International
Virtual
Observatory

Alliance

ProvenanceDM Implementation Note

Version 0.1

IVOA Note 2018-04-10

Working group
DM
This version
http://www.ivoa.net /documents/ProvimplementationNote/20180410

Latest version
http://www.ivoa.net/documents/ProvimplementationNote
Previous versions
no previous versions yet

Author(s)
Kristin Riebe, Mathieu Servillat, Francois Bonnarel, Mireille

Louys, Michele Sanguillon, IVOA Data Model Working Group
Editor(s)
Kristin Riebe, Mathieu Servillat

Abstract

TODO:
This document is still very preliminary and may change any time.

This document collects use cases, guidelines and implementation notes
for the IVOA Provenance Data Model as described in Riebe and Servillat
et al. (2017). It contains details on the used classes and attributes for each
use case, design decision, problems and open issues. It is separated from the
standard document for IVOA Provenance, since it contains non-normative
information.

http://www.ivoa.net/documents/ProvImplementationNote/20180410
http://www.ivoa.net/documents/ProvImplementationNote

Status of this document

This is an IVOA Note expressing suggestions from and opinions of the
authors. It is intended to share best practices, possible approaches, or other
perspectives on interoperability with the Virtual Observatory. It should not
be referenced or otherwise interpreted as a standard specification.

A list of current IVOA Recommendations and other technical documents
can be found at http://www.ivoa.net/documents,/ .

How to use the data model

voprov Python package

Provenance for CTA

Provenance for the POLLUX database

Provenance of HiPS datasets

Provenance for the RAVE project

6.1 Django web application 0.

6.2 Implementation details 0L,

Contents

1

2

3

4

5

6
6.2.1
6.2.2
6.2.3
6.2.4
6.2.5
6.2.6

7

Tracking provenance
ProvDAL
Collection
Serializations
VOSI resources v v v i i
Sources, demo

Provenance from SimDM classes for CosmoSim

1 How to use the data model

10
10
11
12
12
14
14
15
16

17

The IVOA Provenance Data Model has been developed along with its imple-
mentations from different projects. We gather here some tips to implement
and use the model for a specific project.

http://www.ivoa.net/documents/

Before using the model We noticed that the simple knowledge of what is
provenance information is important for the conception of all projects. Be-
fore using or not ProvenanceDM and associated services, it is good practice
to locate and collect information on the activities, entities and agents that
will be manipulated, and be sure that this information is not lost along the
way. For example, a script may use intermediate files (such as calibration
files for observations) that may not be tracked by the system.

Define unique identifiers It would be convenient if each data object or even
each file gets a unique id that can be referenced. The W3C provenance model
requires ids for entities, activities and agents, and they have to be qualified
strings, i.e. containing a namespace. For example, an activity in the RAVE-
pipeline could have the id ‘rave:radialvelocity_pipeline_20160901".
Using a namespace for each project for these ids will help to make them
unique. IVOIDs, DOI’'s or ORCIDs are potentially good candidates for
unique identifiers.

Use of the description classes One may only use the core data model
without the description classes if they are not needed for the project. In that
case, it is recommended to merge the attributes of the description classes
into the main classes (Entity/ Activity/ Agent, and if needed Parameter). In
the same way, when serializing the provenance information, the description
classes can be merged to the main classes, which is needed to produce W3C
compliant provenance files.

Add project specific attributes to your entities, activities and agents We
proposed generic attributes for the different classes, but there are probably
project specific attributes that need to be added. It is also required at
this level to disentangle Entity properties and EntityDescription properties:
everything that you may know about an entity before its creation, belongs to
the EntityDescription (e.g. file format, content_type, dataproduct_type,
category, ...).

Group common features for entities and/or activities If inside the
project, the different entities that will be manipulated are already defined
precisely, as well as the activities producing them, then the description
classes are probably of interest and will help reducing the redundancy in
the provenance information stored.

Create ActivityDescription files A model using description classes to de-
fine templates for activities and entities has an advantage for normalization:
the common processes could be described once and for all at some place and
then be reused when recording provenance information for certain entities

and activities. If description classes are relevant for a project, it may be suf-
ficient to store the descriptions directly as ActivityDescription files. Those
can be created and centralized before implementing a provenance database
or service.

