
International
Virtual
Observatory

Alliance

IVOA Provenance Data Model
Version 1.0

IVOA Working Draft 2017-09-12
Working group

DM
This version

http://www.ivoa.net/documents/ProvenanceDM/20170912
Latest version

http://www.ivoa.net/documents/ProvenanceDM
Previous versions

WD-ProvenanceDM-1.0-20161121.pdf
ProvDM-0.2-20160428.pdf
ProvDM-0.1-20141008.pdf

Author(s)
Kristin Riebe, Mathieu Servillat, François Bonnarel, Mireille
Louys, Florian Rothmaier, Michèle Sanguillon, IVOA Data Model
Working Group

Editor(s)
Kristin Riebe, Mathieu Servillat

http://www.ivoa.net/documents/ProvenanceDM/20170912
http://www.ivoa.net/documents/ProvenanceDM
http://www.ivoa.net/documents/ProvenanceDM/20161121/
http://volute.g-vo.org/svn/trunk/projects/dm/provenance/description/ProvDM-0.2-20160428.pdf
http://volute.g-vo.org/svn/trunk/projects/dm/provenance/description/ProvDM-0.1-20141008.pdf

Abstract
This document describes how provenance information for astronomical

datasets can be modeled, stored and exchanged within the astronomical
community in a standardized way. We follow the definition of provenance as
proposed by the W3C1, i.e. that provenance is information about entities,
activities, and people involved in producing a piece of data or thing, which
can be used to form assessments about its quality, reliability or trustwor-
thiness. Such provenance information in astronomy is important to enable
any scientist to trace back the origin of a dataset (e.g. an image, spectrum,
catalog or single points in a spectral energy distribution diagram or a light
curve), learn about the people and organizations involved in a project and
assess the quality of the dataset as well as the usefulness of the dataset for
her own scientific work.

Status of This Document
This is an IVOA Working Draft for review by IVOA members and other

interested parties. It is a draft document and may be updated, replaced, or
obsoleted by other documents at any time. It is inappropriate to use IVOA
Working Drafts as reference materials or to cite them as other than “work
in progress”.

A list of current IVOA Recommendations and other technical documents
can be found at http://www.ivoa.net/documents/.

Contents

1 Introduction 4
1.1 Goal of the provenance model 5
1.2 Minimum requirements for provenance 8
1.3 Role within the VO architecture 8
1.4 Previous efforts . 9

2 The provenance data model 10
2.1 Overview: Conceptional UML class diagram and introduction

to core classes . 11
2.2 Model description . 13

2.2.1 Class diagram and VO-DML compatibility 13
2.2.2 Entity and EntityDescription 13
2.2.3 Collection . 16
2.2.4 Activity and ActivityDescription 18
2.2.5 ActivityFlow . 20
2.2.6 Entity-Activity relations 21

2

http://www.ivoa.net/documents/

2.2.7 Parameters . 23
2.2.8 Agent . 24

3 Links to other data models 28
3.1 Links with Dataset/Obscore Model 28
3.2 Links with Simulation Data Model 29

4 Provenance Data Model serialization 32
4.1 Serializing of the datamodel core 32
4.2 Serialization of description classes 35

5 Accessing provenance information 37
5.1 Access protocols . 37
5.2 ProvDAL . 37

5.2.1 ProvDAL example use cases 40
5.3 ProvTAP . 42
5.4 VOSI availability and capabilities 42

6 Use cases – applying the data model 42
6.1 How to use the data model 43
6.2 voprov Python package . 43

6.2.1 Graphic formats . 43
6.3 Provenance of RAVE database tables (DR4) 44
6.4 Provenance for CTA . 44
6.5 POLLUX database . 46
6.6 HiPS use case . 47
6.7 Lightcurves use case . 48

A Appendix A : Serialisation Examples 48

B Appendix B : Discussion 53
B.1 Links, ids . 53
B.2 Description classes . 54
B.3 ActivityFlow and viewLevel 54

C Appendix C: Changes from Previous Versions 55
C.1 Changes from WD-ProvenanceDM-1.0-20161121 55

3

Acknowledgments

This document has been developed in part with support from the German
Astrophysical Virtual Observatory, funded by BMBF Bewilligungsnummer
05A14BAD and 05A08VHA. The Provenance Working Group acknowledges
support from the ASTERICS Project, funded by the European Commission
(project 653477).

Thanks for fruitful discussions to (in alphabetical order): Markus Dem-
leitner, Harry Enke, Jochen Klar, Gerard Lemson, Markus Nullmeier and
Adrian Partl.

Conformance-related definitions

The words “MUST”, “SHALL”, “SHOULD”, “MAY”, “RECOMMENDED”,
and “OPTIONAL” (in upper or lower case) used in this document are to be
interpreted as described in IETF standard, Bradner (1997).

The Virtual Observatory (VO) is a general term for a collection of feder-
ated resources that can be used to conduct astronomical research, education,
and outreach. The International Virtual Observatory Alliance (IVOA) is a
global collaboration of separately funded projects to develop standards and
infrastructure that enable VO applications.

1 Introduction

In this document, we discuss a draft of an IVOA standard data model for
describing the provenance of astronomical data. We follow the definition of
provenance as proposed by the W3C (Belhajjame and B’Far et al., 2013),
i.e. that provenance is “information about entities, activities, and people
involved in producing a piece of data or thing, which can be used to form
assessments about its quality, reliability or trustworthiness”.

In astronomy, such entities are generally datasets composed of VOTables,
FITS files, database tables or files containing values (spectra, lightcurves),
logs, parameters, etc. The activities correspond to processes like an obser-
vation, a simulation, or processing steps (image stacking, object extraction,
etc.). The people involved can be individual persons (observer, publisher...),
groups or organisations. An example for activities, entities and agents as
they can be discovered backwards in time is given in Figure 1.

The currently discussed Provenance Data Model is sufficiently abstract
that its core pattern could be applied to any kind of process using either
observation or simulation data. It could also be used to describe the work-
flow for observation proposals or the publication of scientific articles based
on (astronomical) data. However, here we focus on astronomical data. The

4

http://www.ivoa.net

data release pipeline
calibrated

files
calibration

raw
images

observation

calibration
images

project xxx
software
developer

observer

time

Figure 1: An example graph of provenance discovery. Starting with a re-
leased dataset (left), the involved activities (blue boxes), progenitor entities
(yellow rounded boxes) and responsible agents (orange pentagons) are dis-
covered.

links between the Provenance Data Model and other IVOA data models will
be discussed in Section 3. We note here that the provenance of simulated
data is already covered by the Simulation Data Model (SimDM, Lemson and
Wozniak et al., 2012). Therefore we also give a mapping between SimDM
and the Provenance Data Model in Section 3.

1.1 Goal of the provenance model

The goal of this Provenance Data Model is to describe how provenance
information can be modeled, stored and exchanged. Its scope is mainly
modeling of the flow of data, of the relations between data, and of processing
steps.

Characteristics of observation activities such as ambient conditions and
instrument characteristics can be associated to provenance information. dur-
ing the execution of processing activities (computer structure, nodes, oper-
ating system used. . .) can also be connected to provenance information.
However, they will not be modeled here explicitly. This additional informa-
tion can be included in the form of data or entities linked to those activities,
or as attributes of activities (see also Section 2.2.7 for parameters of activ-
ities).

In general, the model shall capture information in a machine-readable
way that would enable a scientist who has no prior knowledge about a
dataset to get more background information. This will help the scientist
to decide if the dataset is adequate for her research goal, assess its quality
and get enough information to be able to trace back its history as far as
required or possible.

Provenance information may be recorded in minute detail or by using

5

coarser elements, depending on the intended usage and the desired level of
detail for a specific project that records provenance. This granularity de-
pends on the needs of the project and the intended usage when implementing
a system to track provenance information.

The following list is a collection of tasks which the Provenance Data
Model should help to solve. They are flagged with [S] for problems which
are more interesting for the end user of datasets (usually a scientist) and
with [P] for tasks that are probably more important for data producers and
publishers. More specific use cases in the astronomy domain for different
types of datasets and workflows along with example implementations are
given in Section 6.

A: Tracking the production history [S]
Find out which steps were taken to produce a dataset and list the method-
s/tools/software that was involved. Track the history back to the raw data
files/raw images, show the workflow (backwards search) or return a list of
progenitor datasets.
Examples:

• Is an image from catalogue xxx already calibrated? What about dark
field subtraction? Were foreground stars removed? Which technique
was used?

• Is the background noise of atmospheric muons still present in my neu-
trino data sample?

We do not go as far as to consider easy reproducibility as a use case –
this would be too ambitious. But at least the major steps undertaken to
create a piece of data should be recoverable.

B: Attribution and contact information [S]
Find the people involved in the production of a dataset, the people/organiza-
tions/institutes that need to be cited or can be asked for more information.
Examples:

• I want to use an image for my own work – who was involved in creating
it? Who do I need to cite or who can I contact to get this information?
Is a license attached to the data?

• I have a question about column xxx in a data table. Who can I ask
about that?

• Who should be cited or acknowledged if I use this data in my work?

6

C: Locate error sources [S, P]
Find the location of possible error sources in the generation of a dataset.
Examples:

• I found something strange in an image. Where does the image come
from? Which instrument was used, with which characteristics etc.?
Was there anything strange noted when the image was taken?

• Which pipeline version was used – the old one with a known bug for
treating bright objects or a newer version?

• This light curve doesn’t look quite right. How was the photometry
determined for each data point?

D: Quality assessment [P]
Judge the quality of an observation, production step or dataset.
Examples:

• Since wrong calibration images may increase the number of artifacts on
an image rather than removing them, knowledge about the calibration
image set will help to assess the quality of the calibrated image.

E: Search in structured provenance metadata [P, S]
This would allow one to also do a “forward search”, i.e. locate derived
datasets or outputs, e.g. finding all images produced by a certain processing
step or derived from data which were taken by a given facility.
Examples:

• Give me more images that were produced using the same pipeline.

• Give me an overview on all images reduced with the same calibration
dataset.

• Are there any more images attributed to this observer?

• Which images of the Crab Nebula are of good quality and were pro-
duced within the last 10 years by someone not from ESO or NASA?

• Find all datasets generated using this given algorithm for this given
step of the data processing

This task is probably the most challenging. It also includes tracking the
history of data items as in A, but we still have listed this task separately,
since we may decide that we can’t keep this one, but we definitely want A.

7

1.2 Minimum requirements for provenance

We derived from our goals and use cases the following minimum requirements
for the Provenance Data Model:

• Provenance information must be stored in a standard model, with
standard serialization formats.

• Provenance information must be machine readable.

• Provenance data model classes and attributes should be linked to other
IVOA concepts when relevant (DatasetDM, ObsCoreDM, SimDM,
VOTable, UCDs...).

• Provenance information should be serializable into the W3C prove-
nance standard formats (PROV-N, PROV-XML, PROV-JSON) with
minimum information loss.

• Provenance metadata must contain information to find immediate pro-
genitor(s) (if existing) for a given entity, i.e. a dataset.

• An entity must point to the activity that generated it (if the activity
is recorded).

• Activities must point to input entities (if applicable).

• Activities may point to output entities.

• Provenance information should make it possible to derive the chrono-
logical sequence of activities.

• Provenance information can only be given for uniquely identifiable
entities, at least inside their domain.

• Released entities should have a main contact.

• It is recommended that all activities and entities have contact infor-
mation and contain a (short) description or link to a description.

1.3 Role within the VO architecture

The IVOA Provenance Data Model is structuring and adding metadata to
trace the original process followed during the data production to provide
astronomical data. Even if it borrows the main general concepts defined
from the data management science, it binds to the specific context of astro-
nomical metadata description and re-uses or interacts with existing IVOA
models. It takes benefits from existing IVOA notations and standards like

8

Figure 2: Architecture diagram for the Provenance Data Model. It is based
on existing concepts defined in existing IVOA data models, and existing
formats and semantics and fully integrated in the IVOA framework

UCD, VOUnits, VO protocols and service design and is planned for a full
integration into the VO landscape.

Fig. 2 shows the dependencies of this document with respect to other
existing standards.

1.4 Previous efforts

The provenance concept was early introduced by the IVOA within the scope
of the Observation Data Model (see IVOA note by IVOA Data Model
Working Group, 2005) as a class describing where the data is coming from.
A full observation data model dedicated to the specific spectral data was
then designed (Spectral Data Model, McDowell and Salgado et al., 2016)
as well as a fully generic characterisation data model of the measurement
axes of the data (Characterisation Data Model, IVOA Data Model Working
Group, 2008) while the progress on the provenance data model was slowing
down.

The IVOA Data Model Working Group first gathered various use cases
coming from different communities of observational astronomy (optical, ra-
dio, X-ray, interferometry). Common motivations for a provenance tracing
of the history included: quality assessment, discovery of dataset progenitors
and access to metadata necessary for reprocessing. The provenance data

9

model was then designed as the combination of Data processing, Observing
configuration and Observation ambient conditions data model classes. The
Processing class was embedding a sequence of processing stages which were
hooking specific ad hoc details and links to input and output datasets, as
well as processing step description. Despite the attempts of UML descrip-
tion of the model and writing of xml serialization examples the IVOA effort
failed to provide a workable solution: the scope was probably too ambitious
and the technical background too unstable. A compilation of these early
developments can be found on the IVOA site (Bonnarel and the IVOA Data
Model Working Group, 2016). From 2013 onwards IVOA concentrated on
use cases related to processing description and decided to design the model
by extending the basic W3C provenance structure, as described in the cur-
rent specification.

