
1

 International

 Virtual

 Observatory

Alliance

VO-DML: a consistent modelling language
for IVOA data models

Version 1.0-20140129

Working Draft 2014 January 29

This version:
 0.x-20140129
Latest version:
0.x-20130510
Previous version(s):

Editors:
 Gerard Lemson
 Laurent Bourgès
Omar Laurino

Authors:
UTYPE-s tiger team+Laurent Bourges

Abstract

We propose that data models in the IVOA should be defined using a consistent
and standardized modelling language, or meta-model. Having such a uniform
language for all models allows these models to be used in a homogeneous
manner and allows a consistent definition of reuse of one model by another.
Moreover it allows us to add a consistent identification mechanism of
components in the model so that these can be referenced in an explicit and

2

uniform manner. The latter is the requirement for annotating elements in data
serializations with elements of a data model that they represent, often referred to
as UTYPE-s in the IVOA.
In this WD we propose such a language, which we name VO-DML (VO Data
Modelling Language). VO-DML is a conceptual modelling language that is
agnostic of serializations or physical representations. This allows it to be
designed to fit as many purposes as possible. VO-DML can be considered as a
subset of UML, more precisely as a particular representation of a UML2 Profile
[TBD ref]. From UML it only uses elements form its language for describing
"Class Diagrams".
VO-DML has a representation as an XML dialect which we refer to as VO-
DML/XML; indeed it was originally conceived as a simplified representation of
UMLs XML serialization language, XMI. That language must express all of UML
and hence is very verbose, implicit and hard to use. VO-DML is restricted to
describing static data structures and VO-DML/XML aims to be concise, explicit
and easy to use in code that needs to interpret annotated data sets. An earlier
version of VO-DML has been used extensively in the Simulation Data Model
effort1, and greatly simplified the creation of derived representations from the
core model.
Arguably the most important use case for VO-DML is the UTYPE specification
[Schematron] http://www.schematron.com/

[1]. [SIMDM] http://www.ivoa.net/documents/SimDM/index.html
[UTYPES] which uses it to provide a translational semantics for VOTable
annotations. These annotations allow one to explicitly describe how instances of
types from a data model are stored in the VOTable.
VO-DML as described in this document is an example of a domain specific
modelling language, where the domain is here defined as the set of data and
meta-data structures handled in the IVOA and Astronomy at large.
VO-DML provides a custom representation of such a language, which has
however concepts in common with most other meta-model. In the appendixes we
will provide some explicit links between the concepts.

Status of This Document

This is an IVOA Working Draft for review by IVOA members and other interested
parties. It is a draft document and may be updated, replaced, or obsoleted by
other documents at any time. It is inappropriate to use IVOA Working Drafts as

reference materials or to cite them as other than “work in progress”.

A list of current IVOA Recommendations and other technical documents can be

found at http://www.ivoa.net/Documents/.

1
 The language was developed mainly in the VO-URP project (https://code.google.com/p/vo-urp/)

and was formally defined in its intermediateModel.xsd document
(http://ivoa.net/Documents/SimDM/20120503/uml/intermediateModel.xsd).

http://www.ivoa.net/Documents/
https://code.google.com/p/vo-urp/

3

4

Contents

VO-DML: a consistent modelling language for IVOA data models 1

1 Background and motivation 5

2 VO-DML, VO-UML, VO-DML/Schema and VO-DML/XML 7

2.1 VO-DML + VO-UML 8

2.2 VO-DML/XML + VO-DML/Schema 8

2.3 Other representations 9

3 Modeling Concepts and Serialization Language 9

3.1 Model 10

3.1.1 name : string [1] 13
3.1.2 description : string [0..1] 13
3.1.3 title : string [0..1] 13
3.1.4 author: string[0..*] 13
3.1.5 version : string [1] 13
3.1.6 previousVersion : anyURI [0..1] 13
3.1.7 lastModified: dateTime [1] 13
3.1.8 import : ModelProxy [0..*] 14
3.1.9 package : Package [0..*] 14
3.1.10 objectType : ObjectType [0..*] 14
3.1.11 dataType : DataType [0..*] 14
3.1.12 enumeration : Enumeration [0..*] 14
3.1.13 primitiveType : PrimitiveType [0..*] 14

