard mappings between VO-
DML and XSD, one of those mappings MUST be used (see B.1 for examples of
such mappings). The XSD elements MUST (where appropriate) contain an app-
info element identifying the model element that is represented using its vodml-id.
The precise format of such an app-info element is not specified here.
A data model MAY44 produce a TAP schema matching the data model. If this is
done, the TAP schema MUST represent a 1-1 relational mapping of the data
model. If the IVOA at some point defines one or more standard mappings
between VO-DML and TAP_SCHEMA, one of those mappings MUST be used
(see B.2 for a first approach to such a mapping). The TAP_SCHEMA MUST be
represented by a VOTable that has a TABLE element for each table in the
schema and these MUST be annotated in the manner described in the Mapping
document with model elements identifying the corresponding VO-DML elements.

5.2 Suggestions

Non-normative guidelines how to build a model, and criteria on what makes a
"good" model.

 Decide why one wants to create a data model, what is its goal. This
includes defining what kind of data model should be created. Default goal
for any IVOA data model should be that it allows existing and future
databases to describe their contents (at least partially) in terms of the
model, which should serve as what is often called a global schema. In
certain cases a model may be developed to provide support for a
particular application area, for example when defining a data access

40 Currently this data model is available under https://volute.g-vo.org/svn/trunk/projects/dm/vo-
dml/models/profile/IVOA_Profile.vo-dml.xml , its HTML representation from https://volute.g-
vo.org/svn/trunk/projects/dm/vo-dml/models/profile/IVOA_Profile.html .
41 Specification in preparation in the "mapping document".
42 During the IVOA interoperability meeting in Cambridge, UK, May 2003, it was decided that data
models MUST have an XML schema as well as a UM expression. The current specification
revises that decision.
43 See Appendix B for a definition of this concept.
44 Not all data models lend themselves to an Object-Relational Mapping (ORM). Particular for
models that are meant to be reused by other models and are generally heavy on value types
rather than object types such a representation may not be natural. Elements form such models
may end up in databases based on models that use them.

https://volute.googlecode.com/svn/trunk/projects/dm/vo-dml/models/profile/IVOA_Profile.vo-dml.xml
https://volute.googlecode.com/svn/trunk/projects/dm/vo-dml/models/profile/IVOA_Profile.vo-dml.xml
https://volute.googlecode.com/svn/trunk/projects/dm/vo-dml/models/profile/IVOA_Profile.html
https://volute.googlecode.com/svn/trunk/projects/dm/vo-dml/models/profile/IVOA_Profile.html

55

protocol. Here one can decide to support faithful serialization of data
models in targeted XML documents as well as annotated serialization in
VOTable. Such models may not necessarily be reusable, but often they
can be seen as derivations of, views of, one or more fundamental data
models that were defined for reusability purposes.

 Decide on universe of discourse: what concepts must be described? How
rich should the model be?

 Create a conceptual/logical model. In drawings on whiteboard ("VO-
UML"), then transcribe to VO-DML/XML. Define concepts completely,
realizing that applications may pick and choose and transform.

 Sometimes, in application contexts: derive one or more physical
representations. Use as much as possible standard, if possible automated
derivation methods of VO-DML to target representation.

6 References
[1]. Abiteboul etal 2011 Web Data Management

Online version at http://webdam.inria.fr/Jorge/files/wdm.pdf)
[2]. Ullman, Information Integration Using Logical Views

ICDT ’97 Proceedings of the 6th International Conference on Database
Theory p19-40. Springel-Verlag London, UK ©1997.
http://ilpubs.stanford.edu:8090/154/1/1996-28.pdf

[3]. Standard serialization of Data Models in VOTable.
Current draft version in https://volute.g-vo.org/svn/trunk/projects/dm/vo-
dml/doc/VOTableDMSerialization-WD-v1.0.