Outside of the astronomical community, the Provenance Challenge se-
ries (2006 – 2010), a community effort to achieve inter-operability between
different representations of provenance in scientific workflows, resulted in
the Open Provenance Model (Moreau and Clifford et al., 2010). Later, the
W3C Provenance Working Group was founded and released the W3C Prove-
nance Data Model as Recommendation in 2013 (Belhajjame and B’Far et al.,
2013). OPM was designed to be applicable to anything, scientific data as
well as cars or immaterial things like decisions. With the W3C model, this
becomes more focused on the web. Nevertheless, the core concepts are still
in principle the same in both models and very general, so they can be ap-
plied to astronomical datasets and workflows as well. The W3C model was
taken up by a larger number of applications and tools than OPM, we are
therefore basing our modeling efforts on the W3C Provenance data model,
making it less abstract and more specific, or extending it where necessary.

The W3C model even already specifies PROV-DM Extensibility points
(section 6 in Belhajjame and B’Far et al. 2013) for extending the core model.
This allows one to specify additional roles and types to each entity, agent or
relation using the attributes prov:type and prov:role. By specifying the
allowed values for the IVOA model, we can adjust the model to our needs
while still being compliant to W3C.

2 The provenance data model

In this section, we describe the currently discussed Provenance Data Model.
We start with an UML class diagram, explain the core elements and then
give in the following sections more details for each class and relation.

10

Activity

Entity

Agent

ActivityFlow

ActivityDescription

EntityDescription

Collection

+ entity

* + activity

*

+ activity

*

*

+ entity

*

*

+ agent

+ activity

*

*

+ entity

+ agent

+ generatedEntity

wasDerivedFrom

1

+ usedEntity
*

hadStep

+ member

1

+ activityFlow

*

1

wasInformedBy

*+ informed

+ description*

0..1

+ description

0..1*

*

1

+ collection

hadMember

+ member

+ informant

Used WasGeneratedBy

WasAttributedTo

WasAssociatedWith

Figure 3: Overview of the classes for the Provenance Data Model in a con-
ceptual class diagram. The blue classes are core elements. There appear
a number of many-to-many relationships with attached association classes
(grey) which can contain additional attributes.

2.1 Overview: Conceptional UML class diagram and
introduction to core classes

Figure 3 shows the conceptional UML diagram for an IVOA Provenance
Data Model. The core elements of the Provenance Data Model are Entity,
Activity and Agent. We chose for these elements the same names as were
used in the Provenance Data Model of the World Wide Web Consortium
(W3C, Belhajjame and B’Far et al. 2013), which defines a very abstract
pattern that can be reused here. Here are the core classes with a short
description and some examples:

• Entity: a thing at a certain state
examples: data products like images, catalogs, parameter files, cali-
bration data, instrument characteristics

• Activity: an action/process or a series of actions, occurs over a period
of time, performed on or caused by entities, usually results in new
entities
examples: data acquisition like observation, simulation; regridding,
fusion, calibration steps, reconstruction

11

• Agent: executes/controls an activity, is responsible for an activity or
an entity
examples: telescope astronomer, pipeline operator, principal investi-
gator, software engineer, project helpdesk

Figure 4: The main core classes and relations of the Provenance Data Model,
which also occur in the W3C model.

These core classes along with their relations to each other are provided
in Figure 4. We use the following relation classes to specify the mapping
between the three core classes. The relation names were again chosen to
match the W3C model names:

• WasGeneratedBy: a new entity is generated by an activity
(entity “image m31.fits” wasGeneratedBy activity “observation”)

• Used: an entity is used by an activity
(activity “calibration” used entities “calibration data”, “raw images”)

• WasAssociatedWith: agents have responsibility for an activity
(agent “observer Max Smith” wasAssociatedWith activity “observa-
tion”)

• WasAttributedTo: an entity can be attributed to an agent
(entity “image m31.fits” wasAttributedTo “M31 observation cam-
paign”)

Note that the relations appear as extra classes (and thus boxes in the
diagrams, instead of just having annotated relations), because they can have
additional attributes – when mapping the model to a relational database,
these relations would appear as mapping tables.

12

In the domain of astronomy, certain processes and steps are repeated
again and again with different parameters. We therefore separate the de-
scriptions of activities from the actual processes and introduce an additional
ActivityDescription class (see Figure 3). Likewise, we also apply the same
pattern for Entity and add an EntityDescription class. Defining such de-
scriptions allows them to be reused, which is very useful when performing a
series of tasks of the same type, as is typically done in astronomy.

A similar normalization of descriptions of the actual processes and
datasets can also be found in the IVOA Simulation Data Model (SimDM,
Lemson and Wozniak et al., 2012)), which describes simulation metadata.
The SimDM classes Experiment and Protocol correspond to the Provenance
terms Activity and ActivityDescription.

This separation into two classes may not be needed for each and every
project, and everyone is free to choose which classes make sense for his/her
use case. When serializing provenance, one can integrate the description
side into the other classes, thus producing a W3C compliant provenance
description. More details about all these classes and relations are given in
the following section.

2.2 Model description

2.2.1 Class diagram and VO-DML compatibility

Figure 5 shows the full class diagram with the association classes for
the many-to-many relations modeled more directly as mapping classes.
When implementing the model in a relational database, these classes
can be represented as individual tables for mapping the relation. We
model one of the associations of the many-to-many relationships as com-
position (full diamond), if the mapping class belongs more strongly to
one of its linked classes, e.g. the Used relations are strongly depen-
dent on the corresponding Activities. The documentation of all classes
and an automatically generated figure based on the underlying xmi-
description behind this UML diagram is available in the Volute repository
at https://volute.g-vo.org/svn/trunk/projects/dm/vo-dml/models/
provenancedm/vo-dml/ProvenanceDM.html.

This version of the UML diagram is fully VO-DML compliant, i.e. we
just used the restricted subset of UML to model Provenance and reused the
IVOA datatypes.

2.2.2 Entity and EntityDescription

Entities in astronomy are usually astronomical or astrophysical datasets in
the form of images, tables, numbers, etc. But they can also be observa-
tion or simulation log files, files containing system information, environment

13

https://volute.g-vo.org/svn/trunk/projects/dm/vo-dml/models/provenancedm/vo-dml/ProvenanceDM.html
https://volute.g-vo.org/svn/trunk/projects/dm/vo-dml/models/provenancedm/vo-dml/ProvenanceDM.html

Activity ActivityDescription

Entity EntityDescription

Used

WasGeneratedBy

UsedDescription

WasGeneratedByDescription

Parameter ParameterDescription

Agent

WasAssociatedWith

WasAttributedTo

ActivityFlow

HadStep

Collection

HadMember

0..1*

*

1

WasInformedBy

1

*

1*

1

*

1

*

1

0..1

1

*

1

*

1

*

* 0..1

1

*

1

WasDerivedFrom

*

* 1

1

*

0..1

1

*

1 1

*

* 0..1

* 0..1

0..1*

1

*

1

*

*

1

*

1

Figure 5: More detailed overview of the classes for the Provenance Data
Model. Note that this UML class diagram is more compatible with VO-
DML.

variables, names and versions of packages, ambient conditions or, in a wider
sense, also observation proposals, scientific articles, or manuals and other
documents.

An entity is not restricted to being a file. It can even be just a number
in a table, depending on how fine-grained the provenance shall be described.

The VO concept closest to Entity is the notion of “Dataset”, which could
mean a single table, an image or a collection of them. The Dataset Metadata
Model (Bonnarel and Laurino et al., 2015) specifies an “IVOA Dataset” as “a
file or files which are considered to be a single deliverable”. Most attributes
of the Dataset class can be mapped directly to attributes of the Entity and
EntityDescription class, see the mapping table 12 in Section 3.

For entities, we suggest the attributes given in Table 1. If the attribute
also exists in the W3C Provenance Data Model, we list its name in the
second column.

The difference between entities that are used as input data or output data
becomes clear by specifying the relations between the data and activities
producing or using these data. More details on this will follow in Section

14

Entity

+ id : string
+ name : string [0..1]
+ type : string [0..1]
+ annotation : string [0..1]
+ rights : string [0..1]
+ creationTime : datetime [0..1]

EntityDescription

+ id : string
+ name : string [0..1]
+ annotation : string [0..1]
+ category : string [0..1]
+ doculink : anyURI [0..1]

Collection

HadMember

0..1*

+ description

*

1

+ usedEntity

+ generatedEntity

WasDerivedFrom

+ entity 1

0..1

* + hadMember

1

Figure 6: The relation between Entity, EntityDescription and Collection
(see Section 2.2.3). Links to the Dataset class from the Dataset Metadata
Model are described in Section 3.

2.2.6.

EntityDescription. The types of entities, or datasets in astronomy, can be
predefined using a description class EntityDescription. This class is meant to
store information about an Entity that are known before the Entity instance
is created. For example, if we run an activity to create a RGB image from
three grey images, we may have a mandatory format for the input and
output images before the execution (JPG, PNG, FITS. . .), but we probably
cannot know the final size of the image that will be created. Therefore,
“format” would be an EntityDescription attribute , while “size” would be
an attribute of the Entity instance.

Some of the attributes that describe the content of the data could be
derived from the Dataset Metadata Model.

The EntityDescription does NOT contain any information about the
usage of the data, it tells nothing about them being used as input or output.
This is defined only by the relations (and the relation descriptions) between
activities and entities (see Section 2.2.6).

The EntityDescription general attributes are summarized in Table 2.

WasDerivedFrom. In Figure 6 there is one more relation that we have not
mentioned yet: the WasDerivedFrom-relation which links two entities to-
gether, borrowed from the W3C model. It is used to express that one entity
was derived from another, i.e. it can be used to find one (or more) progeni-
tor(s) of a dataset, without having to look for the activities in between. It
can therefore serve as a shortcut.

15

Entity

Attribute W3C ProvDM Data type Description

id prov:id (qualified)
string

a unique id for this entity
(unique in its realm)

name prov:label string a human-readable name for the
entity (to be displayed by
clients)

type prov:type string a provenance type, i.e. one of:
prov:collection, prov:bundle,
prov:plan, prov:entity; not
needed for a simple entity

annotation prov:description string text describing the entity in
more detail

rights – string access rights for the data,
values: public, restricted or
internal; can be linked to
Curation.Rights from
ObsCore/DatasetDM

creationTime – datetime date and time at which the
entity was created (e.g.
timestamp of a file)

Table 1: Attributes of entities. Mandatory attributes are marked in bold.

The information this relation provides is somewhat redundant, since pro-
genitors for entities can be found through the links to activity and the corre-
sponding descriptions. Nevertheless, we include WasDerivedFrom for those
cases where an explicit link between an entity and its progenitor is useful
(e.g. for speeding up searches for progenitors or if the activity in between is
not important).

Note that the WasDerivedFrom relation cannot always automatically be
infered from following WasGeneratedBy and Used relations alone: If there is
more than one input and more than one output of an activity, it is not clear
(without consulting the activityDescription and entity roles in the relation-
descriptions) which entity was derived from which. Only by specifying the
descriptions and roles accordingly or by adding the a WasDerivedFrom re-
lation, this direct derivation becomes known.

2.2.3 Collection

Collections are entities that are grouped together and can be treated as one
single entity. From the provenance point of view, they have to have the
same origin, i.e., they were produced by the same activity (which could

16

EntityDescription

Attribute Data type Description

id (qualified)
string

a unique identifier for this description

name string a human-readable name for the entity
description

annotation string a decriptive text for this kind of entity
category string specifies if the entity contains

information on logging, system
(environment), calibration, simulation,
observation, configuration, ...

doculink url link to more documentation

Table 2: Attributes of EntityDescription. For simple use cases, the de-
scription classes may be ignored and its attributes may be used for Entity
instead.

WasDerivedFrom
Attribute Data type Description

id string a unique id for this entity (unique in
its realm)

generatedEntity string foreign key to the entity
usedEntity string foreign key to the progenitor, from

which the generatedEntity was derived
activity string foreign key to the generation activity
generation string foreign key to the wasGeneratedBy

relation
usage string foreign key to the used relation

Table 3: Attributes of the WasDerivedFrom relation. This is the same as
used in W3C’s ProvDM. Mandatory attributes are marked in bold.

also be the activity of collecting data for a publication or similar). The
term “collection” is also used in the Dataset Metadata Model for grouping
datasets. As an example, a collection with the name ‘RAVE survey’ could
consist of a number of database tables and spectra files.

The Entity-Collection relation can be modeled using the Composite de-
sign pattern: Collection is a subclass of Entity, but also an aggregation
of 1 to many entities, which could be collections themselves. In order to
be compliant to VO-DML, we model the membership-relation explicitly by
including a HadMember class in our model, which is connected to the Col-

17

lection class via a composition. It may contain an additional role attribute.
Collections are also known in the W3C model, in the same sense as used

here. The relation between entity and collection is also called “HadMember”
in the W3C model.