3.2 ModelProxy 15

3.2.1 name : string [1] 16
3.2.2 ivoId : anyURI [0..1] 16
3.2.3 url : anyURL [1] 16
3.2.4 documentationURL : anyURI [1] 16

3.3 ReferencableElement 16

3.3.1 ReferencableElement.vodml-id : ElementID [1] 18
3.3.2 ReferencableElement.name : string [1] 18
3.3.3 ReferencableElement.description : string [0..1] 18

3.4 ElementRef 18

3.4.1 ElementRef.utype : UTYPE [1] 19
3.5 Package extends ReferencableElement 19

3.5.1 objectType : ObjectType[] [0..*] 20
3.5.2 dataType : DataType[] [0..*] 20

3.5.3 primitiveType : PrimitiveType[] [0..*] 20
3.5.4 enumeration : Enumeration[] [0..*] 20

3.5.5 package : Package[] [0..*] 20
3.6 Type extends ReferencableElement 21

3.6.1 Inheritance 21
3.7 ValueType extends Type 22

3.8 PrimitiveType extends ValueType 22

3.9 Enumeration extends ValueType 23

3.9.1 Literal 24
3.10 DataType extends ValueType 25

3.10.1 attribute: Attribute[] [0..*] 26

5

3.10.2 reference: Reference[] [0..*] 26
3.11 ObjectType extends ValueType 26

3.11.1 container: Container[] [0..1] 28

3.11.2 attribute: Attribute[] [0..*] 28
3.11.3 collection: Collection[] [0..*] 28

3.11.4 reference: Reference[] [0..*] 28
3.12 Role extends ReferencableElement 28

3.12.1 datatype : ElementRef 29
3.12.2 multiplicity : Multiplicity 29
3.12.3 subsets: ElementRef 29

3.13 Attribute extends Role 29

3.13.1 constraints : Constraints [0..1] 30
3.13.2 skosconcept: SKOSConcept [0..1] 31

3.14 Constraints 31

3.14.1 minLength : integer 31
3.14.2 maxLength : integer 31
3.14.3 length : integer 31
3.14.4 uniqueGlobally: boolean 31
3.14.5 uniqueInCollection : boolean 31
3.14.6 complexConstraint: ConstraintExpression 31

3.15 ConstraintExpression 32

3.15.1 expression: string 32
3.15.2 language: string 32

3.16 Relation extends Role 32

3.17 Collection extends Relation 32

3.18 Reference extends Relation 34

3.19 Multiplicity 35

4 Rules on defining data models in the IVOA 37

4.1 Procedure 37

5 References 38

Appendix A Relation to UML 39

Appendix B Mapping to serialization meta-models 41

Appendix C vodml-id generation rules 42

Appendix D Example Source data model 42

1 Introduction Background and motivation
TBD new intro

Data models in the IVOA have a particular goal, namely to facilitate
interoperability. In particular they should provide a common language to interpret
and understand data sets that are published online and allow one to explain the
contents of serialized data sets that are used to interchange information.
The form(at) and contents of these data sets are generally not explicitly known;
they have generally been created to serve the purposes of the entity/organization
that owns them. The owners of the data may be willing to describe their data

6

holdings in some standardized form (e.g. TAP), or send their data over the net in
some standardized serialization format (e.g. VOTable), but may be unwilling or
unable to change the structural design of the data holdings or the contents of the
serializations to conform to some model. They may however be able to provide
annotations to explain the contents of the data sets they expose.
The IVOA has one standardized way to provide such annotation, namely UCDs.
These allow one to annotate data elements with some concept from a simple
semantic vocabulary. UTYPEs were supposed to add to this ability by allowing
one to identify data structures with elements defined in some data model. A
simple interpretation of this was however not available, mainly due to a lack of
understanding of the target of these UTYPE pointers.

Here we describe a language for expressing data models that is tailored to
provide a target for such annotations and that can provide a consistent,
translational semantics to the annotated elements.