Link to an Authentication System We proposed to add optional attributes
to the Agent class (email, phone, address). Some projects may include an
authentication system with a user directory. In that case a link should be
kept between the Agent identifiers and the ones used in the authentication
system when it is relevant, and information should be synchronized. How-
ever, there may be some agents that are not defined in the authentication
system, so the information may not be easy to merge.

Adding additional metadata to an existing Entity It could happen that
after creating entities and storing their provenance, additional metadata is
needed for those entities. For example, an ObsCoreDM description may
have to be added to some entities when they are made available to the
public. In that case, the entity will receive an external identifier (e.g. a
publisher_did), which should thus be associated to the entity provenance
identifier (Entity.id) in a relation table. This allows to match existing Ids
between different data models metadata descriptions as highlighted in the
mapping table in the standard document.

2 voprov Python package

The voprov! package is an open source Python library derived from the prov
Python library (MIT license) developed by Trung Dong Huynh (University
of Southampton).

The prov package implements the W3C Provenance Data Model. It
offers to describe the provenance and provides different output formats of the
serialized data: PROV-N, PROV-JSON, PROV-XML and to build diagrams
in the following graphic formats: PDF, PNG, SVG.

The voprov library allows users to describe the provenance of their data
according to the IVOA Provenance Data Model. It allows the description of
flows of activities (pipelines) with eventually the composition of the different
steps. It provides the VOTable serialization in PROV-VQOTable format.

This library is currently used in the context of the POLLUX database
which hosts synthetic stellar spectra. The provenance files are created from
the non normalized information found in the Pollux header files. The se-
rialization is proposed in three levels of detail and in different formats: on

"https://github. com/sanguillon/voprov

https://github.com/sanguillon/voprov

one hand in PROV-N, PROV-JSON, PROV-XML and PROV-VQTable for-
mats and on the other hand in PDF, PNG and SVG graphic formats. The
VO user or the VO tool is informed of the existence of the provenance in
a DataLink entry of the Simple Spectral Access protocol (SSAP) response
which gives information on how to retrieve a given provenance file.

The following is an example of a python program which describes the
provenance and generates the different formats of serialization.

import sys
from prov.model import ProvDocument
from prov.dot import prov_to_dot
import pdb
try:
provdoc = ProvDocument ()
provdoc.add_namespace(’prov’, ’http://www.w3.org/ns/prov#’)
provdoc.add_namespace(’voprov’, ’http://www.ivoa.net/documents/dm/provdm/voprov/’)
provdoc.add_namespace(’ivo’, ’http://www.ivoa.net/documents/rer/ivo/’)
provdoc.add_namespace(’hips’, ’http://cds.u-strasbg.fr/data/’)
provdoc.entity(’ivo://CDS/P/DSS2color#RGB_NGC6946° ,\
{’voprov:name’:’RGB DSS2 image for NGC 6946°, \
’voprov:annotation’:’PNG RGB image for galaxy NGC 6946°})
provdoc.entity(’ivo://CDS/P/DSS2/POSSII#POSSII.J-DSS2.1437,\
{’voprov:name’:’POSSII Blue Survey DSS2 NGC6946°, \
’voprov:annotation’:’Blue POSSII Schmidt survey around NGC 6946°1})
provdoc.entity(’ivo://CDS/P/DSS2/POSSII#POSSII.F-DSS2.143,\
{’voprov:name’:’POSSII Red Survey DSS2 NGC6946°, \
’voprov:annotation’:’Red POSSII Schmidt survey around NGC 6946°})
provdoc.entity(’ivo://CDS/P/DSS2/POSSII#POSSII.N-DSS2.143°,\
{’voprov:name’:’POSSII Infra Red Survey DSS2 NGC6946°, \
’voprov:annotation’:’Infrared POSSII Schmidt survey around NGC 6946°1})
provdoc.activity(’hips:AlaRGB1’>, ’2017-04-18T17:28:00°, ’2017-04-19T17:29:00°, \
{’voprov:name’:’Aladin RGB 1’°,\
’voprov:annotation’: ’Aladin RGB image generation for NGC 6946°,\
’voprov:desc_name’: ’Aladin RGB image generation algorithm’, \
’voprov:desc_type’: ’RGBencoding’, \
’voprov:desc_doculink’:’http://aladin.u-strasbg.fr/aladin.gml’})
provdoc.used(’hips:AlaRGB1’, ’ivo://CDS/P/DSS2/POSSII#POSSII.J-DSS2.1437%)
provdoc.used(’hips:AlaRGB1’, ’ivo://CDS/P/DSS2/POSSII#POSSII.F-DSS2.1437)
provdoc.used(’hips:AlaRGB1’, ’ivo://CDS/P/DSS2/POSSII#POSSII.N-DSS2.143%)
provdoc.wasGeneratedBy(’ivo://CDS/P/DSS2color#RGB_NGC6946°, ’hips:AlaRGB1’, ’°’)
f_out = open(’exl.json’,’w’)
f_out.write(provdoc.serialize(indent=2))
f_out.close()
f_out = open(’exl.provn’,’w’)
f_out.write(provdoc.get_provn())
f_out.close()
provdoc.serialize(format="xml’, destination=’ex1.xml’)
f_out = open(’exl.votable’,’w’)
f_out.write(provdoc.serialize(format=’votable’,indent=2))
f_out.close()
except Exception, e:
print ("Error while writing the file : s !" Ystr(e))
sys.exit (1)