[4]. VOTable Format Definition Version 1.3
http://www.ivoa.net/documents/VOTable/20130920/

[5]. Table Access Protocol Version 1.0
http://www.ivoa.net/documents/TAP/20100327/

[6]. An IVOA Standard for Unified Content Descriptors Version 1.10
http://www.ivoa.net/documents/latest/UCD.html

[7]. The UCD1+ Controlled Vocabulary Version 1.23
http://www.ivoa.net/documents/cover/UCDlist-20070402.html

[8]. Simulation Data Model Version 1.0
http://www.ivoa.net/documents/SimDM/20120503/index.html

[9]. Referencing STC in VOTable
http://www.ivoa.net/documents/Notes/VOTableSTC/

[10]. http://www.schematron.com/
[11]. http://www.ivoa.net/documents/SimDM/index.html
[12]. http://www.omg.org/spec/UML
[13]. http://www.omg.org/spec/UML/2.4.1/Superstructure/PDF/
[14]. http://vo-urp.googlecode.com/
[15]. http://www.omg.org/spec/XMI/2.1/
[16]. http://www.uml-diagrams.org/
[17]. Gray etal 2009 Vocabularies in the Virtual Observatory

IVOA recommendation 07 October 2009,
http://www.ivoa.net/documents/latest/Vocabularies.html

http://webdam.inria.fr/Jorge/files/wdm.pdf
http://ilpubs.stanford.edu:8090/154/1/1996-28.pdf
https://volute.googlecode.com/svn/trunk/projects/dm/vo-dml/doc/VOTableDMSerialization-WD-v1.0
https://volute.googlecode.com/svn/trunk/projects/dm/vo-dml/doc/VOTableDMSerialization-WD-v1.0
http://www.ivoa.net/documents/VOTable/20130920/
http://www.ivoa.net/documents/TAP/20100327/
http://www.ivoa.net/documents/latest/UCD.html
http://www.ivoa.net/documents/cover/UCDlist-20070402.html
http://www.ivoa.net/documents/SimDM/20120503/index.html
http://www.schematron.com/
http://www.ivoa.net/documents/SimDM/index.html
http://www.omg.org/spec/UML
http://www.omg.org/spec/UML/2.4.1/Superstructure/PDF/
http://vo-urp.googlecode.com/
http://www.omg.org/spec/XMI/2.1/
http://www.uml-diagrams.org/
http://www.ivoa.net/documents/latest/Vocabularies.html

56

[18]. Ecore:
http://download.eclipse.org/modeling/emf/emf/javadoc/2.9.0/org/eclipse/e
mf/ecore/package-summary.html

[19]. OWL2: http://www.w3.org/TR/owl2-overview/
[20]. RDF-Schema: http://www.w3.org/TR/rdf-schema/
[21]. Object Constraint Language

http://www.omg.org/spec/OCL/2.4/PDF2.4/PDF
[22]. Utypes: current usages and practices in the IVOA

http://www.ivoa.net/documents/Notes/UTypesUsage/index.html
[23]. Simple Spectral Access Protocol Version 1.1

http://www.ivoa.net/documents/SSA/
[24]. XML Schema Part 2: Datatypes Second Edition

http://www.w3.org/TR/xmlschema-2/
[25]. Observation Data Model Core Components and its Implementation in

the Table Access Protocol Version 1.0
http://www.ivoa.net/documents/ObsCore/20111028/index.html

[26]. Meilir Page-Jones Fundamentals of Object-Oriented Design in UML
Addison-Wesley 2000.

http://download.eclipse.org/modeling/emf/emf/javadoc/2.9.0/org/eclipse/emf/ecore/package-summary.html#details
http://download.eclipse.org/modeling/emf/emf/javadoc/2.9.0/org/eclipse/emf/ecore/package-summary.html#details
http://www.w3.org/TR/owl2-overview/
http://www.w3.org/TR/rdf-schema/
http://www.omg.org/spec/OCL/2.4/PDF
http://www.ivoa.net/documents/Notes/UTypesUsage/index.html
http://www.ivoa.net/documents/SSA/
http://www.w3.org/TR/xmlschema-2/
http://www.ivoa.net/documents/ObsCore/20111028/index.html

57

Appendix A Relation to UML
The following table summarizes the relation between VO-DML and UML. It lists
for each major VO-DML concept the corresponding UML concept or concepts
and where appropriate gives the graphical symbol that SHOULD be used in VO-
UML. The UML concepts, generally referred to as MetaClasses, have a
reference to a paragraph in the UML specification version 2.4.1 [13] and are also
hyperlinked to a more readable definition in www.uml-diagrams.org. Below the
table we discuss some UML meta-types that we have not included in VO-DML
and motivate our decision.