This document contains a specification for a data modeling language, or meta-
model, that all formal data models defined in the IVOA should follow. It consists
of a conceptual part and a serialization language. The latter provides an XML
format and this specification states that all data models in the IVOA MUST have
a representation in that format.
The conceptual part of the spec goes by the name of VO-DML, short for VO Data
Modeling Language. The serialization language goes by the name of VO-
DML/Schema and an XML document conforming to this standard defines a data
model, and is referred to as the VO-DML/XML representation of that data model.
We also describe a UML Profile [REF] that represents the VO-DML concepts in
UML and allows one to provide a graphical representation of each model. This is
referred to as VO-UML, but is informative, not a normative part of the spec.
These 4 different representations will be discussed and used in the rest of this
document.
Here we focus on the motivation for this proposal.
This document finds its origin in the efforts of the UTYPEs tiger team. During the
deliberations and analysis of the problem it was charged with, it was concluded
that an important ingredient to its resolution was to put the IVOA data modeling
on a firmer and more formal basis. In particular it became clear that to interpret
utypes, one need to make data models first class citizens in a sense we will now
describe.
Most data models in the IVOA had been designed in an ad hoc fashion, with the
precise specification of a data model left to each individual effort. Generally the
most formal result was a serialization format for instances of the data model. This
could be in the form of an XML schema, or a VOTable dialect, or a
TAP_SCHEMA defining the storage of instances in a relational database. Even
when using a common format such as XSD, thanks to the large redundancy of
concepts in that language, there was a large variety of ways by which different
models were expressed.

7

Such heterogeneity is a problem for a specification of utypes, which were
supposed to be a "pointer into a data model" that can be used by code to infer
information about data serialized in some general manner. Though a syntax for
utypes was proposed at some point [REF to early utypes doc], in contrast to the
original source of the grammar [REF to SimDM], there was no formal language
provided that gave meaning to the components in the grammar.
I.e. there was no formal understanding of what precisely a utype used in some
meta-data annotation could point at, preventing a possible understanding of what
such an annotation might mean.
The approach pioneered in the SimDM effort however did offer such an
interpretation. It was based on a formal data modeling language. This language,
derived from UML, defines some core modeling concepts that can be mapped to
all serializations, and provides a common representation to interpret these. It is
implementation neutral and included explicit identifiers to the various data
modeling elements. These can serve as the targets of the pointers that utypes
were supposed to be.
The so called UTYPEs mapping document [UTYPE] works out this mapping in
great detail and provides constraints and semantics to such mappings. The
current document provides the definition of the meta-model itself.
One important further benefit of the particular proposal is that it explicitly and
naturally allows the possibility of model reuse. I.e. the efforts of one modeling
effort can be easily reused in that of another, even though the final goal of one
might be the creation of an XML serialization format, and the other a relational
data model. The actual derivation of these representations can in principle be
fully automated as the VO-URP2 effort has shown. That project was a side result
of the SimDM effort and provides a generation pipeline deriving RDB, XSD,
JAVA and HTML representations of a model represented in an earlier version of
VO-DML/XML.
VO-URP showed that it is possible from such a specification alone - one that
could be hand written without undue problems, to generate a (web) service that
allows access to a TAP compatible database automatically created from the
model, which can ingest and deliver XML representations of the stored objects
that follow the standard XML Schema representation.

2 VO-DML, VO-UML, VO-DML/Schema and
VO-DML/XML

In this specification we distinguish between the conceptual meta-model, VO-DML
and the XML based serialization language for expressing data models, which we
refer to as VO-DML/XML. The latter is defined using an XML schema together
with a Schematron3 file which we denote together as VO-DML/Schema. The
relation between VO-DML and VO-DML/XML is equivalent to the relation

2
 https://code.google.com/p/vo-urp/)

3
 http://www.schematron.com/

https://code.google.com/p/vo-urp/

8

between a UML [5] (see also [10]) model and its representation as file in the XML
serialization format XMI [9]. VO-DML is directly derived from UML, most of its
modelling constructs have a counterpart in UML. One can in fact interpret VO-
DML as a UML Profile4 [10], a domain specific "dialect" of UML. For this reason
we also provide a (non-normative) UML representation of VO-DML, which we
named VO-UML, and which can assist in presenting a model in a form that is
more easily interpreted, and is also the preferred format for "whiteboard"
modelling. In Appendix A we give a table summarizing the relation between the
VO-DML and UML concepts from which they are derived.
We discuss these different components of the specification in the next
subsections.