Scheduler

Figure 1: CTA high level data model structure with Pipeline stages and
connection to IVOA ProvenanceDM.

3 Provenance for CTA

The Cherenkov Telescope Array (CTA) is the next generation ground-based
very high energy gamma-ray instrument. It will provide a deep insight into
the non-thermal high-energy universe. Contrary to previous Cherenkov ex-
periments, it will serve as an open observatory providing data to a wide as-
trophysics community, with the requirement to propose self-described data
products to users that may be unaware of the Cherenkov astronomy speci-
ficities. The proposed structure of the metadata is presented in Figure 1.

Cherenkov telescopes indirectly detect gamma-rays by observing the
flashes of Cherenkov light emitted by particle cascades initiated when the
gamma-rays interact with nuclei in the atmosphere. The main difficulty
is that charged cosmic rays also produce such cascades in the atmosphere,
which represent an enormous background compared to genuine gamma-ray-
induced cascades. Monte Carlo simulations of the shower development and
Cherenkov light emission and detection, corresponding to many different
observing conditions, are used to model the response of the detectors. With
an array of such detectors the shower is observed from several points and,
working backwards, one can figure out the origin, energy and time of the
incident particle. The main stages of the CTA Pipeline are presented inside
Figure 1. Because of this complexity in the detection process, provenance
information of data products is necessary to the user to perform a correct
scientific analysis.

Provenance concepts are relevant for different aspects of CTA:

e Data diffusion: the diffused data products have to contain all the
relevant context information with the assumptions made as well as
a description of the methods and algorithms used during the data
processing.

\
\

provilabel CTA Consortium |
provitype Organization

wasAssociatedWith

param:inobs
%
.

provitype xs:anyURI
prov: hitp:// bspm. fits

job:ctbin

wasGeneratedBy wasGeneratedBy wasDerivedFrom | wasDerivedFrom

prov:startTime 2016-05-11T11:15:06
prov:endTime 2016-05-11T11:15:12
‘param:axisrot 0.0

param:binsz 0.02

param:chatter 2

param:clobber yes

param:coordsys CEL

param:debug no

param:ebinalg LOG

paramicbinfle NONE

param:emax 100.0 result:logfile
param:emin 0.1

param:enumbins 20 Ji

param:mot?e ql /

param:nxpix 200 /

‘param:nypix 200 /

param:prefix cntmap_ 4

‘param:proj TAN 4

param:usepnt no
param:xref 83.63
param:yref 2201

Figure 2: Provenance description of a CTA analysis step.

e Pipeline: the CTA Observatory must ensure that data processing is
traceable and reproducible.

e Instrument Configuration: the characteristics of the instrument at a
given time have to be available and traceable (hardware changes, mea-
surements of e.g. a reflectivity curve of a mirror, ...)

We tested the tracking of Provenance information during the data anal-
ysis using the Python prov package inside OPUS? (Observatoire de Paris
UWS System), a job control system developed at PADC (Paris Astronomi-
cal Data Centre). This system has been used to run CTA analysis tools and
provides a description of the Provenance in the PROV-XML or PROV-JSON
serializations, as well as a graph visualization (see Figure 2).