An additional class CollectionDescription is only needed if it has different
attributes than the EntityDescription. This class should therefore only be
introduced if a use case requires it.

Advantages of collections: Collections can be used to collect entities with
the same provenance information together, in order to hide complexity where
necessary. They can be used for defining different levels of detail (granular-
ity).

2.2.4 Activity and ActivityDescription

Activity

+ id : string
+ name : string [0..1]
+ startTime : string
+ endTime : string
+ annotation : string [0..1]

ActivityDescription

+ id : string
+ name : string [0..1]
+ type : string [0..1]
+ subtype : string [0..1]
+ annotation : string [0..1]
+ doculink : anyURI [0..1]

ActivityFlow

HadStep

*

+ description

0..1

WasInformedBy

+ wasInformedBy

1
*+ activity

0..1

+ activity 1

+ hadStep

1

*

Figure 7: Details for Activity, ActivityDescription and ActivityFlow (see
Section 2.2.5).

Activities in astronomy include all steps from obtaining data to the re-
duction of images and production of new datasets, like image calibration,
bias subtraction, image stacking; light curve generation from a number of ob-
servations, radial velocity determination from spectra, post-processing steps
of simulations etc.

ActivityDescription. The method underlying an activity can be specified
by a corresponding ActivityDescription class (previously namedMethod, cor-
responds to the Protocol class in SimDM). This could be, for instance, the
name of the code used to perform an activity or a more general description
of the underlying algorithm or process. An activity is then a concrete case
(instance) of using such a method, with a startTime and endTime, and it
refers to a corresponding description for further information.

18

Activity

Attribute W3C
ProvDM

Data type Description

id prov:id (qualified)
string

a unique id for this activity (unique
in its realm)

name prov:label string a human-readable name (to be
displayed by clients)

startTime prov:startTime datetime start of an activity
endTime prov:endTime datetime end of an activity
annotation prov:description string additional explanations for the

specific activity instance

Table 4: Attributes of Activity, their data types and equivalents in the W3C
Provenance Data Model, if existing. Attributes in bold are mandatory.

ActivityDescription

Attribute Data type Description

id string a unique id for this activity description
(unique in its realm)

name string a human-readable name (to be
displayed by clients)

type string type of the activity, from a vocabulary
or list, e.g. data acquisition
(observation or simulation), reduction,
calibration, publication

subtype string more specific subtype of the activity
annotation string additional free text description for the

activity
doculink url link to further documentation on this

process, e.g. a paper, the source code
in a version control system etc.

Table 5: Attributes of ActivityDescription.

There MUST be exactly zero or one ActivityDescription per Activity. If
steps from a pipeline shall be grouped together, one needs to create a proper
ActivityDescription for describing all the steps at once. This method can
then be refered to by the pipeline-activity.

When serializing the data model, the attributes of the description class
may be assigned to the activity in order to produce a W3C compliant seri-
alization (same as with Entity/EntityDescription).

19

WasInformedBy. The individual steps of a pipeline can be chained to-
gether directly, without mentioning the intermediate datasets, using the
WasInformedBy-relation. This relation can be used as a short-cut, if the
exchanged datasets are deemed to be not important enough to be recorded.
For grouping activities, also see the next section 2.2.5.

2.2.5 ActivityFlow

TODO:
Link to D-PROV!

For facilitating grouping of activities (and their related entities etc.) we
introduce the class ActivityFlow. It can be used for hiding and grouping a
part of the workflow/pipeline or provenance description, if different levels of
granularity are needed. Such pipelines and workflows are very common in as-
tronomical data production and processing. Figure 8 illustrates an example
provenance graph in a detailed level (left side) and using the ActivityFlow
(right side).

Figure 8: An example provenance graph. The detailed version is shown
on the left side. It also shows the shortcut WasInformedBy to connect two
activities, which could be used if the entity e2 would not be needed anywhere
else. An ActivityFlow can be used to “hide” a part of the provenance graph
as is shown on the right side. Activities are marked by blue rectangles,
entities by yellow ellipses.

We also explored the different ways to describe a set of activities in the
W3C provenance model. This model uses Bundle, i.e. an entity with type
“Bundle”, for wrapping a provenance description. Each part of a provenance
description can be put into a bundle, and the bundle can then be reused in

20

other provenance descriptions. W3C’s Plan is an entity with type “Plan”
and is used for describing a set of actions or steps. Both, Bundle and Plan,
are entities and have the attributes and relations of this class (and thus one
can define provenance of bundles and plans as well).

But we would like to consider a set of activities as being an Activity itself,
with all the relations and properties that an activity also has. Therefore we
do not reuse W3C’s classes for describing workflows and plans, but added the
class ActivityFlow as an activity composed of activities. The composition is
represented by the “hadStep” relation, as is shown in Figure 7.

Entity

Activity

WasGeneratedBy

Used UsedDescription

+ role : string [0..1]

WasGeneratedByDescription

+ role : string [0..1]

*

1

+ wasGeneratedBy

* 0..1

+ description

+ used 1

*

*+ used

1

*

+ wasGeneratedBy 1

+ description

0..1*

Entity

Activity

WasGeneratedBy

Used

+ role : string [0..1]

+ role : string [0..1]

*

1

+ wasGeneratedBy

+ used 1

*

*+ used

1

*

+ wasGeneratedBy 1

Figure 9: Entity and Activity are linked via the Used and WasGenerat-
edBy relations. In the left image, the role that an entity which was used or
generated by an activity played is recorded with the corresponding UsedDe-
scription and WasGeneratedByDescription, also see Section 2.2.6. If these
description classes are not used, the role can be used directly as an attribute
within the Used and WasGeneratedByclasses (right image).

2.2.6 Entity-Activity relations

For each data flow it should be possible to clearly identify entities and ac-
tivities. Each entity is usually a result from an activity, expressed by a link
from the entity to its generating activity using the WasGeneratedBy rela-
tion, and can be used as input for (many) other activities, expressed by the
Used relation. Thus the information on whether data is used as input or was
produced as output of some activity is given by the relation-types between
activities and entities.

We use two relations, Used and WasGeneratedBy, instead of just one
mapping class with a flag for input/output, because their descriptions and
role-attributes can be different.

TheWasGeneratedBy-relation can have the optional attribute time – this
is the time, when the generation of the entity is finished. This generation

21

time corresponds to e.g. DataID.date in Dataset Metadata DM.

Compositions and multiplicities In principle, an entity is produced by just
one activity. However, by introducing the ActivityFlow class for grouping
activities together, one entity can now have many wasGeneratedBy-links
to activities. One of them must be the actual generation activity, the other
activities can only be activityFlows containing this generation-activity. This
restriction of having only one “true” generation activity is not explicitly
expressed in the current model2.

The Used relation is closely coupled to the Activity, so we use a com-
position here, indicated in Figure 5 by a filled diamond: if an activity is
deleted, then the corresponding used relations need to be removed as well.
The entities that were used still remain, since they may have been used for
other activities as well. We need a multiplicity * between Used and Entity,
because an entity can be used more than once (by different activities).

Similarly, the WasGeneratedBy relation is closely coupled with the En-
tity via a composition, since a wasGeneratedBy relation makes no sense
without its entity. So if an entity is deleted, then its wasGeneratedBy rela-
tion must be deleted as well. There is a multiplicity * between Activity and
WasGeneratedBy, because an activity can generate many entities.

Entity roles Each activity requires specific roles for each input or output
entity, thus we store this information with description classes, in the role-
attributes for the UsedDescription and WasGeneratedByDescription rela-
tion. For example, an activity for darkframe-subtraction requires two input
images. But it is very important to know which of the images is the raw
image and which one fulfils the role of dark frame.

The role is in general NOT an attribute for EntityDescription or Entity,
since the same entity (e.g. a specific FITS file containing an image) may
play different roles with different activities. If this is not the case, if the
image can only play the same role everywhere, only then it is an intrinsic
property of the entity and should be stored in the EntityDescription.

Some example roles are given in Table 6. Note that these roles don’t
have to be unique, many datasets may play the same role for a process. For
example, many image entities may be used as science-ready-images for an
image stacking process.

In order to facilitate interoperability, the possible entity-roles could be
defined and described for each activity by the IVOA community, in a vo-
cabulary list or thesaurus.

2The reason for this is that we want to keep the model simple and avoid introducing
even more classes.

22

Role Example entities

configuration configuration file
auxiliary input calibration image, dark frame, etc.
main input raw image, science-ready images
main result image, cube or spectrum
log logging output file
red image used for red channel of a composite activity

Table 6: Examples for entity roles as attributes in the UsedDescription and
WasGeneratedByDescription.

2.2.7 Parameters

The concept of activity configuration, generally a set of parameters that
can be configured, is different to the concept of provenance information.
However, it is tightly connected. We identify three different ways to link
configuration information to an activity:

• Declare a parameter set (or each parameter) as an input entity that is
used by the activity.
This also allows tracking the provenance of the parameter further.

• Define families of activities, each one with fixed attributes.
I.e. use different subclasses for activities with different fixed attributes.

• Add activity attributes in the form of key-value parameters.

To enable the latter solution, we add a Parameter class along with a Pa-
rameterDescription for describing additional properties of activities. In this
solution, Parameters are directly connected to an Activity without complex
Entity-Activity relations. Moreover, we can then describe each parameter in
the same way as in FIELD and PARAM elements in VOTABLE (Ochsenbein
and Williams et al., 2013).

Parameter
Attribute Data type Description

id string parameter unique identifier
value (value dependent) the value of the parameter

Table 7: Attributes of Parameter. Attributes in bold are mandatory.

For example, observations generally require information on ambient con-
ditions as well as instrument characteristics. This contextual data associated

23

ParameterDescription

Attribute Data type Description

id string parameter unique identifier
name string parameter name
annotation string additional free text description
datatype string datatype
unit string physical unit
ucd string Unified Content Descriptor, supplying

a standardized classification of the
physical quantity

utype string UType, meant to express the role of
the parameter in the context of an
external data model

min number minimum value
max number maximum value
options list list of accepted values

Table 8: Attributes of ParameterDescription.

with an observation is not directly modelled in the ProvenanceDM. However,
this information can be stored as different entities. Alternatively, one could
list the instrument characteristics as a set of key-value parameters using
the Parameter class, so that this information is structured and stored with
the provenance information (and can thus be queried simultaneously). In
the case of a processing activity that cleans an image with a sigma-clipping
method, the input and output images would be entities and the value of
the number of sigma for sigma-clipping could be a parameter instead of an
entity. We may also want to define a 3-sigma-clipping activity where this
parameter is fixed to 3.

2.2.8 Agent

An Agent describes someone who is responsible for a certain task or entity,
e.g. who pressed a button, ran a script, performed the observation or pub-
lished a dataset. The agent can be a single person, a group of persons (e.g.
MUSE WISE Team), a project (CTA) or an institute. This is also reflected
in the IVOA Dataset Metadata Model, where Party represents an agent,
and it has two types: Individual and Organization, which are explained in
more detail in Table 9 (also see Section 3 for comparison between Agent and
Party). Both agent types are also used in the W3C Provenance Data Model,
though Individual is called Person there. We decided to not include the type
SoftwareAgent from W3C (yet), since it is not required for our current use

24

cases. This may change in the future.

AgentType

Class or type W3C ProvDM DatasetDM Comment

Agent Agent Party
Individual Person Individual a person, specified by name,

email, address, (though all
these parts may change in
time)

Organization Organization Organization a publishing house, institute
or scientific project

Table 9: Agent class and types of agents/subclasses in this data model,
compared to W3C ProvDM and DatasetDM.

Agent

Attribute W3C ProvDM Data type Description

id prov:id (qualified)
string

unique identifier for an agent

name prov:name string a common name for this agent;
e.g. first name and last name;
project name, agency name...

type prov:type string type of the agent: either
Individual (Person) or
Organization

Table 10: Agent attributes

A definition of organizations is given in the IVOA Recommendation
on Resource Metadata (Hanisch and the IVOA Resource Registry Work-
ing Group et al., 2007), hereafter refered to as RM: “An organisation is [a]
specific type of resource that brings people together to pursue participation
in VO applications.” It also specifies further that scientific projects can be
considered as organisations on a finer level: “At a high level, an organisation
could be a university, observatory, or government agency. At a finer level, it
could be a specific scientific project, space mission, or individual researcher.
A provider is an organisation that makes data and/or services available to
users over the network.”

For each agent a name should be specified, a summary of the attributes
for Agent is given in Table 10. One could also add the optional attributes

25

address, phone and email (compare with subclasses of Party in Section 3).
However, we skip them here in this main class, since an advanced system
may use permanent identifiers (e.g. ORCIDs) to identify agents and re-
trieve their properties from an external system. It would also increase the
value of the given information if the (current) affiliation of the agent (and a
project leader/group leader) were specified in order to maximize the chance
of finding any contact person later on. The contact information is needed
in case more information about a certain step in the past of a dataset is
required, but also in order to know who was involved and to fulfill our “At-
tribution” requirement (Section 1.2), so that proper credits are given to the
right people/projects.