2.1 VO-DML + VO-UML

VO-DML defines the concepts used to create data models in the IVOA. It uses a
subset of the components from UML Class Diagrams and hence follows an
object-oriented approach, but restricts itself to structure. Operations are explicitly
excluded from our language. Constraints are supported, but in a restricted
manner. The titles of the subsections in section 3 directly refer to these VO-DML
concepts. Inside of each section we describe the concept, show its definition in
VO-DML/Schema and a VO-DML/XML example, and illustrate how one might
express the element in VO-UML. Here we use the implementation of VO-UML in
MagicDraw Community Edition 12.15.
VO-UML has been expressed at least in one UML modeling tool as a UML
profile, using stereotypes with tag definitions to enable modeling of domain
specific components in the graphical tool.
But note, though we use VO-UML for illustrations, and have used it to define
some models, VO-DML is not dependent on UML or any tools for defining
models in UML. VO-DML data models need not have a UML representation, but
they MUST have a serialization in terms of VO-DML/XML (see section 4 for
details on how to define data models). Hence the VO-UML part in this spec is
INFORMATIVE, not NORMATIVE.

2.2 VO-DML/XML + VO-DML/Schema

For most use cases a VO-DML data model must be serialized in a computer
readable format. The serialization language to be used for this is VO-DML/XML.
VO-DML/XML is XML following a formal syntax defined by an XML schema vo-
dml.xsd 6 and further constrained by an associated Schematron fi le, vo-
dml.sch.xml7. These files implement all the concepts described in section 3 . The
schema files are self-documented as much as possible, but here we give a few
details of the overall design, focusing on technical aspects of the implementation.

4
 http://www.uml-diagrams.org/profile-diagrams.html

5
 TBD add text/a link to the profile.

6
 https://volute.googlecode.com/svn/trunk/projects/dm/vo-dml/xsd/vo-dml.xsd

7
 https://volute.googlecode.com/svn/trunk/projects/dm/vo-dml/xsd/vo-dml.sch.xml

https://volute.googlecode.com/svn/trunk/projects/dm/vo-dml/xsd/vo-dml.xsd
https://volute.googlecode.com/svn/trunk/projects/dm/vo-dml/xsd/vo-dml.sch.xml

9

VO-DML/XML is a simple representation of a VO-DML model as an XML
document. This introduction of a custom designed serialization language rather
than using some existing language could be seen as an unnecessary
complication. We could for example also consider using XMI as the standard for
serializing VO-DML models. However, XMI is a rather unwieldy format that hides
many of the features we want to make explicit. Hence as a language from which
to derive information of the model without very sophisticated tools it is ill suited.
Also we do not assume all users have access to a UML modeling tool that can
support all the UML modeling features we need to create VO data models, and
hand editing XMI is nigh impossible. We also foresee that users may want to
derive models from other representations (e.g. XML schema, RDF; see SimTAP
discussions) and XMI as target language for such a tool requires deep
understanding of its format.
We do think VO-DML/XML is a useful language for serializations, in particular
because, being completely under control of the IVOA DM WG, it can be tailored
to the requirements deriving from its usage in the IVOA. We have more freedom
to restrict the format and implement the appropriate constraints. In VO-DML/XML
the format is explicitly and formally defined using XML schema, whilst
Schematron [Schematron] is used for adding further constraints that cannot be
expressed in XML Schema alone8. Hence VO-DML/XML files MUST conform to
an XML schema file (<root-url>/vo-dml.xsd) that defines the structure of valid
serializations, and a Schematron fi le (<root-url>/vo-dml.sch.xml) that defines
additional constraints on its contents. We refer to this implementation of the
modeling language as VO-DML/Schema. VO-DML/Schema is a direct
implementation of the UML profile; it exposes all modeling concepts explicitly,
and ignores the many UML/XMI features that are not needed.
VO-DML/Schema is compared to alternative languages and similar approaches
to designing domain specific modeling languages in Error! Reference source
not found..

2.3 Other representations

In section Appendix Bwe discuss how one might represent VO-DML data models
in application specific formats. These can be considered physical models that
should implement a logical model defined in VO-DML. One special case there
concerns a possible addition to our family, namely something we might call VO-
DML/I, an instantiation format tailored for VO-DML models. This is discussed in
section B.4.