The CTA Pipeline contains a specific Provenance class dedicated to the
collection of provenance information after each processing step. This infor-
mation is returned as an output file for now.

4 Provenance for the POLLUX database

POLLUX is a stellar spectra database proposing access to high resolu-
tion synthetic spectra computed using the best available models of atmo-
sphere (CMFGEN, ATLAS and MARCS), performant spectral synthesis

“https://github.com/ParisAstronomicalDataCentre/0PUS

https://github.com/ParisAstronomicalDataCentre/OPUS

< polluxProv:IP_Mod_1 > pollux:plez

voprovname IP_Mod

Input Model Atmosph voproviname Bertrand Plez
s pollux:marcs35_1 voprovaype. ndsnduel

asGeneratedBy wasattributedTo

provistartTime 2008-10-18T00:00:00+01:00
(Time 2008-10-18T00:00:00+01:00

nnotation code for atmosphere model _— —
link e mar C 11 latmo_1 > pollux;josselin vopromrol creator
Cname marcsss

lesc_subtype AtmosphereModel
voprovidesc_type Simulation

¢ polluxProv:IP 1

voprov:annotation Input Parameters for Spectral Synthesis
voproviname P
voprovitype Collection

d voprovitype Indiidual

‘wasattributedTo

proviendTime 2008-10-16TOC:00:00+01:00
voprov:desc_annotation code for spectral synthesis st e

voprov:dese_doculink hetpy/adsabs.harvard.du/abs/2012ascLsoft0S 0047 < pollux:spectrum_1 > voprov:role creator
voprov:desc_name turbospectrum — . . —

voprovidssc_ subtyps SpactralSynthesis

voprov:desc_type Simulation

voprov:annotation Pollux Spectrum short_name
‘voprov:creationTime 2008-10-18T00:00:00
prov M

) vis

Figure 3: Example for provenance metadata for a POLLUX spectrum, pro-
duced from a W3C compatible format (e.g. using prov:startTime instead
of voprov:startTime).

codes (CMF_FLUX, SYNSPEC and TURBOSPECTRUM) and atomic line
lists from VALD database and specific molecular line lists for cool stars.

Currently the provenance information is given to the astronomer in the
header of the spectra files (depending on the format: FITS, ASCII, XML,
VOTable, ...) but in a non-normalized description format.

The implementation of the provenance concepts in a standardized for-
mat allows users on one hand to benefit from tools to create, visualize and
transform to another format the description of the provenance of these spec-
tra and on a second hand to select data depending on provenance criteria.
An example visualization of (W3C compatible) provenance metadata for a
POLLUX spectrum is given in Figure 3.

5 Provenance of HiPS datasets

HiPS (Fernique and Allen et al., 2015) is an IVOA recommendation for a
new hierarchical organization of pixel data, allowing smooth browsing of all-
sky data collections in astronomy. It is based on the HEALPix tesselation of
the sky into equal-area cells for a given HEALPix order, where each cell is
given an image tile. Adaptative resolution is achieved by a hierarchy of tiles
at increasing order. Sorting and organization is based on a tree of nested
directories, each of which is associated with a tile. In the processing chain,
HiPS can be seen as a kind of “legacy level” for observational data.

A HiPS dataset can be generated either by Aladin in “hipsgen” mode or
by other software. The processing distinguishes 3 main different methods for

estimating cell values with parameters: FIRST (nearest neighbour), MEAN,
and MEDIAN of the neighbouring pixels. Up to 50 parameters can help to
tune the processing, among them the highest resolution’s HEALPix order,
the sky background value to be substracted, the border width or the mask
to apply to original images in order to avoid including bad areas, etc.

An example of provenance metadata for a HiPS collection generated from
a collection of SERC Schmidt plates scanned by CAI-Observatoire de Paris
with the MAMA facility and serialized in PROV-N format is given at
http://wiki.ivoa.net/twiki/bin/view/IVOA/ProvSerialisationExample/
HiPS-prov-provn.txt, the corresponding VOTable-format is available at
http://wiki.ivoa.net/twiki/bin/view/IVOA/ProvSerialisationExample/
HiPS-prov-vot.xml.