It is desired to have at least one agent given for each activity (and entity),
but it is not enforced. There can also be more than one agent for each
activity/entity with different roles and one agent can be responsible for
more than one activity or entity. This many-to-many relationship is made
explicit in our model by adding the two following relation classes:

• wasAssociatedWith: relates an activity to an agent

• wasAttributedTo: relates an entity to an agent

We adopted here the same naming scheme as was used in W3C ProvDM.
Note that the attributed-to-agent for a dataset may be different from the
agent that is associated with the activity that created an entity. Someone
who is performing a task is not necessarily given full attribution, especially
if he acts on behalf of someone else (the project, university, ...).

In order to make it clearer what an agent is useful for, we suggest the
possible roles an agent can have (along with descriptions partially taken
from RM) in Table 11. For comparison, SimDM contains following roles
for their contacts: owner, creator, publisher and contributor. Note that the
Party class in Dataset and SimDM are very similar to the Agent class, which
is explained in more detail in Section 3.

This list is not complete. We consider providing a vocabulary list for this
in a future version of this model, collected from (future) implementations of
this model.

26

AgentRoles

role type or sub class Comment

author Individual someone who wrote an article,
software, proposal

contributor Individual someone who contributed to something
(but not enough to gain authorship)

editor Individual editor of e.g. an article, before
publishing

creator Individual someone who created a dataset,
creators of articles or software are
rather called “author”

curator Individual someone who checked and corrected a
dataset before publishing

publisher Organization
(maybe also Indi-
vidual?)

organization (publishing house,
institute) that published something

observer Individual observer at the telescope
operator Individual someone performing a given task
coordinator/PI Individual someone coordinating/leading a project
funder Organization agency or sponsor for a project as in

Prov-N
provider Organization “an organization that makes data

and/or services available to users over
the network” (definition from RM)

Table 11: Examples for roles of agents and the typical type of that agent

27

3 Links to other data models

TODO:
Move this section into appendix?

The Provenance Data Model can be applied without making any links
to other IVOA data model classes. For example when the data is not yet
published, provenance information can be stored already, but a DatasetDM-
description for the data may not yet exist. However, if there are data models
implemented for the datasets, then it is very useful to connect the classes and
attributes of the other data models with Provenance classes and attributes
(if applicable), which we are going to discuss in this Section. These links help
to avoid unnecessary repetitions in the metadata of datasets, and also offer
the possibility to derive some basic provenance information from existing
data model classes automatically.

3.1 Links with Dataset/Obscore Model

Entities and their descriptions in the Provenance Data Model are tightly
linked to the DataSet-class in the DatasetDM/ObsCore Data Model, as
well as to InputDataset and OutputDataSet in the Simulation Data Model
(SimDM, Lemson and Wozniak et al., 2012). Table 12 maps classes and
attributes from the Dataset Data Model to concepts in the Provenance Data
Model.

AgentRole

Observer
Creator
Author
Editor
Publisher
Operator
Coordinator
Provider

Agent

+ id : string
+ name : string

WasAssociatedWith

+ role : AgentRole

WasAttributedTo

+ role : AgentRole

Party

Party

+ name : string

Individual

+ address : string [0..1]
+ phone : string [0..1]
+ email : string [0..1]

Organization

+ address : string
+ phone : string
+ email : string [0..1]
+ logo : anyURI [0..1]

Role

1

+ wasAttributedTo**

1

+ wasAssociatedWith

1

0..1

+ party

+ party

0..1 1

Figure 10: The relations between the Agent class within the Provenance
Data Model (grey and yellow classes) with classes from the Dataset Meta-
data Model, party package (green).

The Agent class, which is used for defining responsible persons and orga-

28

nizations in ProvenanceDM, is very similar to the Party class in the Dataset
Metadata Model (and in SimDM). Its details are depicted in Figure 10.
The main difference between Agent and Party is that Individual and Person
are subclasses in DatasetDM, whereas we just use the same class Agent for
both and distinguish between them using the Agent.type attribute (which
can have the value “Individual” or “Organization”).

We imagine that services implementing both data models, Dataset and
ProvenanceDM may just use one class: either Agent or Party, enriched with
all the necessary (project-specific) attributes. When delivering the data on
request, the serialised versions can be adjusted to the corresponding nota-
tion. Note that for Provenance queries using a ProvTAP service or for W3C
compatible serializations, the name Agent for the responsible individuals/or-
ganizations is required.

3.2 Links with Simulation Data Model

In SimDM one also encounters a normalization similar to our split-up of
descriptions from actual data instances and executions of processes: the
SimDM class “experiment” is a type of Activity and its general, reusable
description is called a “protocol”, which can be considered as a type of
this model’s ActivityDescription. More direct mappings between classes and
attributes of both models are given in Table 13.

29

Provenance DM Dataset DM Comment

Entity.name DataID.title title of the dataset
HadMember.collectionId DataID.collection link to the collection to

which the dataset belongs
Agent.name DataID.creator name of agent
Entity.id DataID.creatorDID alternative id for the

dataset given by the
creator, could be used as
Entity.id if no Publisher-
DID exists (yet)

WasGeneratedBy.activityId DataID.ObservationID identifier to everything de-
scribing the observation

WasGeneratedBy.time DataID.date date and time when the
dataset was completely
created

Entity.id Curation.PublisherDID unique identifier for the
dataset assigned by the
publisher

Agent.id Curation.PublisherID link to the publisher,
i.e. to an Agent with
role=“publisher”

Agent.name Curation.Publisher name of the publisher
Entity.releaseDate Curation.Date release date of the dataset
Entity.version Curation.Version version of the dataset
Entity.rights Curation.Rights access rights to the

dataset; one of [...]
Entity.link Curation.Reference link to publication
Agent Curation.Contact link to Agent with role

contact
EntityDescrip-
tion.dataproduct_type

DataProductType the type of a dataprod-
uct from Dataset Meta-
data Model can be used as
attribute to entity

EntityDescrip-
tion.dataproduct_subtype

DataProductSubType subtype of a
dataproduct/entity

EntityDescription.level ObsDataset.calibLevel (output) calibration level,
integer between 0 and 3

Table 12: Mapping between attributes from Dataset Metadata Model classes
to classes in ProvenanceDM

30

Provenance DM Simulation DM Comment

Activity Experiment
Activity.name Experiment.name human readable name;

name attribute in
SimDM is inherited
from Resource-class

Activity.endTime Experiment.executionTime end time of the execution
of an experiment/activity

Activ-
ity.activityDescription

Experiment.protocol reference to the protocol
or description class

ActivityDescription Protocol
ActivityDescription.name Protocol.name human readable name
ActivityDescrip-
tion.doculink

Protocol.referenceURL reference to a webpage de-
scribing it

Parameter ParameterSetting value of an (input) param-
eter

ParameterDescription InputParameter description of an (input)
parameter

Agent Party responsible person or or-
ganization

Agent.name Party.name name of the agent
WasAssociatedWith Contact
WasAssociatedWith.role Contact.role role which the agent/-

party had for a cer-
tain experiment (activ-
ity); SimDM roles con-
tain: owner, creator,
publisher, contributor

WasAssociatedWith.agent Contact.party reference to the agent/-
party

Entity DataObject a dataset, which can
be/refer to a collection

Table 13: Mapping between classes and attributes from ProvenanceDM to
classes/attributes in SimDM.

31

4 Provenance Data Model serialization

4.1 Serializing of the datamodel core

The provenance information as represented in the data model is split in
three main concepts that can be searched following many different relations
involved between the main 3 classes. The selection of the relations to ex-
pose when distributing the provenance information depends on the usage
and will be described more extensively in the Use-case sections (6) , the
implementation note (Riebe and Servillat et al., 2017) and the links therein.

The serialization documents build up the main components of the clien-
t/server dialogs.

To give a very simple example, suppose a client asks for the context of
execution for one specified Activity, which computes a simple RGB color
composition.

On the server side, exposing the Provenance information for this Activity
of name or for an Entity is just exposing the structure of the classes and
relation tables and feed them with the related t-upples in the database. On
the client side, the content of a VO-Provenance serialisation document can
then be explored and represented using graphical interfaces, as inspired by
the Provenance Southampton suite or by customized visualization tools.

In the W3C Provenance framework, three descriptions formats are pro-
posed to serialize the Provenance metadata : PROV-N, PROV-JSON,
PROV-XML. These are serializations of the W3C provenance data model,
a larger set of classes and relations compared to this model but sharing the
same core structure. They allow the possibility to add IVOA or ad hoc
attributes to the basic ones in each class. This way the IVOA models can
produce W3C compliant serializations and take benefit of visualizing tools.

Here is an example serialization for an entity being processed by an
activity, in PROV-N format:

document
prefix ivo <http://www.ivoa.net/documents/rer/ivo/>
prefix ex <http://www.example.com/provenance/>
prefix voprov <http://www.ivoa.net/documents/dm/provdm/voprov/>
entity(ivo://example#Public_NGC6946, [voprov:name="Processed image of NGC 6946"])
entity(ivo://example#DSS2.143, [voprov:name="Unprocessed image of NGC 6946"])
activity(ex:Process1, 2017-04-18T17:28:00, 2017-04-19T17:29:00, [voprov:name="Process 1"])
used(ex:Process1, ivo://example#DSS2.143, -)
wasGeneratedBy(ivo://example#Public_NGC6946, ex:Process1, 2017-05-05T00:00:00)

endDocument

{
"prefix": {

"ivo": "http://www.ivoa.net/documents/rer/ivo/",
"voprov": "http://www.ivoa.net/documents/dm/provdm/voprov/",
"ex": "http://www.example.com/provenance/"

},
"activity": {

32

"ex:Process1": {
"prov:startTime": "2017-04-18T17:28:00",
"prov:endTime": "2017-04-19T17:29:00",
"voprov:name": "Process 1"

}
},
"wasGeneratedBy": {

"_:id4": {
"prov:time": "2017-05-05T00:00:00",
"prov:entity": "ivo://example#Public_NGC6946",
"prov:activity": "ex:Process1"

}
},
"used": {

"_:id1": {
"prov:entity": "ivo://CDS/P/DSS2/POSSII#POSSII.J-DSS2.143",
"prov:activity": "hips:AlaRGB1"

}
}
"entity": {

"ivo://example#DSS2.143": {
"voprov:name": "Unprocessed image of NGC6946"

},
"ivo://example#Public_NGC6946": {

"voprov:name": "Processed image of NGC 6946"
}

}
}

To emphasize the compatibility to the IVOA framework, where the XML
VOTable format is a reference to circulate metadata, we define a PROV-
VOTABLE master document where all classes’ declarations and relations
described in PROVN are translated as separated tables.

These VOTable serialisations can be produced using the VOPROV
Python module 3 python module, available to the community. See also Sec-
tion 6.2 and the IVOA Prov-DM Implementation Note (Riebe and Servillat
et al., 2017).

This is the VOTable serialization:

<?xml version="1.0" encoding="UTF-8"?>
<VOTABLE version="1.2" xmlns="http://www.ivoa.net/xml/VOTable/v1.2" xmlns:ex="http://www.example.com/provenance" xmlns:ivo="http://www.ivoa.net/documents/rer/ivo/" xmlns:voprov="http://www.ivoa.net/documents/dm/provdm/voprov/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.ivoa.net/xml/VOTable/v1.2 http://www.ivoa.net/xml/VOTable/VOTable-1.2.xsd">

<RESOURCE type="provenance">
<DESCRIPTION>Provenance VOTable</DESCRIPTION>
<TABLE name="Usage" utype="voprov:used">

<FIELD arraysize="*" datatype="char" name="activity" ucd="meta.id" utype="voprov:Usage.activity"/>
<FIELD arraysize="*" datatype="char" name="entity" ucd="meta.id" utype="voprov:Usage.entity"/>
<DATA>

<TABLEDATA>
<TR>

<TD>ex:Process1</TD>
<TD>ivo://example#DSS2.143</TD>

</TR>
</TABLEDATA>

</DATA>
</TABLE>

3https://github.com/sanguillon/voprov

33

https://github.com/sanguillon/voprov

<TABLE name="Generation" utype="voprov:wasGeneratedBy">
<FIELD arraysize="*" datatype="char" name="entity" ucd="meta.id" utype="voprov:Generation.entity"/>
<FIELD arraysize="*" datatype="char" name="activity" ucd="meta.id" utype="voprov:Generation.activity"/>
<DATA>

<TABLEDATA>
<TR>

<TD>ivo://example#Public_NGC6946</TD>
<TD>ex:Process1</TD>

</TR>
</TABLEDATA>

</DATA>
</TABLE>
<TABLE name="Activity" utype="voprov:Activity">

<FIELD arraysize="*" datatype="char" name="id" ucd="meta.id" utype="voprov:Activity.id"/>
<FIELD arraysize="*" datatype="char" name="name" ucd="meta.title" utype="voprov:Activity.name"/>
<FIELD arraysize="*" datatype="char" name="start" ucd="" utype="voprov:Activity.startTime"/>
<FIELD arraysize="*" datatype="char" name="stop" ucd="" utype="voprov:Activity.endTime"/>
<DATA>

<TABLEDATA>
<TR>

<TD>ex:Process1</TD>
<TD>Process 1</TD>
<TD>2017-04-18 17:28:00</TD>
<TD>2017-04-19 17:29:00</TD>

</TR>
</TABLEDATA>

</DATA>
</TABLE>
<TABLE name="Entity" utype="voprov:Entity">

<FIELD arraysize="*" datatype="char" name="id" ucd="meta.id" utype="voprov:Entity.id"/>
<FIELD arraysize="*" datatype="char" name="name" ucd="meta.title" utype="voprov:Entity.name"/>
<DATA>

<TABLEDATA>
<TR>

<TD>ivo://example#DSS2.143</TD>
<TD>Unprocessed image of NGC6946</TD>

</TR>
<TR>

<TD>ivo://example#Public_NGC6946</TD>
<TD>Processed image of NGC 6946</TD>

</TR>
</TABLEDATA>

</DATA>
</TABLE>
<INFO name="QUERY_STATUS" value="OK"/>

</RESOURCE>
</VOTABLE>

This VOTABLE serialisation can be considered as a flat view on the
various tables stored in a database implementing the datamodel structure
explained in section 2 More examples of serialisation documents are provided
in Appendix A ??.