3 Modeling Concepts and Serialization Language
In the following sub-sections we discuss the different components of the meta-
model. We describe their meaning, we indicate where and how they are
implemented in the VO-DML/Schema and we give examples of a VO-DML/XML
serialization. Where appropriate we also provide a representation of the concept

8
 We have chosen to use XML Schema as the core language for VO-DML/XML, as we feel it is

more familiar to the IVOA community.

10

in VO-UML, and provide a link to the UML concept from which it is derived9. The
VO-UML representation is graphical and we have used a particular UML
modeling tool (MagicDraw Community Edition 12.1) to create the images. It may
be that other tools produce a different representation, or are unable to reproduce
some of the concepts10. TBC?
The different child components of the main concepts are described in
subsections headed by corresponding titles. The examples are extracted from a
sample data model that is designed to illustrate most of the modeling
components. It models astronomical sources and is explained in Appendix D. Its
VO-DML/XML representation can be found in the Volute project in GoogleCode 11
[TBD other location?]. The VO-DML/Schema snippets only indicate the start of a
XML schema definition, the full details can be found in the corresponding schema
documents.
Most modeling concepts have a 1-1 relation between the VO-DML, VO-
DML/Schema and VO-UML representation. In the few cases where we have to
treat one of these specially we will indicate this explicitly.
When referring to a VO-DML concept we will use boldface. When referring to an

XML schema implementation of a concept we will use courier font. When
referring to a UML concept we will use italics. When defining VO-UML examples,
we have used screenshots obtained from MagicDraw12 Community Edition 12.1,
which supports UML 2.013, serializing its models to XMI 2.114.

3.1 Model

A (data) model represents a coherent set of type definitions, by which it
represents the concepts that have an explicit place in its universe of discourse,
i.e. which concepts one can talk/"discourse" about. Each data model is generally
represented by a single document. Model is an explicit concept in VO-DML and
its representations, for we need to be able to refer to models explicitly in the
language.

VO-UML
In a UML diagram the Model is represented by a complete XMI document, with
the element representing it showing up in the root of the model. The VO-UML
profile contains a <<model>> stereotype which defines tags which allow one to

9
 We use the very useful site http://www.uml-diagrams.org/ for the links. TBD whether they should

go to formal specification.
10

 It should once more be made clear that the current spec does not mandate the use of some
particular UML modelling tool. But a UML representation different from VO-UML MUST NOT be

used to define an IVOA data model without an explicit mapping to VO-DML. It would in fact be a
useful exercise to provide UML Profiles or something akin to that for representing VO-UML in
more tools.
11

 https://volute.googlecode.com/svn/trunk/projects/dm/vo-dml/models/source/SourceDM.vo-
dml.xml
12

 http://www.nomagic.com/products/magicdraw.html, edition CE 12.1 is no longer available

online.
13

 http://schema.omg.org/spec/UML/2.0
14

 http://schema.omg.org/spec/XMI/2.1

http://www.uml-diagrams.org/
http://www.nomagic.com/products/magicdraw.html

11

define extra metadata about the model and which correspond to the metadata
elements defined in the subsections below.

Figure 1 Root of a UML document defining the example model, SourceDM. Note the use of
the IVOA_UML_PROFILE with its various stereotype definitions. In particular <<model>>
defines various tags corresponding to the meta data elements for a Model.

The tags can be given values as shown in the following example:

12

VO-DML/Schema

In VO-DML/Schema Model is represented by a complexType Model, containing
definitions for meta-data elements and collections of type definitions, possibly
distributed over packages. Model is furthermore represented by the single root

element defined in the schema, named model. This has type Model and has a
uniqueness constraint defined on the vodml-id-s of all its contained elements.

<xsd:complexType name="Model">

 <xsd:sequence>

 <xsd:element name="name" type="xsd:string" minOccurs="1"/>

 <xsd:element name="description" type="xsd:string"

 minOccurs="0"/>

...

 </xsd:sequence>

</xsd:complexType>

<xsd:element name="model" type="Model">

 <xsd:unique name="unique_ids">

 <xsd:selector xpath=".//vodml-id" />

 <xsd:field xpath="." />

 </xsd:unique>

13

</xsd:element>

VO-DML/XML

 <vo-dml:model

 xmlns:vo-dml="http://volute.googlecode.com/dm/vo-dml/v0.9">

 <name>SourceDM</name>

 <description>This is a sample data model. ...