VO-DML concept Relevant UML MetaClass(es) VO-UML graphical notation
Model Model §17.3.1

ModelImport Model §17.3.1

PackageImport §7.3.40
ElementImport §7.3.15

ReferableElement NamedElement §7.3.34

Package Package §7.3.38

Type Type §7.3.52

Classifier §7.3.8

Type.extends Generalization §7.3.20

ObjectType Class §7.3.7

ValueType DataType §7.3.11

DataType DataType §7.3.11

PrimitiveType PrimitiveType §7.3.44

http://www.uml-diagrams.org/
http://www.uml-diagrams.org/package-diagrams/model.html
http://www.uml-diagrams.org/package-diagrams/model.html
http://www.uml-diagrams.org/package-diagrams.html#package-import
http://www.uml-diagrams.org/package-diagrams.html#element-import
http://www.uml-diagrams.org/uml-core.html#named-element
http://www.uml-diagrams.org/package-diagrams.html#package
http://www.uml-diagrams.org/uml-core.html#type
http://www.uml-diagrams.org/classifier.html
http://www.uml-diagrams.org/generalization.html
http://www.uml-diagrams.org/class-diagrams.html#class
http://www.uml-diagrams.org/class-diagrams.html#data-type
http://www.uml-diagrams.org/class-diagrams.html#data-type
http://www.uml-diagrams.org/class-diagrams.html#primitive-type

58

Enumeration Enumeration §7.3.16

EnumLiteral EnumerationLiteral §7.3.17 See Enumeration above

Role Feature §7.3.19
StructuralFeature §7.3.50
TypedElement §7.3.53
Property §7.3.45

Role.subsets Property.subsettedProperty,
Propery.redefinedProperty §7.3.45

Attribute Property §7.3.45 See ObjectType and DataType above.

Relation

Association §7.3.3
AssociationEnd
Property §7.3.45

Reference Association §7.3.3
AssociationEnd
Property §7.3.45

Composition Association §7.3.3

AssociationEnd
Property §7.3.45
AggregationKind §7.3.2

Multiplicity Multiplicity § See annotation in diagram for attributes,

reference, composition

Constraint Constraint §7.3.10

ConstrainExpression see Constraint.specification
§7.3.10

AttributeConstraints <<attribute>> with tags:
minValue, maxValue
minLength, maxLength, length
uniqueInCollection, uniqueGlobally

SemanticConcept <<semanticconcept>> with tags:
topConcept
vocabularyURI

A.1 UML meta-classes not included in VO-DML

Aggregation
A common question is why UML's Aggregation meta-class (see §7.3.2 and
§7.3.3) has not been included in VO-DML. Aggregation is a kind of shared
relationship between a whole and a part. It is "shared" in that the part can be a
part in multiple "wholes" at the same time, in contrast to a composition
relationship. Consequently the part's life cycle is not tied to that of any "whole".

http://www.uml-diagrams.org/class-diagrams.html#enumeration
http://www.uml-diagrams.org/uml-core.html#feature
http://www.uml-diagrams.org/uml-core.html#structural-feature
http://www.uml-diagrams.org/uml-core.html#type
http://www.uml-diagrams.org/property.html
http://www.uml-diagrams.org/property.html
http://www.uml-diagrams.org/association.html
http://www.uml-diagrams.org/association.html#association-end
http://www.uml-diagrams.org/property.html
http://www.uml-diagrams.org/association.html
http://www.uml-diagrams.org/association.html#association-end
http://www.uml-diagrams.org/property.html
http://www.uml-diagrams.org/association.html
http://www.uml-diagrams.org/association.html#association-end
http://www.uml-diagrams.org/property.html
http://www.uml-diagrams.org/multiplicity.html
http://www.uml-diagrams.org/constraint.html
http://www.uml-diagrams.org/constraint.html
http://www.uml-diagrams.org/association.html#shared-aggregation

59

In UML this relation is represented graphically by a line with an open diamond as
in Figure 19.

Figure 19 UML Aggregation relationship.