Such serializations can be retrieved through access protocols (see 5.1)
or directly integrated in dataset headers or “associated metadata” in order
to provide provenance metadata for these datasets. E.g. for FITS files a
provenance extension called “PROVENANCE” could be added which con-
tains provenance information of the workflow that generated the FITS file
in one of the serialization formats.

34

TODO:
SVOM strategy to incorporate provenance as an extension in FITS
? still valid ?

TODO:
Check that this keyword is not already taken.

4.2 Serialization of description classes

The ProvenanceDM includes description classes that can exist before any
provenance information is recorded. First, the ActivityDescription class
gives information on the activity (name, description, doculink...) and the
parameters expected as an input. In addition, UsedDescription and Was-
GeneratedByDescription classes indicate the expected roles of the input and
output entities respectively. Finally, The activity may expect specific kinds
of entities as inputs or outputs, for which there may be detailed descriptions
stored as EntityDescription records.

The serialization of an ActivityDescription, that includes all those de-
scription classes, is based on the IVOA DataLink Service Descriptors for
service resources (Dowler and Bonnarel et al., 2015), and can thus be stored
as a VOTable (Ochsenbein and Williams et al., 2013). Indeed, a service
descriptor points to a service that probably executes an activity using the
given input parameters, some of which probably point to entities. One can
thus easily translate an ActivityDescription VOTable to a DataLink service
descriptor VOTable block, and vice-versa.

The VOTable contains one resource with attributes type=“meta” and
utype=“voprov:ActivityDescription”. This resource contains PARAM el-
ements to describe the activity and GROUP elements with additional
PARAM elements to describe the input parameters (group name=“InputParams”),
the input entities (group name=“Used”) and the output entities (group
name=“Generated”).

The standard PARAM elements for an activity resource correspond to
the attributes of the ActivityDescription class (see Section 2.2.4) and may
include an Agent name and email. For the input parameters, each Param-
eterDescription element is mapped to a PARAM element. The mapping
is direct as ParameterDescription is based on PARAM. For the input and
output entity groups, each related entity is described with a PARAM block
where the name is the role of the entity in the scope of the activity, and
the expected value is the entity identifier (utype=“voprov:Entity.id”). It is
possible to reference an input parameter using the ref attribute of PARAM,
if an input entity is given as an input parameter to the activity (e.g. the
name of a file). The xtype attribute of PARAM can be used to provide the
content type (MIME type) of the entity.

35

Here is an example of an ActivityDescription VOTable that describes an
activity to create an RGB image from three red, green, blue images:

<VOTABLE xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns="http://www.ivoa.net/xml/VOTable/v1.3" version="1.3"
xsi:schemaLocation="http://www.ivoa.net/xml/VOTable/v1.3
http://www.ivoa.net/xml/VOTable/v1.3">

<RESOURCE ID="make_RGB_image" name="make_RGB_image"
type="meta" utype="voprov:ActivityDescription">

<DESCRIPTION>Create an RGB image from 3 images</DESCRIPTION>
<LINK content-role="doc" href="..."/>
<PARAM name="label" datatype="char" arraysize="*"

value="make_RGB_image" utype="voprov:ActivityDescription.label"/>
<PARAM name="type" datatype="char" arraysize="*"

value="None" utype="voprov:ActivityDescription.type"/>
<PARAM name="subtype" datatype="char" arraysize="*"

value="None" utype="voprov:ActivityDescription.subtype"/>
<PARAM name="version" datatype="float"

value="None" utype="voprov:ActivityDescription.version"/>
<PARAM name="contact_name" datatype="char" arraysize="*"

value="..." utype="voprov:Agent.name"/>
<PARAM name="contact_email" datatype="char" arraysize="*"

value="...@..." utype="voprov:Agent.email"/>
<GROUP name="InputParams" utype="voprov:Parameter">

<PARAM ID="RGB" arraysize="*" datatype="char" name="RGB"
type="no_query" value="RGB.jpg">

<DESCRIPTION>RGB image name</DESCRIPTION>
</PARAM>
<PARAM ID="order" arraysize="*" datatype="char" name="order"

type="no_query" value="RGB">
<DESCRIPTION>order of the channels</DESCRIPTION>
<VALUES>

<OPTION value="RGB"/>
<OPTION value="RBG"/>
<OPTION value="GBR"/>
<OPTION value="GRB"/>
<OPTION value="BRG"/>
<OPTION value="BGR"/>

</VALUES>
</PARAM>

</GROUP>
<GROUP name="Used" utype="voprov:Used">

<PARAM arraysize="*" datatype="char" name="R"
value="R.jpg" utype="voprov:Entity.id" xtype="image/jpeg">

<DESCRIPTION>Image for red channel</DESCRIPTION>
</PARAM>
<PARAM arraysize="*" datatype="char" name="G"

value="G.jpg" utype="voprov:Entity.id" xtype="image/jpeg">
<DESCRIPTION>Image for green channel</DESCRIPTION>

</PARAM>
<PARAM arraysize="*" datatype="char" name="B"

value="B.jpg" utype="voprov:Entity.id" xtype="image/jpeg">
<DESCRIPTION>Image for blue channel</DESCRIPTION>

</PARAM>
</GROUP>
<GROUP name="Generated" utype="voprov:WasGeneratedBy">

<PARAM arraysize="*" datatype="char" name="RGB" ref="RGB"
value="RGB.jpg" utype="voprov:Entity.id" xtype="image/jpeg">

<DESCRIPTION>RGB image name</DESCRIPTION>
</PARAM>

</GROUP>
</RESOURCE>

36

</VOTABLE>

5 Accessing provenance information

5.1 Access protocols

We envision two possible access protocols:

• ProvDAL: retrieve provenance information based on given ID of a data
entity or activity.

• ProvTAP: allows detailed queries for provenance information, discov-
ery of datasets based on e.g. code version.

5.2 ProvDAL

ProvDAL is a simple data access layer interface (see DALI specification of
the VO, Dowler and Demleitner et al., 2013) that can be implemented
by a web service to serve provenance information to a client. The client
sends GET request to the basic URL endpoint ({provdal-base-url}) of a
ProvDAL service, providing at least the main parameter ID, the (unique,
qualified) identifier of an entity (obs_publisher_did of an ObsDataSet for
example), activity or an agent. This parameter can occur more than once
in a request in order to retrieve provenance details for several activities,
datasets or agents at the same time. Here are two simple example requests:

{provdal-base-url}?ID=rave:dr4
{provdal-base-url}?ID=rave:dr4&ID=rave:act_irafReduction

Additional parameters can complete the request to refine the query. They
are described in the next paragraphs and summarized in Table 14.

RESPONSEFORMAT The format of the response can be defined using the
RESPONSEFORMAT parameter. Its value is one of the provenance serial-
ization formats: PROV-N, PROV-JSON, PROV-XML, PROV-VOTABLE.

DEPTH The DEPTH parameter gives the number of relations that shall be
tracked along the provenance history – independent of the type of relation.
Its value is either 0, a positive integer or ALL. If this parameter is omitted,
the default is 1, which returns all relations and nodes that can be reached
by following 1 relation. If DEPTH=ALL is requested, the server should return
the complete provenance history that the service has stored for the given
entity, activity or agent.

37

Parameter Values Description

ID qualified ID a valid qualified identifier for an en-
tity, activity or agent (can occur mul-
tiple times)

DEPTH 0,1,2,..., ALL number of relations to be followed
or ALL for everything, independent of
the relation type

RESPONSEFORMAT PROV-N,
PROV-JSON,
PROV-XML,
PROV-VOTABLE

serialisation format of the response

DIRECTION BACK, FORTH BACK = track the provenance history,
FORTH = explore the results of activi-
ties and where entities have been used

MEMBERS true (1) or false (0) if true/1, retrieve and track members
of collections

STEPS true (1) or false (0) if true/1, retrieve and track steps of
activityFlows

AGENT true (1) or false (0) if true/1, explore all relations for
agents, i.e. find out what an agent
is responsible for

Table 14: ProvDAL request parameters. Options that are required to
be implemented by ProvDAL services are marked with bold face. Default
values are underlined. The parameter names are case-insensitive, but the
parameter values are not.

TODO:
KR: I suggest to add here:
Services may restrict the returned data by redirecting DEPTH=ALL to
e.g. DEPTH={maxdepth}, where {maxdepth} is an integer defining
the maximum depth number that the server allows.

Note that the relations wasDerivedFrom and wasInformedBy are “short-
cuts” in a provenance graph. Thus for e.g. DEPTH=2 more progenitors of
an entity may be reached via wasDerivedFrom relations than via the “long
path” along the corresponding used and wasGeneratedBy relations (see e.g.
progenitor entity E1 in Figure 11). (A better solution for the future may
be to use 1/2*DEPTH for walking along these short-cut relations, but we
don’t want to make ProvDAL more complex for now.)

DIRECTION For services which allow tracking the provenance informa-
tion forward, e.g. in order to check for which activities an entity was used,

38

the optional parameter DIRECTION can be set to FORTH. Its default value
is BACK. This only influences the direction in which the used, wasGener-
atedBy, wasDerivedFrom and wasInfluencedBy relations are followed. Any
other relations are tracked according to the behaviour specified below, in-
dependent of the DIRECTION value.
TODO:
What about adding the MODEL-parameter (values: IVOA/W3C)?

Figure 11 shows an example provenance graph with different relations
and nodes. Only the relations marked by solid lines are influenced by the DI-
RECTION parameter. A ProvDAL GET request with ID=E6 and DEPTH=2
returns only the highlighted nodes and relations (thick lines) by default.

E6A4E3

C1

E2

A5

A1

C2 AF1

E10

C3

E11 C4 E12

E4 E5

A2

A3

E1

Ag1

A6

A7

E8E7 E9

Ag3

Ag2

FORTHBACK

E

A

C

AF

Entity

Collection

Agent

used hadStep
hadMember

wasAssociatedWith,

wasDerivedFrom
wasInformedBy

Processing relations Hierarchical relations

Responsibility relations

wasAttributedTo

wasGeneratedBy

Activity

ActivityFlow

Ag

Figure 11: An example provenance graph, highlighting the objects and re-
lations returned from a ProvDAL service with ID=E6 and DEPTH=2. The
BACK and FORTH values for DIRECTION are only important for the
processing relations (solid lines). Hierarchial (dashed) and responsibility
(dotted) relations are only followed “upwards” (to collection/activityFlow)
and towards agents by default (unless the optional parameters MEMBERS,
STEPS and/or AGENT are set to true.

MEMBERS, STEPS The provenance data model defines the hierarchical
relations hadMember for entity collections and hadStep for activityFlows.
If a node belongs to a collection or activityFlow, these relations shall be

39

returned as well, independent of the specified tracking direction. If someone
is interested in more details and wants to follow the members of an entity
collection or the steps of an activityFlow, these can be included by setting
the optional parameter MEMBERS or STEPS to true, respectively. The
default is false. As detailed in DALI (Dowler and Demleitner et al., 2013),
the values 1 and 0 are equivalent to true and false.

AGENT By default, it is recommended to stop any further tracking at an
agent node, unless an additional optional parameter AGENT is set to true.
Note that this means that the request for any agent will always return just
the agent node itself and nothing else, unless AGENT=true is used. An
example request if one wants to know which entities and activities an agent
has influenced could look like this:
{provdal-base-url}?ID=org:rave&AGENT=true&DEPTH=1.
DEPTH=1 is used here in order to avoid following the found entities and ac-
tivities any further (can be omitted, since this is the default for DEPTH).

A ProvDAL service MUST implement the parameters ID, DEPTH and
RESPONSEFORMAT; the remaining parameters are optional. If a ser-
vice does not implement the optional parameters, but they appear in the
request, then the service should return with an error. Please note that ac-
cording to the DALI specification (Dowler and Demleitner et al., 2013), the
parameter names are case-insensitive, but the parameter values are not. E.g.
direcion=FORTH is allowed, but DIRECTION=forth may not work.