 </description>

 <title>Sample VO-DML data model.</title>

 <namespaceURI>

 http://www.ivoa.net/vo-dml/models/SourceDM#

 </namespaceURI>

 <version>0.x</version>

 <lastModified>2013-05-04T19:24:52</lastModified>

...

Model has the following components, which have a 1-1 correspondence in the
VO-DML/Schema. See there for more extensive comments.

3.1.1 name : string [1]
The (short) name of the model. The UTYPE specification uses this name as the
prefix for all references into the model and hence certain constraints are put on
its definition. Furthermore the name should be unique within the IVOA context15.
The same rule applies also for references inside of the model, generally using
the <utype> element. I.e. also when assigning for example a datatype from inside
the current model to an attribute or other Role, the name of the model MUST be
used as prefix.

3.1.2 description : string [0..1]
A human readable description of the model.

3.1.3 title : string [0..1]
Formal, long, title of this data model.

3.1.4 author: string[0..*]
List of names of authors who have contributed to this model.

3.1.5 version : string [1]
Label indicating the version of this model.

3.1.6 previousVersion : anyURI [0..1]
URI identifying a VO-DML model that is the version from which the current
version of model is derived.

3.1.7 lastModified: dateTime [1]
Timestamp when the last change to the current model was mad.

15

 Might this be renegotiated in on-going discussions and review process?

http://www.ivoa.net/vo-dml/models/SourceDM

14

3.1.8 import : ModelProxy [0..*]
An 'import' element indicates a dependency on an external, predefined VO-DML
data model. Types from that model may be used for referencing, extension and
assignment to attributes. Types from the external model MUST NOT be used for
composition relationships.

VO-DML/XML
<vo-dml:model>

...

 <import>

 <name>PhotDM-alt</name>

 <url>https://volute.googlecode.com/svn/trunk/projects/dm/vo-

dml/models/photdm-alt/PhotDM-alt.vo-dml.xml</url>

 <prefix>photdm-alt</prefix>

<documentationURL>https://volute.googlecode.com/svn/trunk/projects/dm/v

o-dml/models/photdm/PhotDM.html</documentationURL>

 </import>

...

3.1.9 package : Package [0..*]
A Model can distribute its type definitions over packages. This provides for name
spacing options, allowing multiple types with the same name.

VO-DML/XML
<vo-dml:model>

...

 <package>

 <vodml-id>source/</vodml-id>

 <name>source</name>

...

3.1.10 objectType : ObjectType [0..*]
Collection of ObjectType-s defined directly under the model. In many IVOA data
models packages have not been explicitly defined. Instead types were defined
directly under the model. In this meta-model we support this as well by adding
collections for each of the different “types of types”.

3.1.11 dataType : DataType [0..*]
Collection of DataType-s defined directly under the model.

3.1.12 enumeration : Enumeration [0..*]
Collection of Enumeration-s defined directly under the model.

3.1.13 primitiveType : PrimitiveType [0..*]
Collection of PrimitiveType-s defined directly under the model.

15

3.2 ModelProxy

A Model can import another model. This implies generally that elements of the
external model are used in the definition of elements in the current model. The
external model must be represented by a ModelProxy. This "proxy" provides
metadata allowing one to access the remote model and its documentation, as
well as a prefix that must be used when referring to elements in the remote
model.

VO-UML
A ModelProxy is represented by a child Model element with special stereotype
<<modelimport>>. Graphically and possibly some contained type proxies. The
latter MUST define a value for the 'vodml-id' tag.

Figure 2 Stereotype definition for <<modelimport>>.

Figure 3 Graphical representation of an imported model. Note the usage of the
stereotype <<modelimport>> and the values assigned to the various tags. Also
shown is a type imported with the model. It must have an explicit vodml-id
assigned, which is accomplished using the <modelelement>> stereotype (see 3.3
).