Here is an excerpt of the corresponding PROV-N serialization:

prefix ivo <http://www.ivoa.net/documents/rer/ivo/>

prefix ex <http://www.example.com/provenance/>

prefix voprov <http://www.ivoa.net/documents/dm/provdm/voprov/>

prefix ds <http://www.ivoa.net/documents/dm/datasetdm/>

prefix hips <http://www.ivoa.net/documents/apps/hips/>

Entity

(ivo://CDS/P/MAMA/ESO-R,

[voprov:name = "ESO-R MAMA HIPS at CDS",

voprov:type= "voprov:entity",

voprov:annotation = "HiPS version of ESO Schmidt survey digitized by Mama and processed by CDS",
voprov:doculink = "http://cds.u-strasbg.fr/hips/documentation.html#structure",
ds:calibLlevel = 3,

ds:dataproduct_type = "voprov:hips_pixels",

ds:access_reference = "http://CDS/P/MAMA/ESO-R", // as defined in ObsCore and Dataset DM
hips:HiPS_properties = "http://cds.u-strasbg.fr/hips/p/mama/eso-r/properties.txt"])

// Relationship

WasAttributedTo(ivo://CDS/P/MAMA/ESO-R, ivo://cds, voprov:role= "voprov:creator")

Agent

(ivo://cds,

[voprov:name= "CDS",

voprov:email = "question@astro.unistra.fr",
voprov:type = "Organisation" 1)

WasGeneratedBy (ivo://CDS/P/MAMA/ESO-R, EHG1, -)
Activity

(EHG1,

[voprov:name = "ESO HiPS generation 1",

voprov:startTime = "2016-07-18",

voprov:endTime = "2016-07-20",

voprov:annotation = "Final generation activity of HiPS for ESO Mama survey",
voprov:activityDescription = "HipsgenM"])

ActivityDescription

(HipsgenM,

[voprov:name = "HiPSgen_Mean",

voprov:type = "data encoding",

voprov:subtype= "HiPSgen",

voprov:doculink = "http://cds.u-strasbg.fr/HiPSGEN-Documentation"])
WasAssociatedWith(EHG1, Buga, voprov:role="voprov:operator")
WasAssociatedWith(EHG1, ivo://CDS, voprov:role="voprov:creator")
WasAttributedTo((ivo://CDS/P/MAMA/ESO-R, buga, voprov:role= "voprov:operator")

http://wiki.ivoa.net/twiki/bin/view/IVOA/ProvSerialisationExample/HiPS-prov-provn.txt
http://wiki.ivoa.net/twiki/bin/view/IVOA/ProvSerialisationExample/HiPS-prov-provn.txt
http://wiki.ivoa.net/twiki/bin/view/IVOA/ProvSerialisationExample/HiPS-prov-vot.xml
http://wiki.ivoa.net/twiki/bin/view/IVOA/ProvSerialisationExample/HiPS-prov-vot.xml

6 Provenance for the RAVE project

The RAVE (RAdial Velocity Experiment) ® is a survey that observed the
spectra of half a million stars from the southern hemisphere. In a pipeline of
several steps the data were calibrated, reduced and stellar properties were
determined, which were then released in the form of star catalogues.
Providing provenance information, e.g. from which spectrum and fibre
a dataset was coming from and which steps were involved in processing the
data, can help scientists to understand the data, the restrictions and judge
the data quality. It would also be useful to be able to compare if, how and
why the derived data for some stars have changed between different releases.

6.1 Django web application

General information We set up a web application by implementing the
Provenance DM classes along with provenance metadata from the RAVE
project using the Django Python Web Framework” and storing the metadata
information in an SQLite database. In such a Django application, each class
of the Provenance Data Model can be implemented as a class (a Django
“model”) in the webapp. Django automatically creates a database table for
each class, with one column for each defined class attribute. Figure 4 shows
the ProvenanceDM classes which were implemented for this use case and
exist as tables in the (SQLite) database of the webapp.

Figure 4: This figure shows the classes that were actually imple-
mented in the RAVE web application along with their attributes
(light grey = optional) and relations to each other. This fig-
ure was extracted directly from the web application using manage.py
graph_models. The full resolution image can be found in the volute repos-
itory, http://volute.g-vo.org/svn/trunk/projects/dm/provenance/
implementation-note/provenance-rave-django-models.pdf.