We have excluded Aggregation for the following reasons

1. In virtually all situations an aggregation can be represented by the pattern
illustrated in Figure 20. In fact, in almost all cases we have encountered
where an aggregation was used, the relation between the types A and B
was actually better modelled by that pattern as more attributes were
desirable to describe the relation in more detail; i.e. it needed a separate
type to represent the relation fully.

2. The representation of the shared aggregation pattern in a relational
database, arguably an important use case, requires a separate table
playing basically the role of the type AB in Figure 20. This is in contrast to
the case of the composition relationship, where a foreign key from part-to-
whole is the natural representation. To make the mapping explicit, it is
useful to enforce that types exist also in VO-DML. This is especially
important if we wish to be able to annotate such a database pattern with
data model information. There it is useful if each element in the physical
representation has a 1-1 relation to an element in the model.

3. The wish to keep the language as simple and non-redundant as possible.
This is obviously convenient for clients of the model, which require less
code to take care of all cases. When different methods exist to implement
the same pattern, different choices will be made, with the possibility of
confusion and the need for clients that are more sophisticated. In the case
of Aggregation moreover it has been noticed that it is prone to errors in the
model, inducing inexperienced modelers to ignore important model
components.

Figure 20 VO-DML aggregation pattern.

Summarizing, there is only a very small percentage of cases where aggregation
would really be sufficient. It seems never necessary. In those cases where it
would be used it would obfuscate the relationship between the model and
arguably its most important physical representation, namely relational databases.
It adds redundancy to a language that for many first-time users it hard enough to
use as it is, and would complicate the work of coders of client software. That in

60

some cases an extra type must be added to a model was considered a small
price to pay for these advantages.

Double inheritance
VO-DML does not support multiple inheritance. In this it follows computer
languages such as Java and C# (though not C++ or Python) and XML schema.
The main aim of our restriction is to promote simplicity of mapping models to
important serializations and trying to limit the abuse of inheritance that even with
single inheritance is very common (see e.g. Chapter 12 in [26]).

Appendix B Mapping to serialization meta-models
This appendix contains examples how one might map a VO-DML data model to a
physical representation format described by its own meta-model. These
mappings aim to be as close to 1-1 as possible, providing so called faithful
representations of the model. Developing standards for mappings to langauges
like these could greatly simplify a modeling process, as one need only define the
conceptual model itself and use automated procedures to derive the serialization
formats.

B.1 XSD

VO-DML concept XSD concept

ObjectType complexType

DataType complexType

Enumeration simpleType with restriction

list elements for the EnumLiterals

PrimitiveType simpleType, possibly with restriction

Attribute element on complexType, type

corresponding to mapping of datatype

Composition element on complexType, type

corresponding to mapping of datatype

Reference element on complexType, type

must be able to perform remote

referencing, possibly an xlink, or an

element of a special purpose type
designed for referencing.

Type.extends xsd:extension for ObjectType and

DataType, xsd:restriction for

PrimitiveType and Enumeration.

Package targetNamespace if each package is

defined in its own document.

B.2 RDB

61

Follow typical Object-Relational mapping rules.

VO-DML concept RDB concept

ObjectType Table

DataType Used as data type of Attributes, mapped to one or

more Columns in a Table.

Enumeration Used as data type of Attributes, mapped to one

Column in a Table

PrimitiveType Used as data type of Attributes, mapped to one

Column in a Table

Attribute One or more Columns in a Table depending on

datatype

Composition Foreign key from child to parent Table

Reference Foreign key from referrer to referent.

Type.extends Depending on inheritance mapping strategy 45 this

can be a foreign key from a Table representing

the sub-type to the one representing the base type.

Or may lead to sub-type Columns being added to

table for super-type.

Package Could be mapped to a Schema, but should have no

nested packages as nesting of schemas is not
supported in RDBs.

B.3 Java
VO-DML maps pretty much 1-1 to an OO language like Java. An automated
generation of Java classes is very well possible as show by the VO-URP proto-
type used in the Simulation Data Model [8] effort.

VO-DML concept Java concept

ObjectType class

DataType class

Enumeration enum

PrimitiveType Appropriate built in primitive type (int, boolean,

float, etc) or corresponding class, otherwise a

custom class.

Attribute Attribute in class of appropriate type.

Composition Collection<T> attribute on parent class, with T the

type corresponding to the child type.

