
1 Accessing provenance information

1.1 State of ProvDAL at Paris meeting, July 2017

ProvDAL is a service the interface of which is organized around one main
parameter, the “ID” of an entity (obs_publisher_did of an ObsDataSet for
example) or activity. The response is given in one of the following formats:
PROV-N, PROV-JSON, PROV-XML, PROV-VOTABLE. Additional pa-
rameters can complete ID to refine the query: FORMAT allows to choose
the output format. BACKWARD gives the number of relations that shall
be tracked in backward direction, i.e. along the provenance history. Its
value is either 0, a positive integer or ALL. If this parameter is omitted,
the default is ALL, wich returns the complete provenance history. The op-
tional parameter FORWARD defines the number of forward relations; it’s
also either a positive integer or ALL, but default is 0. That means if neither
FORWARD nor BACKWARD are specified, then the complete provenance
history is returned.

The ID parameter is allowed more than once in order to retrieve several
data set provenance details at the same time. An example request could
look like this:

{provdal-base-url}?ID=rave:dr4&BACKWARD=1&FORMAT=PROV-JSON

Each of the provenance relation has a direction, BACKWARD fol-
lows these directions whereas FORWARD follows the relations in re-
verse direction, independent of the relation type. This is easier to
implement, but has the (for a user unexpected) side effect that e.g.
agent relations are only retrieved when using BACKWARD, but never
with FORWARD. Similarly for membership (hadStep, hadMember) re-
lations: members of a collection or activityFlow are retrieved only in
BACKWARD direction, and collections or activityFlows that contain
an entity or activity are only found in FORWARD direction. In or-
der to provide a more user-friendly interface with less surprising be-
haviour, we define three more request parameters: EXPAND_AGENT,
EXPAND_COLLECTION and EXPAND_ACTIVITYFLOW. They take
TRUE or FALSE as arguments. If they are set to TRUE, the relations
with agents, collections and activityFlows will be included in any case,
independent of the direction in which the provenance graph is retrieved.
TODO:
Draw a provenance graph picture here with different relation types
and arrows for direction.

TODO:
Implementations need to show if this is really the best way.

1



TODO:
If EXPAND_AGENT=TRUE: include all agent relations, but if EX-
PAND_AGENT=FALSE, then use default behaviour? Or do not
include any of the agent relations? Which one would it be?

A ProvDAL service MUST implement the parameters ID, BACKWARD
and FORMAT; the remaining parameters are optional. If a service does not
implement the optional parameters, but they appear in the request, then
the service should return with an error.

Table 2 summarizes the parameters for such a ProvDAL service interface.

Parameter Require-
ment

Value/options Default Description

ID required qualified ID – a valid qualified identi-
fier for an entity or ac-
tivity (can occur multi-
ple times)

BACKWARD required 0,1,2,..., ALL ALL number of relations to
be followed backwards or
ALL for everything

FORWARD optional 0,1,2,..., ALL 0 number of relations to be
followed forward or ALL
for everything

FORMAT required PROV-N,
PROV-JSON,
PROV-XML,
PROV-
VOTABLE

? serialisation format of
the response

EXPAND_
AGENT

optional TRUE or
FALSE

TRUE include agent relations in
any case

EXPAND_
COLLEC-
TION

optional TRUE or
FALSE

TRUE include relations with
collections in any case

EXPAND_
ACTIVI-
TYFLOW

optional TRUE or
FALSE

TRUE include relations with ac-
tivityFlows in any case

Table 1: ProvDAL request parameters

2



1.2 New proposal after Paris meeting, after first implementation

ProvDAL is a simple data access layer interface (see DALI specification of
the VO, ?) that can be implemented by a web service to serve prove-
nance information to a client. The client sends GET request to the basic
URL endpoint ({provdal-base-url}) of a ProvDAL service, providing at
least the main parameter ID, the (unique, qualified) identifier of an entity
(obs_publisher_did of an ObsDataSet for example), activity or an agent.
This parameter can occur more than once in a request in order to retrieve
provenance details for several activities, datasets or agents at the same time.
Here are two simple example requests:

{provdal-base-url}?ID=rave:dr4
{provdal-base-url}?ID=rave:dr4&ID=rave:act_irafReduction

Additional parameters can complete the request to refine the query. They
are described in the next paragraphs and summarized in Table 2.