VO-DML/Schema
<xsd:complexType name="ModelProxy">

 <xsd:sequence>

 <xsd:element name="name" type="xsd:string" minOccurs="0"/>

 <xsd:element name="ivoId" type="xsd:anyURI" minOccurs="0"/>

 <xsd:element name="url" type="xsd:anyURI" />

 <xsd:element name="prefix" type="ModelPrefix" />

 <xsd:element name="documentationURL" type="xsd:anyURI" />

 </xsd:sequence>

16

 </xsd:complexType>

VO-DML/XML
 <import>

 <name>PhotDM-alt</name>

 <url>

 https://volute.googlecode.com/svn/trunk/projects/dm/vo-

dml/models/photdm-alt/PhotDM-alt.vo-dml.xml

 </url>

 <prefix>photdm-alt</prefix>

 <documentationURL>

https://volute.googlecode.com/svn/trunk/projects/dm/vo-

dml/models/photdm/PhotDM.html

 </documentationURL>

 </import>

3.2.1 name : string [1]
Name by which imported model is used in the current model and its
documentation. This name MUST be the same as the 'name' given to the
imported model in the VO-DML document from which it is imported. All utypes
pointing to elements in the imported model MUST use this name as prefix.

3.2.2 ivoId : anyURI [0..1]
IVO Identifier of the imported model if that exists, i.e. if that has been registered
in an IVOA Registry.

3.2.3 url : anyURL [1]
URL from which the imported VO-DML model document can be downloaded.

3.2.4 documentationURL : anyURI [1]
URL where a documentation HTML file for the remote model can be downloaded.
This SHOULD be a document that contains anchors for each element that has as
name attribute the vodml-id of that element. I.e. it is assumed that the vodml-id-s
of the imported types can be added onto this documentationURL (should end
with a #?) so that a direct link to the documentation for a referenced data model
element can be found.

3.3 ReferencableElement
16

A data model consists of model elements of various types. In the VO-DML/XML
serialization almost all of these must have an explicit identifier element that
makes it possible for them to be explicitly referenced, either from inside the

16

 TODO Arnold Rots argues this type should be renamed. To ReferrableElement or at least
ReferenceableElement.

https://volute.googlecode.com/svn/trunk/projects/dm/vo-dml/models/photdm-alt/PhotDM-alt.vo-dml.xml
https://volute.googlecode.com/svn/trunk/projects/dm/vo-dml/models/photdm-alt/PhotDM-alt.vo-dml.xml
https://volute.googlecode.com/svn/trunk/projects/dm/vo-dml/models/photdm/PhotDM.html
https://volute.googlecode.com/svn/trunk/projects/dm/vo-dml/models/photdm/PhotDM.html

17

model, or from an external context. VO-DML/Schema defines the abstract type
ReferencableElement that is a super type of all types representing such
referencable concepts support. It contains an identifier element named <vodml-
id> which must be unique within the model.

All referencable elements also have a name, and a description. The name MAY
be used in standard approaches to deriving the vodml-id from the structure of the
model. But this is not obligatory. The name must often be unique in many
contexts in which a referencable element is defined. For example all types
defined as direct children inside of a package must have a name which is unique
in the context of that package. Similarly attributes must be unique in the definition
of the type they are defined in, and this must even be true for the whole collection
of roles in the inheritance hierarchy of the type.

VO-UML
This type is partially represented in VO-UML by the <<modelelement>>
stereotype. That stereotype defines a tag 'vodml-id'. When assigning the
stereotype to a particular model element allows one to define an explicit value fo
the vodml-id of the element, rather than the default value that would be assigned
by some UM modeling tool or could be generated by the VO-UML itself using a
grammar like used in SimDM [SimDM] and described in Appendix Cbelow.
Note that in particular types partially defined on an imported model MUST be
assigned the vodml-id they have in their model as defined by its formal VO-
DML/XML representation.

VO-DML/Schema

All main modeling elements in the VO-DMl XSD (apart from Model) extend

ReferencableElement. This abstract base class has an identifier element

<vodml-id>, the value of which must be unique in the model. This means that
these elements can be referenced using this identifier. In VO-DML this is used

explicitly in the ElementRef type that expresses such references inside the

meta-model using a <utype> element. The type definitions for vodml-id and
utype are restricted strings, the details of which are TBD.