We split the web application into two parts: a reusable package called
django-prov_vo® and the main web application. The django-prov_vo

Shttp://www.rave-survey.org/
“https://wuw.djangoproject.com/
*https://github.com/kristinriebe/djangp-prov_vo/

10

http://volute.g-vo.org/svn/trunk/projects/dm/provenance/implementation-note/provenance-rave-django-models.pdf
http://volute.g-vo.org/svn/trunk/projects/dm/provenance/implementation-note/provenance-rave-django-models.pdf
http://www.rave-survey.org/
https://www.djangoproject.com/
https://github.com/kristinriebe/djangp-prov_vo/

package contains an implementation of the provenance classes, interfaces
to access the data and the functionality to serializa the complex provenance
information into different formats.

Features Using this Django web application, it is possible to rather quickly
setup a provenance web service with the following features:

e List all instances of a class (e.g. all activities or all entities)

e Show details for a single object (e.g. all the properties for a selected
activity)

e ProvDAL access to retrieve provenance information for a given entity,
activity or agent identifier

e Serialisation of provenance information into different formats (PROV-
N, PROV-JSON), also in W3C-compatible form

e Visualization of provenance information with Javascript
REST APl The first two points, listing instances and showing details

for each ProvenanceDM class are implemented as a REST API, using the
Django RESTFramework® module. Here are some example URLs for this:

e {base-url}/api/activities/: list of all activity instances

e {base-url}/api/activities/?format=json: same, in simple json
format

o {base-url}/api/activities/rave:act_classificationPipeline/:
details for the activity with ID rave:act_classificationPipeline

e {base-url}/api/used/: list of all used relations
Identifiers For each activity, agent or entity, an identifier (ID) is defined
using the “rave” namespace defined for this project. This is useful for en-
suring unique IDs. A namespace is also required for constructing qualified
identifiers for W3C compatible serialisations.
6.2 Implementation details

The following sections are more technical and describe with more details
some of the issues that arose during the implementation and their solutions.

Shttp://www.django-rest-framework.org/

11

http://www.django-rest-framework.org/

6.2.1 Tracking provenance

Provenance for an entity, activity or agent can be tracked backwards or even
forward via the different relations using database queries. Here we used a
straight-forward approach, without further optimisation, by implementing
three recursive functions: one for finding an activity and following its re-
lations, one for tracking an entity and one for tracking an agent. They
search for the desired activity/entity/agent in any of the corresponding re-
lations (e.g. for activity, check used, wasGeneratedBy, wasInformedBy, had-
Step), extract the activity, entity or agent the desired activity/entity/agent
is linked with and call the corresponding function for tracking it further
(recursively).

6.2.2 ProvDAL

The IVOA ProvenanceDM specification (Riebe and Servillat et al., 2017)
describes a method to retrieve provenance information for a specified entity,
activity or agent via a ProvDAL service interface. We have implemented it
for this web application, using provdal/ as endpoint with following request
parameters:

e ID: a valid qualified identifier for an entity or activity (can occur mul-
tiple times)

e DEPTH: a positive integer (including 0) for following the provenance
graph this number of relations or ALL for everything

e RESPONSEFORMAT: format of the serialized response, currently only
PROV-JSON and PROV-N are implemented

e DIRECTION: direction of the provenance tracking, either BACK or FORTH.
This only affects the way how used, wasGeneratedBy, wasDerivedFrom
and wasInformedBy are followed.

e MEMBERS, STEPS, AGENT: additional flags that can be true or false.

e MODEL: extra parameter for choosing a serialization compliant to IVOA
ProvenanceDM or W3C ProvDM

This allows to retrieve provenance descriptions in the desired format and
compliant to W3C or including the IVOA ProvenanceDM extensions.
We additionally implemented following non-standard extension:

e RESPONSEFORMAT=GRAPH retrieves a html page with an interactive vi-
sualisation of the provenance description

A typical request looks like this:

12

{base-url}/provdal/?ID=rave:20121220_0752m38_089&DEPTH=1&
RESPONSEFORMAT=PROV-N&MODEL=IVOA