RESPONSEFORMAT The format of the response can be defined using the
RESPONSEFORMAT parameter. Its value is one of the provenance serial-
ization formats: PROV-N, PROV-JSON, PROV-XML, PROV-VOTABLE.

DEPTH The DEPTH parameter gives the number of relations that shall be
tracked along the provenance history – independent of the type of relation.
Its value is either 0, a positive integer or ALL. If this parameter is omitted,
the default is 1, which returns all relations and nodes that can be reached by
following 1 relation. If DEPTH=ALL is requested, the server should return the
complete provenance history that the service has stored for the given entity,
activity or agent. Services may restrict the returned data by redirecting
DEPTH=ALL to DEPTH={maxdepth}, where {maxdepth} is an integer defining
the maximum depth number that the server allows.

If description classes (EntityDescription etc.) are used, we expect that
the descriptions are retrieved together with each corresponding main class.
For example, for each entity node also return the entityDescription – either
by adding the description attributes to the entity in the serialized response,
by adding a link to a URL with entityDescription information or by returning
a direct serialization of the description class along with a link from the entity
to the entityDescription.

Note that the relations wasDerivedFrom and wasInformedBy are “short-
cuts” in a provenance graph. Thus for e.g. DEPTH=2 more progenitors of
an entity may be reached via wasDerivedFrom relations than via the “long
path” along the corresponding used and wasGeneratedBy relations (see e.g.
progenitor entity E1 in Figure 1). (A better solution for the future may be
to use 1/2*DEPTH for walking along these short-cut relations, but we don’t
want to make ProvDAL more complex for now.)

3



Parameter Values Description

ID qualified ID a valid qualified identifier for an en-
tity, activity or agent (can occur mul-
tiple times)

DEPTH 0,1,2,..., ALL number of relations to be followed
or ALL for everything, independent of
the relation type

RESPONSEFORMAT PROV-N,
PROV-JSON,
PROV-XML,
PROV-VOTABLE

serialisation format of the response

DIRECTION BACK, FORTH BACK = track the provenance history,
FORTH = explore the results of activi-
ties and where entities have been used

MEMBERS true (1) or false (0) if true/1, retrieve and track members
of collections

STEPS true (1) or false (0) if true/1, retrieve and track steps of
activityFlows

AGENT true (1) or false (0) if true/1, explore all relations for
agents, i.e. find out what an agent
is responsible for

MODEL IVOA or W3C compatibility of the serialization to
the IVOA or W3C provenance data
model

Table 2: ProvDAL request parameters. Options that are required to be im-
plemented by ProvDAL services are marked with bold face. Default values
are underlined. The parameter names are case-insensitive, but the parame-
ter values are not.

DIRECTION For services which allow tracking the provenance informa-
tion forward, e.g. in order to check for which activities an entity was used,
the optional parameter DIRECTION can be set to FORTH. Its default value
is BACK. This only influences the direction in which the used, wasGener-
atedBy, wasDerivedFrom and wasInfluencedBy relations are followed. Any
other relations are tracked according to the behaviour specified below, in-
dependent of the DIRECTION value.

Figure 1 shows an example provenance graph with different relations and
nodes. Only the relations marked by solid lines are influenced by the DI-
RECTION parameter. A ProvDAL GET request with ID=E6 and DEPTH=2
returns only the highlighted nodes and relations (thick lines) by default.