5.2.1 ProvDAL example use cases

TODO:
This is a new section.

We provide here a few example use cases for ProvDAL in order to show
its usefulness in exploring the provenance of astronomical datasets, processes
or the people and projects involved in producing/performing them.

• The RAVE DR4 release contains a main table with stellar proper-
ties for each observation of a star. Given the RAVE observation ID,
retrieve the processing steps for this specific observation result:

{provdal-base-url}?ID=rave:20121220_0752m38_089&DEPTH=ALL

The result will not only contain the processing steps (activities), but
also entities and agents. The important information can be filtered
out by a client application (e.g. use voprov Python package). If a
W3C tool shall be used, one needs to transform the response into a

40

W3C compliant serialisation (e.g. for loading the result to ProvStore4

for further processing).

• Get the direct progenitor of an entity:

{provdal-base-url}?ID=rave:20121220_0752m38_089&DEPTH=1

If this request only returns a collection and not any “backwards” in-
formation about progenitors, then one needs to track the collection
further, i.e. repeat the request for the collection entity.

• Get all datasets that were derived from a specific data file in the CTA
pipeline:

{provdal-base-url}?ID=cta:df1&DEPTH=ALL&DIRECTION=FORTH

By using DIRECTION=FORTH we can track the dataset and where it was
used forward.

• Find all people that were involved in processing a dataset along with
their contact data (if available), so that one can ask them for further
information.

{provdal-base-url}?ID=ex:e1&DEPTH=ALL

The ProvDAL request is basically the same as in the first example.
From the results the agents need to be filtered. Since the response
contains the nodes and relations including all their properties, the
contact details for the agents are included as well (if they are stored
with the service).

• Retrieve a VOTABLE serialisation of the provenance for an image
from a data collection.

{provdal-base-url}?ID=myproject:img1&DEPTH=ALL\
&RESPONSEFORMAT=PROV-VOTABLE

We use the RESPONSEFORMAT keyword here to retrieve a VOTABLE.

ProvDAL is meant to be used to retrieve parts of a provenance graph
from a provenance web service. It cannot be used to retrieve information
based on specific properties, e.g. the creationTime of an entity or a param-
eter value for an activity. For such cases, a ProvTAP service can be used
(see next section).

4https://provenance.ecs.soton.ac.uk/store/

41

5.3 ProvTAP

//currently updated ... ProvTAP is a TAP service implementing the Prove-
nanceDM data model. The data model mapping is included in the TAP
schema. The mapping of ProvenanceDM classes and attributes onto tables
and columns of the schema with the appropriate relationships, datatypes,
units, utypes and ucds is done similarly to the PROV-VOTABLE serial-
ization. The query response will result in a single table according to the
query. This single table is joining information coming from one or several
“provenance” tables available in the database.

A special case is considered where ProvenanceDM and ObsCore are both
implemented in the same TAP service and queried together. The TAP
response is then providing an Obscore table with a ProvenanceDM extension.
We can imagine that in the future this could be hard-coded and registered
as an ObsProvTAP service.
TODO:
We need more details here! Output of TAP service is NOT a PROV-
VOTABLE by default!

5.4 VOSI availability and capabilities

TODO:
Still needs to be discussed!

According to the DALI specification for VO services (Dowler and Dem-
leitner et al., 2013), a provenance service implementing ProvDAL and/or
ProvTAP must provide a VOSI availability interface as well as a capabilities
interface with entries for ProvDAL and/or ProvTAP. The standardIds for
these provenance interfaces are:

ivo://ivoa.net/std/ProvenanceDM#ProvDAL
ivo://ivoa.net/std/ProvenanceDM#ProvTAP

The capability for a TAP service to support the Provenance DM is ex-
pressed by the dataModel element as :

<dataModel ivoid="ivo://ivoa.net/std/ProvenanceDM#core-1.0">ProvenanceDM-1.0</dataModel>

For ProvTAP, the VOSI tables interface also needs to be provided.

6 Use cases – applying the data model

This section presents some general guidelines for applying the data model
and specific use cases for which the provenance data model helps to solve cer-
tain tasks. Details on specific implementions of the provenance data model

42

are provided in a separate document, the ProvenanceDM Implementation
Note (Riebe and Servillat et al., 2017).

6.1 How to use the data model

TODO:
KR: I think this is a good place for this section. Do we still want to
have this section or is everything covered with the new section on
entitydescription-serialisation?

• identify entities in your project, i.e. the things you deal with

• identify activities (processes) in your project

• identify reponsible agents (persons and organizations)

• find the relations between them

• possibly disentangle entity properties and entityDescription proper-
ties: everything that you may know about an entity before its creation,
belongs to the entityDescription; e.g. file format, dataProduct_type,
what kind of entity it is going to be (category)

• ...

6.2 voprov Python package

The voprov Python package is derived from the voprov-package. It can load
data and serialize it. The voprov-package supports following features: ...
TODO:
Michele: Please add more explanations!

Example code and serializations are given in the Implementation Note
(Riebe and Servillat et al., 2017).

6.2.1 Graphic formats

The voprov python module can also provide provenance information in
graphic formats: PNG, SVG and PDF. In the above example, you have
to add the following instructions in your python program:

dot = prov_to_dot(provdoc, use_labels=True)
dot.write_png(’ex1.png’)
dot.write_svg(’ex1.svg’)
dot.write_pdf(’ex1.pdf’)

43

Figure 12: Example: png format@

6.3 Provenance of RAVE database tables (DR4)

The RAVE survey (Radial Velocity Experiment) recorded spectra for about
half a million stars. These spectra are processed in a number of steps
until the derived properties are published in the RAVE data releases at
http://www.rave-survey.org. Providing provenance information for the
data, from which spectrum and fibre the data was coming from and
which steps were involved in processing the data, can help scientists to
understand the data and their restrictions and judge their quality. It
would also be useful to be able to compare if, how and why the derived
data for some stars have changed between different releases. Provenance
information for some major steps of RAVE DR4 was loaded in W3C-
compatible PROV-N notation and uploaded to the provenance store at
https://provenance.ecs.soton.ac.uk/store/documents/84064/. This allows
to view graphs of the workflow by visualising only the main entities, ac-
tivities and agents with their relations. It shows that the provenance con-
cepts explained in this draft can be applied directly to data obtained from
astronomical observations.

We also tested a Django implementation of the classes in this document
along with provenance data stored in an SQLite database. This allows to
quickly setup a provenance web service which gives the possibility to view
all instances of a class or details for a single object, extract provenance infor-
mation for single entities (backwards in time) and visualise the provenance
information. More details about this are available in the implementation
notes (Riebe and Servillat et al., 2017).

6.4 Provenance for CTA

The Cherenkov Telescope Array (CTA) is the next generation ground-based
very high energy gamma-ray instrument. It will provide a deep insight into
the non-thermal high-energy universe. Contrary to previous Cherenkov ex-
periments, it will serve as an open observatory providing data to a wide as-
trophysics community, with the requirement to propose self-described data

44

Figure 13: CTA high level data model structure with Pipeline stages and
connection to IVOA ProvenanceDM.

products to users that may be unaware of the Cherenkov astronomy speci-
ficities. The proposed structure of the metadata is presented in Figure 13.

Cherenkov telescopes indirectly detect gamma-rays by observing the
flashes of Cherenkov light emitted by particle cascades initiated when the
gamma-rays interact with nuclei in the atmosphere. The main difficulty
is that charged cosmic rays also produce such cascades in the atmosphere,
which represent an enormous background compared to genuine gamma-ray-
induced cascades. Monte Carlo simulations of the shower development and
Cherenkov light emission and detection, corresponding to many different
observing conditions, are used to model the response of the detectors. With
an array of such detectors the shower is observed from several points and,
working backwards, one can figure out the origin, energy and time of the
incident particle. The main stages of the CTA Pipeline are presented inside
Figure 13. Because of this complexity in the detection process, provenance
information of data products is necessary to the user to perform a correct
scientific analysis.

Provenance concepts are relevant for different aspects of CTA :

• Data diffusion: the diffused data products have to contain all the
relevant context information with the assumptions made as well as
a description of the methods and algorithms used during the data
processing.

• Pipeline: the CTA Observatory must ensure that data processing is
traceable and reproducible.

• Instrument Configuration: the characteristics of the instrument at a
given time have to be available and traceable (hardware changes, mea-
surements of e.g. a reflectivity curve of a mirror, ...)

45

Figure 14: Provenance description of a CTA analysis step.

We tested the tracking of Provenance information using the Python prov
package inside OPUS5 (Observatoire de Paris UWS System), a job control
system developed at PADC (Paris Astronomical Data Centre). This system
has been used to run CTA analysis tools and provides a description of the
Provenance in the PROV-XML or PROV-JSON serialisations, as well as a
graph visualization (see Figure 14).

6.5 POLLUX database

POLLUX is a stellar spectra database proposing access to high resolution
synthetic spectra computed using the best available models of atmosphere
(CMFGEN, ATLAS and MARCS), performant spectral synthesis codes
(CMF_FLUX,SYNSPEC and TURBOSPECTRUM) and atomic linelists
from VALD database and specific molecular linelists for cool stars.

Currently the provenance information is given to the astronomer in the
header of the spectra files (depending on the format: FITS, ascii, xml,
votables, ...) but in a non normalized description format.

The implementation of the provenance concepts in a standardized format
allows users on one hand to benefit from tools to create, visualize and trans-
form in another format the description of the provenance of these spectra
and on a second hand to select data depending on provenance criteria.

5https://github.com/ParisAstronomicalDataCentre/OPUS

46

https://github.com/ParisAstronomicalDataCentre/OPUS

Figure 15: Pollux Example 1

6.6 HiPS use case

HiPS is a new all sky organization of pixel data. It is based on HealPix
tesselation of the sky on equal area cells (pixels) for a given HealPix order
gathered in tiles. Adaptative resolution is achieved by a hierarchy of tiles
at increasing order. Sorting and organization is based on a tree of includ-
ing directories each of those associated with a tile. HiPS specification has
entered the IVOA recommendation process and is becoming an interoper-
ability standard. In the processing chain, HiPS can be seen as a kind of
“legacy level” for observational data.

An HiPS dataset can be generated either by Aladin in “hipsgen” mode
or by other softwares. The processing distinguishes 3 main different meth-
ods for estimating cell values: FIRST or NEAREST neighbour, Mean or
Median of the neigbouring pixels. Up to 50 parameters can help to tune the
processing, among which can be found the higher resolution HealPix order,
sky background value to be substracted, border width or mask to apply to
original images to avoid including bad area in the computing, etc.

An example of provenance metadata for a HiPS collection gener-
ated from a collection of SERC Schmidt plates scanned by CAI (Ob-
servatoire de Paris) with the MAMA facility and serialized in PROV-N
format is given at https://volute.g-vo.org/svn/trunk/projects/dm/
provenance/example/HiPS-prov-provn.txt, the corresponding votable-
format is available at https://volute.g-vo.org/svn/trunk/projects/
dm/provenance/example/HiPS-prov-vot.xml.

Here is an extract of the PROV-N serialization:

47

https://volute.g-vo.org/svn/trunk/projects/dm/provenance/example/HiPS-prov-provn.txt
https://volute.g-vo.org/svn/trunk/projects/dm/provenance/example/HiPS-prov-provn.txt
https://volute.g-vo.org/svn/trunk/projects/dm/provenance/example/HiPS-prov-vot.xml
https://volute.g-vo.org/svn/trunk/projects/dm/provenance/example/HiPS-prov-vot.xml

Entity
(ivo://CDS/P/MAMA/ESO-R,
[
prov:label = "ESO-R MAMA HIPS at CDS",
prov:annotation = "This is the HiPS version of ESO Schmidt survey digitized by Mama and processed by CDS",
hips:HiPS_properties = "http://cds.u-strasbg.fr/hips/p/mama/eso-r/properties.txt",
voprov:access_reference = "http://CDS/P/MAMA/ESO-R", // as defined in obscore
voprov:doculink = "http://cds.u-strasbg.fr/hips/documentation.html#structure",
voprov:dataproduct_type = "voprov:hips_pixels",
voprov:level = 3
]
)

// Relationship
WasAttributedTo(ivo://CDS/P/MAMA/ESO-R, ivo://cds, prov:role = "voprov:creator")

Agent
(ivo://cds,
[
voprov:Name = "CDS",
voprov:contact = "question@astro.unistra.fr",
prov:type = "Organisation"
]
)

6.7 Lightcurves use case

TBD. See Provenance webpage in IVOA Twiki for now.

A Appendix A : Serialisation Examples

Here is a a simple example of serialisation of Provenance DM metadata for
describing an Activity of color composition and the entity used as input as
well as the resulting RGB image.

The Prov-N format ?? as proposed by the W3C is a text format which
allows the description of instances of the main 3 classes, as well as the various
relations between each instance involved.