This generates a serialised description of the entity with ID rave:20121220_0752m38_089
and its direct relations, in PROV-N format:

document

prefix prov <http://www.w3.org/ns/provi#>

prefix voprov <http://www.ivoa.net/documents/ProvenanceDM/ns/voprov/>

prefix custom <http://www.ivoa.net/documents/ProvenanceDM/ns/custom/>

prefix xsd <http://www.w3.org/2000/10/XMLSchema#>

prefix rave <http://www.rave-survey.org/prov/>

prefix org <http://www.ivoa.net/documents/ProvenanceDM/ns/org/>

prefix vo <http://www.ivoa.net/documents/ProvenanceDM/ns/vo>

activity(rave:act_dataextraction, 2003-04-11T14:42:16Z, 2012-05-27T17:05:00Z,
[voprov:name="Data Extraction", voprov:type="obs:Extraction",
voprov:annotation="RAVE observations, data release 4",
voprov:doculink="RAVE DR4: Kordopatis et al. 2013, AJ, 146, Issue 5,
article id. 134, pp.421-451"])

entity(rave:20121220_0752m38_089, [voprov:name="20121220_0752m38_089",
voprov:annotation="Properties of observed star derived for this
observation in RAVE DR4", voprov:rights="voprov:public",
custom:dataType="databaseRow",
custom:storageLocation="https://www.rave-surve.org/query/"])

entity(rave:DR4_RAVEDR4, [voprov:name="RAVEDR4 main",
voprov:annotation="The main RAVE DR4 table", voprov:rights="voprov:public",
custom:dataType="databaseTable",
custom:storageLocation="https://www.rave-survey.org/project/documentation/dr4/rave_dr4/"])

wasGeneratedBy (rave:20121220_0752m38_089, rave:act_dataextraction, -)

hadMember (rave:DR4_RAVEDR4, rave:20121220_0752m38_089)

endDocumentdocument

We implemented a web form” as frontend for the ProvDAL interface, in
which all the parameters can be set. The form does not support asking for
multiple IDs at once for now.

Content negotiation with HTTP Accept We also check, if the HT'TP ac-
cept header is compatible with the requested response format. If it is not,
a 406 Not Accepted error is returned. The following table shows the accept
types that we considered compatible with the implemented serialization for-
mat. If either an unsupported REPSONSEFORMAT value or accept header
is requested, the HT'TP error 415 Not Supported is returned.

"https://escience.aip.de/provenance-rave/prov_vo/provdal

13

https://escience.aip.de/provenance-rave/prov_vo/provdal

RESPONSEFORMAT HTTP accept

PROV-N text /plain
text/*
* /%
PROV-JSON application/json
application /*

/

6.2.3 Collection

For RAVE, each pipeline step operates on a number of files which can be
summarized as a collection. E.g. the processing step “IRAF Reduction”
produces a set of files with reduced spectra, which are summarized as “IRAF
Reduced dataset”, a collection. The individual files are members of this
collection (via hadMember relationship).

A Collection is derived from the Entity-class and thus inherits the same
attributes and relations. Since we did not need any additional attributes
for collections, we did not make use of the extra Collection class, and only
marked entities that are collections by setting their type-attribute to “col-
lection” (like it is done in W3C serialisations). Thus, when looping over a
list of entities, it is also faster to check if they are a collection (only need to
check an attribute and not check if an entity occurs in the list of collections
as well).

6.2.4 Serializations

We implemented serializers for each class, which directly map the used
classes and attributes into the required format, adding the voprov-namespace
to each attribute. This is useful for processing the provenance informa-
tion with ProvenanceDM-aware VO-tools. However, according to the IVOA
Provenance DM requirements, it must also be possible to serialize the prove-
nance information into at least one of the W3C formats. Thus we also im-
plemented W3C variants of the serializers. These map the additonal classes
and attributes from ProvenanceDM to a valid W3C representation.