4



E6A4E3

C1

E2

A5

A1

C2 AF1

E10

C3

E11 C4 E12

E4 E5

A2

A3

E1

Ag1

A6

A7

E8E7 E9

Ag3

Ag2

FORTHBACK

E

A

C

AF

Entity

Collection

Agent

used hadStep
hadMember

wasAssociatedWith,

wasDerivedFrom
wasInformedBy

Processing relations Hierarchical relations

Responsibility relations

wasAttributedTo

wasGeneratedBy

Activity

ActivityFlow

Ag

Figure 1: An example provenance graph, highlighting the objects and re-
lations returned from a ProvDAL service with ID=E6 and DEPTH=2. The
BACK and FORTH values for DIRECTION are only important for the
processing relations (solid lines). Hierarchial (dashed) and responsibility
(dotted) relations are only followed “upwards” (to collection/activityFlow)
and towards agents by default (unless the optional parameters MEMBERS,
STEPS and/or AGENT are set to true.

MEMBERS, STEPS The provenance data model defines the hierarchical
relations hadMember for entity collections and hadStep for activityFlows.
If a node belongs to a collection or activityFlow, these relations shall be
returned as well, independent of the specified tracking direction. If someone
is interested in more details and wants to follow the members of an entity
collection or the steps of an activityFlow, these can be included by setting
the optional parameter MEMBERS or STEPS to true, respectively. The
default is false. As detailed in DALI (?), the values 1 and 0 are equivalent
to true and false.

AGENT By default, it is recommended to stop any further tracking at an
agent node, unless an additional optional parameter AGENT is set to true.
Note that this means that the request for any agent will always return just
the agent node itself and nothing else, unless AGENT=true is used. An
example request if one wants to know which entities and activities an agent
has influenced could look like this:

5



{provdal-base-url}?ID=org:rave&AGENT=true&DEPTH=1.
DEPTH=1 is used here in order to avoid following the found entities and
activities any further (can be omitted, since this is the default for DEPTH).

MODEL If a provenance service supports it, the MODEL parameter is
used to distinguish between serializations compatible with the IVOA or the
W3C provenance data model. The default value is IVOA.

A ProvDAL service MUST implement the parameters ID, DEPTH and
RESPONSEFORMAT; the remaining parameters are optional. If a service
does not implement the optional parameters, but they appear in the request,
then the service should return with an error. Please note that according
to the DALI specification (?), the parameter names are case-insensitive,
but the parameter values are not. E.g. direcion=FORTH is allowed, but
DIRECTION=forth may not work.

1.2.1 ProvDAL example use cases

Here are a few example use cases for ProvDAL in order to show its usefulness
for astronomical datasets.

• The RAVE DR4 release contains a main table with stellar proper-
ties for each observation of a star. Given the RAVE observation ID,
retrieve all the processing steps for this specific observation result:

{provdal-base-url}?ID=rave:20121220_0752m38_089&DEPTH=ALL

The result will not only contain the processing steps (activities), but
also entities and agents. The information that the user is actually
interested in can be filtered out by a client application (e.g. using the
voprov python package). If a W3C tool shall be used, e.g. when the
result shall be loaded to ProvStore1 for further processing, one needs
to retrieve the information in a W3C compatible way like this:

{provdal-base-url}?ID=rave:20121220_0752m38_089&DEPTH=ALL&MODEL=W3C

• Get the direct progenitor of an entity:

{provdal-base-url}?ID=rave:20121220_0752m38_089&DEPTH=1

If this request only returns a collection and no “backwards” informa-
tion about progenitors, then one needs to track the collection further,
i.e. repeat the request for the collection entity.

1https://provenance.ecs.soton.ac.uk/store/

6



• Get all datasets that were derived from a specific data file in the CTA
pipeline:

{provdal-base-url}?ID=cta:df1&DEPTH=ALL&DIRECTION=FORTH

ProvDAL is meant to be used to just retrieve parts of a provenance
graph from a provenance web service. It cannot be used to explore the
provenance graphs and filter the information based on specific properties,
e.g. the creationTime of an entity or a parameter value for an activity. For
such cases, a ProvTAP service can be used – which is described in the next
section.

7


	Accessing provenance information
	State of ProvDAL at Paris meeting, July 2017
	New proposal after Paris meeting, after first implementation
	ProvDAL example use cases