Listing 1: PROV-N serialisation example for a Color composition Activity
document

p r e f i x ivo <ht tp : //www. ivoa . net /documents/ r e r / ivo />
p r e f i x h ips <ht tp : // cds . u−s t r a sbg . f r /data/>
p r e f i x voprov <ht tp : //www. ivoa . net /documents/dm/provdm/voprov/>

48

en t i t y (i v o : //CDS/P/DSS2color#RGB_NGC6946, [voprov :annotat ion="PNG␣RGB␣image␣ bu i l t ␣ from␣DSS2␣with␣Aladin ␣ f o r ␣ galaxy ␣NGC␣6946 " , voprov :docu l ink=" h t tp : // cds . u−s t r a sbg . f r / a l ad in . gml " , voprov:name="RGB␣DSS2␣ image␣ f o r ␣NGC␣6946 "])
e n t i t y (i v o : //CDS/P/DSS2/POSSII#POSSII . J−DSS2 .143 , [voprov :annotat ion=" ␣DSS2␣ d i g i t i z a t i o n ␣ o f ␣ the ␣Blue␣POSSII␣Schmidt␣ survey ␣around␣␣NGC␣6946 " , voprov :docu l ink=" h t tp : // cds . u−s t r a sbg . f r / a l ad in .gm" , voprov:name="POSSII␣Blue␣Survey␣DSS2␣NGC6946"])
e n t i t y (i v o : //CDS/P/DSS2/POSSII#POSSII .F−DSS2 .143 , [voprov :annotat ion=" ␣DSS2␣ d i g i t i z a t i o n ␣ o f ␣ the ␣Red␣POSSII␣Schmidt␣ survey ␣around␣NGC␣6946 " , voprov :docu l ink=" h t tp : // cds . u−s t r a sbg . f r / a l ad in . gml " , voprov:name="POSSII␣Red␣Survey␣DSS2␣NGC6946"])
e n t i t y (i v o : //CDS/P/DSS2/POSSII#POSSII .N−DSS2 .143 , [voprov :annotat ion=" ␣DSS2␣ d i g i t i z a t i o n ␣ o f ␣ the ␣ I n f r a ␣ red ␣POSSII␣Schmidt␣ survey ␣around␣NGC␣6946 " , voprov :docu l ink=" h t tp : // cds . u−s t r a sbg . f r / a l ad in .gm" , voprov:name="POSSII␣ I n f r a ␣Red␣Survey␣DSS2␣NGC6946"])
a c t i v i t y (hips:AlaRGB1 , 2017−04−18T17:28:00 , 2017−04−19T17:29:00 , [voprov:desc_id="AlaRGB" , voprov:desc_type="RGBencoding " , voprov :annotat ion=" Aladin ␣RGB␣image␣ gene ra t i on ␣ f o r ␣NGC␣6946 " , voprov:desc_name=" Aladin ␣RGB␣image␣ gene ra t i on ␣ a lgor i thm " , voprov:name=" Aladin ␣RGB␣1 " , voprov:desc_docul ink=" h t tp : // cds . u−s t r a sbg . f r / a l ad in . gml "])
used (hips:AlaRGB1 , i v o : //CDS/P/DSS2/POSSII#POSSII . J−DSS2 .143 , −)
used (hips:AlaRGB1 , i v o : //CDS/P/DSS2/POSSII#POSSII .F−DSS2 .143 , −)
used (hips:AlaRGB1 , i v o : //CDS/P/DSS2/POSSII#POSSII .N−DSS2 .143 , −)
wasGeneratedBy (i v o : //CDS/P/DSS2color#RGB_NGC6946, hips:AlaRGB1 , 2017−05−05T00:00:00)

endDocument

49

Here is the transcription of the same metadata in the PROV-Json for-
mat. Each class and relation of the provenance model lists its corresponding
database tables t-upples grouped by nameof the table.

Listing 2: JSON serialisation example for a Color composition Activity
{

" p r e f i x " : {
" ivo " : " http ://www. ivoa . net /documents/ r e r / ivo / " ,
" voprov " : " http ://www. ivoa . net /documents/dm/provdm/voprov/ " ,
" h ips " : " http :// cds . u−s t r a sbg . f r /data/ "

} ,
" a c t i v i t y " : {

" h ips :AlaRGB1" : {
" voprov : desc_docul ink " : " http :// cds . u−s t r a sbg . f r / a l ad in . gml " ,
" voprov : desc_id " : "AlaRGB" ,
" prov : startTime " : " 2017−04−18T17 : 2 8 : 0 0 " ,
" voprov : annotat ion " : " Aladin ␣RGB␣image␣ gene ra t i on ␣ f o r ␣NGC␣6946 " ,
" voprov : desc_type " : "RGBencoding " ,
" voprov : desc_name " : " Aladin ␣RGB␣image␣ gene ra t i on ␣ a lgor i thm " ,
" prov : endTime " : " 2017−04−19T17 : 2 9 : 0 0 " ,
" voprov : name" : " Aladin ␣RGB␣1 "

}
} ,
" wasGeneratedBy " : {

"_: id4 " : {
" prov : time " : " 2017−05−05T00 : 0 0 : 0 0 " ,
" prov : en t i t y " : " ivo ://CDS/P/DSS2color#RGB_NGC6946" ,
" prov : a c t i v i t y " : " h ips :AlaRGB1"

}
} ,
" used " : {

"_: id1 " : {
" prov : en t i t y " : " ivo ://CDS/P/DSS2/POSSII#POSSII . J−DSS2 .143 " ,
" prov : a c t i v i t y " : " h ips :AlaRGB1"

} ,
"_: id3 " : {

" prov : en t i t y " : " ivo ://CDS/P/DSS2/POSSII#POSSII .N−DSS2 .143 " ,
" prov : a c t i v i t y " : " h ips :AlaRGB1"

} ,
"_: id2 " : {

" prov : en t i t y " : " ivo ://CDS/P/DSS2/POSSII#POSSII .F−DSS2 .143 " ,
" prov : a c t i v i t y " : " h ips :AlaRGB1"

}
} ,

50

" e n t i t y " : {
" ivo : //CDS/P/DSS2/POSSII#POSSII . J−DSS2 .143 " : {

" voprov : name" : "POSSII␣Blue␣Survey␣DSS2␣NGC6946" ,
" voprov : annotat ion " : "DSS2␣ d i g i t i z a t i o n ␣ o f ␣ the ␣Blue␣POSSII␣Schmidt␣ survey ␣around␣␣NGC␣6946 " ,
" voprov : docu l ink " : " http :// cds . u−s t r a sbg . f r / a l ad in .gm"

} ,
" ivo : //CDS/P/DSS2/POSSII#POSSII .F−DSS2 .143 " : {

" voprov : name" : "POSSII␣Red␣Survey␣DSS2␣NGC6946" ,
" voprov : annotat ion " : "DSS2␣ d i g i t i z a t i o n ␣ o f ␣ the ␣Red␣POSSII␣Schmidt␣ survey ␣around␣NGC␣6946 " ,
" voprov : docu l ink " : " http :// cds . u−s t r a sbg . f r / a l ad in . gml "

} ,
" ivo : //CDS/P/DSS2/POSSII#POSSII .N−DSS2 .143 " : {

" voprov : name" : "POSSII␣ I n f r a ␣Red␣Survey␣DSS2␣NGC6946" ,
" voprov : annotat ion " : "DSS2␣ d i g i t i z a t i o n ␣ o f ␣ the ␣ I n f r a ␣Red␣POSSII␣Schmidt␣ survey ␣around␣NGC␣6946 " ,
" voprov : docu l ink " : " http :// cds . u−s t r a sbg . f r / a l ad in .gm"

} ,
" ivo : //CDS/P/DSS2color#RGB_NGC6946" : {

" voprov : name" : "RGB␣DSS2␣ image␣ f o r ␣NGC␣6946 " ,
" voprov : annotat ion " : "PNG␣RGB␣image␣ bu i l t ␣ from␣DSS2␣with␣Aladin ␣ f o r ␣ galaxy ␣NGC␣6946 " ,
" voprov : docu l ink " : " http :// cds . u−s t r a sbg . f r / a l ad in . gml "

}
}

}

Here is the mapping obtained for the same data description with the
PROV-VOTABLE serialisation format.
Listing 3: PROV-VOTABLE serialisation example for a Color composition
Activity
<?xml version=" 1 .0 " encoding="UTF−8" ?>
<VOTABLE version=" 1 .2 " xmlns=" h t tp : //www. ivoa . net /xml/VOTable/v1 . 2 " xmlns :h ips=" h t tp : // cds . u−s t r a sbg . f r /data/ " xmlns : ivo=" h t tp : //www. ivoa . net /documents/ r e r / ivo / " xmlns:voprov=" h t tp : //www. ivoa . net /documents/dm/provdm/voprov/ " xmlns : x s i=" h t tp : //www.w3 . org /2001/XMLSchema−i n s t anc e " xs i : s chemaLocat ion=" h t tp : //www. ivoa . net /xml/VOTable/v1 . 2 ␣ h t tp : //www. ivoa . net /xml/VOTable/VOTable−1.2 . xsd ">

<RESOURCE type=" provenance ">
<DESCRIPTION>Provenance VOTable</DESCRIPTION>
<TABLE name="Usage " utype=" voprov:used ">

<FIELD a r r a y s i z e=" ∗ " datatype=" char " name=" a c t i v i t y " ucd="meta . id " utype=" voprov:Usage . a c t i v i t y " />
<FIELD a r r a y s i z e=" ∗ " datatype=" char " name=" en t i t y " ucd="meta . id " utype=" voprov:Usage . e n t i t y " />
<DATA>

<TABLEDATA>
<TR>

<TD>hips:AlaRGB1</TD>
<TD>i v o : //CDS/P/DSS2/POSSII#POSSII .N−DSS2 .143</TD>

</TR>
</TABLEDATA>

</DATA>
</TABLE>

51

<TABLE name=" Generation " utype=" voprov:wasGeneratedBy ">
<FIELD a r r a y s i z e=" ∗ " datatype=" char " name=" en t i t y " ucd="meta . id " utype=" voprov:Generat ion . e n t i t y " />
<FIELD a r r a y s i z e=" ∗ " datatype=" char " name=" a c t i v i t y " ucd="meta . id " utype=" voprov:Generat ion . a c t i v i t y " />
<DATA>

<TABLEDATA>
<TR>

<TD>i v o : //CDS/P/DSS2color#RGB_NGC6946</TD>
<TD>hips:AlaRGB1</TD>

</TR>
</TABLEDATA>

</DATA>
</TABLE>
<TABLE name=" Act i v i ty " utype=" voprov :Act i v i ty ">

<FIELD a r r a y s i z e=" ∗ " datatype=" char " name=" id " ucd="meta . id " utype=" voprov :Act i v i ty . id " />
<FIELD a r r a y s i z e=" ∗ " datatype=" char " name="name" ucd="meta . t i t l e " utype=" voprov :Act iv i ty . name" />
<FIELD a r r a y s i z e=" ∗ " datatype=" char " name=" s t a r t " ucd=" " utype=" voprov :Act i v i ty . startTime " />
<FIELD a r r a y s i z e=" ∗ " datatype=" char " name=" stop " ucd=" " utype=" voprov :Act i v i ty . endTime " />
<FIELD a r r a y s i z e=" ∗ " datatype=" char " name=" annotat ion " ucd="meta . d e s c r i p t i o n " utype=" voprov :Act iv i ty . annotat ion " />
<FIELD a r r a y s i z e=" ∗ " datatype=" char " name=" desc_id " ucd=" " utype=" vop rov :Ac t i v i t yDe s c r i p t i on . id " />
<FIELD a r r a y s i z e=" ∗ " datatype=" char " name="desc_name " ucd=" " utype=" vop rov :Ac t i v i t yDe s c r i p t i on . name" />
<FIELD a r r a y s i z e=" ∗ " datatype=" char " name=" desc_type " ucd="meta . code . c l a s s " utype=" vop rov :Ac t i v i t yDe s c r i p t i on . type " />
<FIELD a r r a y s i z e=" ∗ " datatype=" char " name=" desc_docul ink " ucd="meta . r e f . u r l " utype=" vop rov :Ac t i v i t yDe s c r i p t i on . docu l ink " />
<DATA>

<TABLEDATA>
<TR>

<TD>hips:AlaRGB1</TD>
<TD>Aladin RGB 1</TD>
<TD>2017−04−18 17 : 2 8 : 0 0</TD>
<TD>2017−04−19 17 : 2 9 : 0 0</TD>
<TD>Aladin RGB image gene ra t i on f o r NGC 6946</TD>
<TD>AlaRGB</TD>
<TD>Aladin RGB image gene ra t i on a lgor i thm</TD>
<TD>RGB encoding</TD>
<TD>ht tp : // cds . u−s t r a sbg . f r / a l ad in . gml</TD>

</TR>
</TABLEDATA>

</DATA>
</TABLE>
<TABLE name=" Entity " utype=" voprov :Ent i ty ">

<FIELD a r r a y s i z e=" ∗ " datatype=" char " name=" id " ucd="meta . id " utype=" voprov :Ent i ty . id " />
<FIELD a r r a y s i z e=" ∗ " datatype=" char " name="name" ucd="meta . t i t l e " utype=" voprov :Ent i ty . name" />
<FIELD a r r a y s i z e=" ∗ " datatype=" char " name=" annotat ion " ucd="meta . d e s c r i p t i o n " utype=" voprov :Ent i ty . annotat ion " />
<DATA>

<TABLEDATA>

52

<TR>
<TD>i v o : //CDS/P/DSS2/POSSII#POSSII . J−DSS2 .143</TD>
<TD>POSSII Blue Survey DSS2 NGC6946</TD>
<TD> DSS2 d i g i t i z a t i o n o f the Blue POSSII Schmidt survey around

NGC 6946</TD>
</TR>
<TR>

<TD>i v o : //CDS/P/DSS2/POSSII#POSSII .F−DSS2 .143</TD>
<TD>POSSII Red Survey DSS2 NGC6946</TD>
<TD> DSS2 d i g i t i z a t i o n o f the Red POSSII Schmidt survey around NGC 6946</TD>

</TR>
<TR>

<TD>i v o : //CDS/P/DSS2/POSSII#POSSII .N−DSS2 .143</TD>
<TD>POSSII I n f r a Red Survey DSS2 NGC6946</TD>
<TD> DSS2 d i g i t i z a t i o n o f the I n f r a red POSSII Schmidt survey around

NGC 6946</TD>
</TR>
<TR>

<TD>i v o : //CDS/P/DSS2color#RGB_NGC6946</TD>
<TD>RGB DSS2 image f o r NGC 6946</TD>
<TD>PNG RGB image bu i l t from DSS2 with Aladin f o r galaxy NGC 6946</TD>

</TR>
</TABLEDATA>

</DATA>
</TABLE>
<INFO name="QUERY_STATUS" value="OK" />

</RESOURCE>
</VOTABLE>

B Appendix B : Discussion

B.1 Links, ids

It would be convenient, if each data object or even each file gets a unique id
that can be referenced. The W3C provenance model requires ids for entities,
activities and agents, and they have to be qualified strings, i.e. containing a
namespace. For example, an activity in the RAVE-pipeline could have the id
‘rave:radialvelocity_pipeline_20160901’. Using a namespace for each
project for these ids will help to make them unique.