Here’s a list of the main changes/mappings for converting from the IVOA
model to W3C serialisation:

e namespace voprov — prov for those attributes that are the same in
W3C (e.g. ID, role, startTime, endTime)

e attribute voprov:name — prov:label

e attribute voprov:annotation — prov:description

14

e attribute prov:role is not allowed in W3C’s wasAttributedTo, thus
use voprov:role

e hadMember has no ID and no optional attributes in W3C

e Collection — Entity with prov:type = prov:collection
W3C serialization of ActivityFlow The classes ActivityFlow and HadStep
do not exist in W3C. When a W3C compliant serialization of a provenance

description including an activityFlow is needed, these classes have to be
expressed with existing W3C classes:

e Represent each activityFlow as an activity; additional attribute
voprov:votype = ’voprov:activityFlow’

e Represent each hadStep relation as a wasInfluencedBy relation; addi-
tional attribute voprov:votype = ’voprov:hadStep’

For example, an activityFlow and related activities in IVOA Prove-
nanceDM, PROV-N notation may look like this:

activityFlow(rave:act_pipeline, -, -, [voprov:name="RAVE Pipeline"])
activity(rave:act_sparvPipeline, -, -, [voprov:name="SPARV-Pipeline"])
activity(rave:act_irafReduction, -, -, [voprov:name="IRAF Reduction"])

hadStep(rave:act_pipeline, rave:act_irafReduction)
hadStep(rave:act_pipeline, rave:act_sparvPipeline)
wasInformedBy (rave:act_sparvPipeline, rave:act_irafReduction)

and the corresponding W3C serialisation would look like this:

activity(rave:act_pipeline, -, -, [voprov:votype="voprov:activityFlow", voprov:name="RAVE Pipeline"])
activity(rave:act_sparvPipeline, -, -, [voprov:name="SPARV-Pipeline"])
activity(rave:act_irafReduction, -, -, [voprov:name="IRAF Reduction"])

wasInfluencedBy(rave:act_pipeline, rave:act_irafReduction, [voprov:votype="voprov:hadStep"])
wasInfluencedBy(rave:act_pipeline, rave:act_sparvPipeline, [voprov:votype="voprov:hadStep"])
wasInformedBy(rave:act_sparvPipeline, rave:act_irafReduction)

This way, an activityFlow can be expressed with W3C compliant terms,
and it is possible to convert from this representation to an IVOA-compliant
version including activityFlow and hadStep explicitly. Note also, that there
exists also at least one other attempt to model workflows, e.g. D-PROV?,
which is using extensions to W3C Prov.

6.2.5 VOSI resources

The necessary interfaces availability and capabilities are implemented
in an additional reusable package, django-vosi.

Shttps://www.usenix.org/system/files/conference/tapp13/tapp13-final3.pdf

15

https://www.usenix.org/system/files/conference/tapp13/tapp13-final3.pdf

6.2.6 Sources, demo

Please note that this RAVE Provenance web application is still a prototype
and may change any time.

e Sources of the web application:
https://github.com/kristinriebe/provenance-rave
https://github.com/kristinriebe/django-prov_vo
https://github.com/kristinriebe/django-vosi

e Live demo version:
https://escience.aip.de/provenance-rave
The base-url for the given examples is
https://escience.aip.de/provenance-rave/prov_vo/

e Javascript example for provenance visualisations:
https://escience.aip.de/prov/graphs/example.html

16

https://github.com/kristinriebe/provenance-rave
https://github.com/kristinriebe/django-prov_vo
https://github.com/kristinriebe/django-vosi
https://escience.aip.de/provenance-rave
https://escience.aip.de/provenance-rave/prov_vo/
https://escience.aip.de/prov/graphs/example.html

7 Provenance from SimDM classes for CosmoSim

etc. ete.

References

Fernique, P., Allen, M., Boch, T., Donaldson, T., Durand, D., Ebisawa,
K., Michel, L., Salgado, J. and Stoehr, F. (2015), ‘Hips - hierarchical
progressive survey version 1.0°, IVOA Recommendation.
http://www.ivoa.net/documents/HiPS/20170519/

Riebe, K., Servillat, M., Bonnarel, F., Louys, M., Rothmaier, F., Sanguillon,
M. and the IVOA Data Model Working Group (2017), ‘IVOA provenance
data model’, IVOA Working Draft.
http://www.ivoa.net/documents/ProvenanceDM/

17

http://www.ivoa.net/documents/HiPS/20170519/
http://www.ivoa.net/documents/ProvenanceDM/

	How to use the data model
	voprov Python package
	Provenance for CTA
	Provenance for the POLLUX database
	Provenance of HiPS datasets
	Provenance for the RAVE project
	Django web application
	Implementation details
	Tracking provenance
	ProvDAL
	Collection
	Serializations
	VOSI resources
	Sources, demo

	Provenance from SimDM classes for CosmoSim