Reference Attribute in class of Java type corresponding to the

data type of the reference.

Type.extends class <sub-type> extends <super-type>

Package Java package, hierarchical with maybe some root

45 E.g. see http://en.wikibooks.org/wiki/Java_Persistence/Inheritance

http://en.wikibooks.org/wiki/Java_Persistence/Inheritance

62

package representing the model.

63

Appendix C vodml-id generation rules
The only requirement on the <vodml-id> identifying model elements is that it is
unique within the context of the model. However, it may be useful for such IDs to
be human-readable, so to intuitively provide information about the elements they
identify. This specification states that vodml-id SHOULD be made human-
readable according to specific rules that represent the location of the identified
element in the model, encoded in the grammar presented below.
In the past46 rules have been defined for generating such unique identifiers for
elements in a data model, and the following grammar is built starting from that
previous attempt. Note that uniqueness depends on rules on the uniqueness of
names in a particular context, here represented by a location in a hierarchy:

vodml-id := package-vodml-id | type-vodml-id |

 attribute-vodml-id | collection-vodml-id |

 reference-vodml-id | container-vodml-id

package-vodml-id := <package-name> [“.” <package-name>]*

type-vodml-id := [package-vodml-id “.”] <type-name>

attribute-vodml-id := type-vodml-id “.” <attribute-name>

composition-vodml-id :=

 type-vodml-id “.” <composition-name>

reference-vodml-id := type-vodml-id “.” <reference-name>

container-vodml-id := “vo-dml:Object.CONTAINER”

vodml-ref := <model-name> “:” vodml-id

The grammar for the vodml-ref reference to an element identified by the

vodml-id identifier is also included above for convenience.

Appendix D Example Source data model
The various examples used as illustration in the main text are all extracted from a
very simple data model for Astronomical Sources that will hopefully not be too
strange to the readers. It has a VO-UML representation reproduced in Figure 21.
Its VO-DML/XML representation and also other derived products can be found at
https://volute.g-vo.org/svn/trunk/projects/dm/vo-dml/models/source .

46 The Simulation Data Model [http://ivoa.net/documents/SimDM/20120503] provided such a
grammar for the first time for the list of utypes accompanying that model.

https://volute.googlecode.com/svn/trunk/projects/dm/vo-dml/models/source

64

Figure 21 Simple Source data model used for illustrations in this document.

Appendix E The ‘ivoa’ model
Ultimately all types are defined as hierarchies of primitive types. This spec
assumes the existence of a special predefined model (with name='ivoa') that
defines a set of the most common of such types: integer, real, string etc. This
model SHOULD be imported by all other models and its types SHOULD be used
for the leaf attributes of object types and data types, or as ultimate super-types of
custom primitive types. The use of such a standardized model and its types
provides interoperability between models and allows the definition of standard
serialization strategies. Apart from these primitive types, the ivoa model also
defines some structured data types for representing quantities, values with units
and UCDs [7]. Making these part of the standard allows one to make some
special arrangements for mapping quantity-like attributes to FIELD-s and
PARAM-s in VOTable and is used in the Mapping specification [3].
The diagram in Figure 22 shows the types defined in the current version of 'ivoa'.
The official version of the model, its VO-DML\XML representation etc can be
found in

65

https://volute.g-vo.org/svn/trunk/projects/dm/vo-dml/models/ivoa/IVOA.vo-dml.xml.

Note, the vodml-id of all types exactly follow the generation rules in Appendix C.
I.e. to refer to the 'string' type one should always use the vodml-ref 'ivoa:string'
and to refer to RealQuantity one should use 'ivoa:quantity.RealQuantity'.

Figure 22 The types from the basic 'ivoa' data model. For details see https://volute.g-
vo.org/svn/trunk/projects/dm/vo-dml/models/ivoa/IVOA.vo-dml.xml Note the two types,
duration and decimal, which are under discussion.

https://volute.googlecode.com/svn/trunk/projects/dm/vo-dml/models/ivoa/IVOA.vo-dml.xml
https://volute.googlecode.com/svn/trunk/projects/dm/vo-dml/models/ivoa/IVOA.vo-dml.xml
https://volute.googlecode.com/svn/trunk/projects/dm/vo-dml/models/ivoa/IVOA.vo-dml.xml