If several copies of a dataset exist, and one of them is corrupted, it would
even be useful to know exactly which copy was used by a given activity. This
can be modeled already with the existing tools (using a copy-activity), but
we doubt that many people would actually need this level of detail.

53

IVOIDs, DOI’s or ORCIDs are potentially good candidates for unique
identifiers.

B.2 Description classes

This model was established mainly having a database implementation in
mind. However, it may be better in the long run to store provenance with
the entities themselves, e.g. as an additional extension in fits-headers.

A model using description classes for defining templates for activities and
entities has an advantage for normalization: the common processes could be
described once and for all at some place and then be reused when recording
provenance information for certain entities and activities. This some place
is actually the crucial point here. In an ideal world, “some place” could
collect all the descriptions from all the possible datasets and methods in
astronomy, but building such a look-up place is a quite challenging task – it
will probably never be complete. There’s also the issue of persistent iden-
tifiers/broken links to consider. Normalisation is useful for closed systems,
e.g. for describing the provenance for data produced by a certain pipeline
(e.g. MuseWise system) or with workflow tools or when a task needs to be
repeated many times. However, the VO is quite the contrary of a closed
system and we need to keep an eye on what is actually achievable.

When writing down a simple serialisation of e.g. the provenance for a
stacked image using the current model including the description classes, it
soon becomes quite cumbersome to define everything twice: first the de-
scriptions, then the instances. This basically doubles the number of entries
to describe provenance (unless there is already some place with all the de-
scriptions to which we can refer).

Expressing provenance for a stacked image with this smaller set of classes
may be simpler, but on the other hand constructing a database schema
becomes much harder. We could leave it to the implementors to choose what
is more useful for them. When extracting a serialisation of the provenance
information from a provenance service, the attributes of the description
classes could be combined with the corresponding activity/entity classes.
This will produce some repetition (e.g. many entities may have the same
descriptive attributes), but avoid having too many classes and links between
them.

B.3 ActivityFlow and viewLevel

Since we introduced ActivityFlow mainly for having different view levels, we
may want to add an attribute viewLevel to the class ActivityFlow. However,
it is not clear, if viewLevel=0 describes the coarsest or most detailed view.
It may happen, when recording provenance information, that first a pipeline
activity is defined and only later the detailed steps are described and the

54

pipeline activity is flagged as an activityFlow with certain steps. Also, when
having a detailed description of each activity step, one may later decide to
group activities together and define an activityFlow. Therefore, it is not
that straightforward to define absolute viewLevel-values. Probably this has
to be customized for each project itself.

C Appendix C: Changes from Previous Versions

C.1 Changes from WD-ProvenanceDM-1.0-20161121

• Moved discussion section to appendix, cut code and serialization ex-
amples, partially moved to Implementation Note (Riebe and Servillat
et al., 2017).

• Added paragraph on VOSI interface

• Added a proposed serialization of description classes

• Added optional attributes Parameter.min, Parameter.max, Parame-
ter.option

• Modified text on the content of EntityDescription, now seen as Entity
attributes known before the Entity instance exists.

• Added additional figure for entity-activity relations.

• Added optional attributes Entity.creationTime and EntityDescrip-
tion.category

• Rewrite of the ProvDAL section in Section 5.1.

• Moved the figure showing relations between Provenance.Agent and
Dataset.Party into Section 3.

• Added serialisation examples to Section 4, voprov-implementation ex-
ample to Section 6.

• Use voprov:type and voprov:role in Table 11 with example agent roles,
i.e. replaced prov:person by Individual and prov:organization by Or-
ganization.

• Removed the obscore/dataset attributes from EntityDescription, since
they are specific for observations only and are not applicable to con-
figuration entities etc.

• Renamed label attribute to name everywhere, for more consistency
with SimDM naming scheme (label is reserved there for SKOS labels).

55

• Extended the entity role examples in table 6.

• Renamed attribute Entity.access to Entity.rights for more consistency
with DatasetDM etc.

• Moved detailed implementation section from appendix to a separate
document (implementation note), shortened the use cases & imple-
mentation section.

• More explanations on links to data models in Section 3.

• Introduced subsections for Section 3, added table with SimDM-links.

• Renamed docuLink to doculink

• Avoid double-meaning of description (as reference and free-text de-
scription) by renaming the free-text description to annotation. No
need for an additional description-attribute for reference to the corre-
sponding description class, since it’s expressed by the corresponding
link in the model anyway.

• Applied similar naming scheme to Parameter and ParameterDescrip-
tion-classes

• Renamed Section 6 to stress that it deals with implementations.

• Added links to provn and votable-serialization for HiPS-use case,
added first part of provn as example in the HiPS-use case section.

• Corrected attribute names in Table 12.

References
Belhajjame, K., B’Far, R., Cheney, J., Coppens, S., Cresswell, S., Gil, Y.,
Groth, P., Klyne, G., Lebo, T., McCusker, J., Miles, S., Myers, J., Sahoo,
S. and Tilmes, C. (2013), ‘PROV-DM: The prov data model’, W3C Rec-
ommendation.
http://www.w3.org/TR/prov-dm/

Bonnarel, F., Laurino, O., Lemson, G., Louys, M., Rots, A., Tody, D. and
the IVOA Data Model Working Group (2015), ‘IVOA dataset metadata
model’, IVOA Working draft.
http://www.ivoa.net/documents/DatasetDM/

Bonnarel, F. and the IVOA Data Model Working Group (2016), ‘Prove-
nance data model legacy’, Webpage.
http://wiki.ivoa.net/twiki/bin/view/IVOA/
ProvenanceDataModelLegacy

56

http://www.w3.org/TR/prov-dm/
http://www.ivoa.net/documents/DatasetDM/
http://wiki.ivoa.net/twiki/bin/view/IVOA/ProvenanceDataModelLegacy
http://wiki.ivoa.net/twiki/bin/view/IVOA/ProvenanceDataModelLegacy

Bradner, S. (1997), ‘Key words for use in RFCs to indicate requirement
levels’, RFC 2119.
http://www.ietf.org/rfc/rfc2119.txt

Dowler, P., Bonnarel, F., Michel, L. and Demleitner, M. (2015), ‘IVOA
datalink’, IVOA Recommendation 17 June 2015.
http://www.ivoa.net/documents/DataLink/

Dowler, P., Demleitner, M., Taylor, M. and Tody, D. (2013), ‘Data access
layer interface, version 1.0’, IVOA Recommendation.
http://www.ivoa.net/documents/DALI/20131129/

Hanisch, R., the IVOA Resource Registry Working Group and the NVO
Metadata Working Group (2007), ‘Resource metadata for the virtual ob-
servatory, version 1.12’, IVOA Recommendation.
http://www.ivoa.net/documents/latest/RM.html

IVOA Data Model Working Group (2005), ‘Data model for observation,
version 1.00’, IVOA Note.
http://www.ivoa.net/documents/latest/DMObs.html

IVOA Data Model Working Group (2008), ‘Data model for astronomical
dataset characterisation, version 1.13’, IVOA Recommendation.
http://www.ivoa.net/documents/latest/CharacterisationDM.html

Lemson, G., Wozniak, H., Bourges, L., Cervino, M., Gheller, C., Gray,
N., LePetit, F., Louys, M., Ooghe, B. and Wagner, R. (2012), ‘Simu-
lation Data Model Version 1.0’, IVOA Recommendation 03 May 2012,
arXiv:1402.4744.
http://adsabs.harvard.edu/abs/2012ivoa.spec.0503L

McDowell, J., Salgado, J., Blanco, C. R., Osuna, P., Tody, D., Solano,
E., Mazzarella, J., D’Abrusco, R., Louys, M., Budavari, T., Dolensky,
M., Kamp, I., McCusker, K., Protopapas, P., Rots, A., Thompson, R.,
Valdes, F., Skoda, P., Rino, B., Cant, J., Laurino, O., the IVOA Data
Access Layer and Groups, D. M. W. (2016), ‘Ivoa spectral data model,
version 2.0’, IVOA Draft.
http://www.ivoa.net/documents/SpectralDM/

Moreau, L., Clifford, B., Freire, J., Futrelle, J., Gil, Y., Groth, P., Kwas-
nikowska, N., Miles, S., Missier, P., Myers, J., Plale, B., Simmhan, Y.,
Stephan, E. and den Bussche, J. V. (2010), ‘The open provenance model
core specification (v1.1)’, Future Generation Computer Systems, 27, (6),
743-756. (doi:10.1016/j.future.2010.07.005), University of Southampton.
http://openprovenance.org/;http://eprints.soton.ac.uk/
271449/

57

http://www.ietf.org/rfc/rfc2119.txt
http://www.ivoa.net/documents/DataLink/
http://www.ivoa.net/documents/DALI/20131129/
http://www.ivoa.net/documents/latest/RM.html
http://www.ivoa.net/documents/latest/DMObs.html
http://www.ivoa.net/documents/latest/CharacterisationDM.html
http://adsabs.harvard.edu/abs/2012ivoa.spec.0503L
http://www.ivoa.net/documents/SpectralDM/
http://openprovenance.org/; http://eprints.soton.ac.uk/271449/
http://openprovenance.org/; http://eprints.soton.ac.uk/271449/

Ochsenbein, F., Williams, R., Davenhall, C., Demleitner, M., Durand, D.,
Fernique, P., Giaretta, D., Hanisch, R., McGlynn, T., Szalay, A., Taylor,
M. and Wicenec, A. (2013), ‘Votable format definition, version 1.3’, IVOA
Recommendation.
http://www.ivoa.net/documents/VOTable/

Riebe, K., Servillat, M., Bonnarel, F., Louys, M., Sanguillon, M. and the
IVOA Data Model Working Group (2017), ‘Provenance implementation
note’, IVOA Note.
http://volute.g-vo.org/svn/trunk/projects/dm/provenance/
implementation-note/

58

http://www.ivoa.net/documents/VOTable/
http://volute.g-vo.org/svn/trunk/projects/dm/provenance/implementation-note/
http://volute.g-vo.org/svn/trunk/projects/dm/provenance/implementation-note/

	Introduction
	Goal of the provenance model
	Minimum requirements for provenance
	Role within the VO architecture
	Previous efforts

	The provenance data model
	Overview: Conceptional UML class diagram and introduction to core classes
	Model description
	Class diagram and VO-DML compatibility
	Entity and EntityDescription
	Collection
	Activity and ActivityDescription
	ActivityFlow
	Entity-Activity relations
	Parameters
	Agent

	Links to other data models
	Links with Dataset/Obscore Model
	Links with Simulation Data Model

	Provenance Data Model serialization
	Serializing of the datamodel core
	Serialization of description classes

	Accessing provenance information
	Access protocols
	ProvDAL
	ProvDAL example use cases

	ProvTAP
	VOSI availability and capabilities

	Use cases – applying the data model
	How to use the data model
	voprov Python package
	Graphic formats

	Provenance of RAVE database tables (DR4)
	Provenance for CTA
	POLLUX database
	HiPS use case
	Lightcurves use case

	Appendix A : Serialisation Examples
	Appendix B : Discussion
	Links, ids
	Description classes
	ActivityFlow and viewLevel

	Appendix C: Changes from Previous Versions
	Changes from WD-ProvenanceDM-1.0-20161121