<xsd:simpleType name="ElementID" >

 <xsd:restriction base="xsd:string">

 <xsd:pattern value="[\w\./_*]+"/>

 </xsd:restriction>

</xsd:simpleType>

<xsd:complexType name="ReferencableElement" abstract="true">

 <xsd:sequence>

 <xsd:element name="vodml-id" type="ElementID" minOccurs="1"/>

18

 <xsd:element name="name" type="xsd:string" minOccurs="1"/>

 <xsd:element name="description" type="string" minOccurs="0"/>

 </xsd:sequence>

</xsd:complexType>

VO-DML/XML
TODO

3.3.1 ReferencableElement.vodml-id : ElementID [1]
Identifier for the containing element. The type ElementID defines the syntax of
the vodml-id as shown in the VO-DML/XSD snippet above.

3.3.2 ReferencableElement.name : string [1]
The name of the model element. May be restricted with uniqueness constraints in
subclasses of ReferenceableElement.

3.3.3 ReferencableElement.description : string [0..1]
Human readable description of the model element. Note the multiplicity
constraints. In principle every model element SHOULD have a meaningful
description, but no tool will be able to check that a description is correct. Since a
meaningless string can easily be provided if one wants to evade a possible not
null constraint, we simply allow the description to be empty.

3.4 ElementRef

To refer to a ReferencableElement from inside a model, for example to indicate
the data type of an attribute or other role, one must use an ElementRef. This
contains a single element named <utype>, the value of which must be the vodml-
id of the referenced element, prefixed by the name of the model the
ReferencedElemtn belongs to. This can be the same model as the referencing
element, or a model imported by that element's model. We use the name 'utype'
as also the value of UTYPE-s in other IVOA data formats must use this same
syntax [UTYPE].

VO-UML
This type is not explicitly represented in VO-UML. But any usage of one type by
another, be it as dataty[pe of an attribute, as target type of a relation, will give
rise to an ElementRef definition in the corresponding VO-DML/XML.

VO-DML/Schema
<xsd:simpleType name="UTYPE">

 <xsd:restriction base="xsd:string">

 <xsd:pattern value="[\w_-]+:[\w\./_*]+" />

 </xsd:restriction>

</xsd:simpleType>

 <xsd:complexType name="ElementRef">

 <xsd:sequence>

 <xsd:element name="utype" type="UTYPE">

 </xsd:element>

 </xsd:sequence>

19

 </xsd:complexType>

3.4.1 ElementRef.utype : UTYPE [1]
The element identifying the referenced target element. The syntax of the utype
consists of the name of the model, a ': ' and the vodml-id of the referenced
element. In mock BNF:
<utype> :== <model-name> ':' <vodml-id>

3.5 Package extends ReferencableElement

Packages divide the set of types in a model in subsets, providing these with a
common namespace. Their names must be unique in this context only. A
package may contain child packages.
This concept is equivalent to the UML Package and similar to an XML namespace

or a Java package.

VO-UML
In VO-UML a Package is represented by the UML Package element, shown in
the diagram as the purple, tabbed rectangle. Types owned by the package may
be shown inside the symbol, or the package name may be placed within
parentheses below the name of the type. As shown by the Source type in the
diagram.

VO-DML/Schema

20

In VO-DML/Schema, Package is represented by a complexType of the same

name and extends ReferencableElement.
<xsd:complexType name="Package">

 <xsd:complexContent>

 <xsd:extension base="ReferencableElement">

 <xsd:sequence>

 <xsd:element name="objectType" type="ObjectType" minOccurs="0"

 maxOccurs="unbounded"/>

 <xsd:element name="dataType" type="DataType" minOccurs="0"

 maxOccurs="unbounded"/>

 <xsd:element name="enumeration" type="Enumeration"

 minOccurs="0" maxOccurs="unbounded"/>

 <xsd:element name="primitiveType" type="PrimitiveType"

 minOccurs="0" maxOccurs="unbounded"/>

 <xsd:element name="package" type="Package" minOccurs="0"

 maxOccurs="unbounded"/>

...

</xsd:complexType>

VO-DML/XML
<package>

 <vodml-id>source</vodml-id>

 <name>source</name>

 <description>...</description>

 <objectType>

 <vodml-id>source.LuminosityMeasurement</vodml-id>

 <name> LuminosityMeasurement</name>

...

A package has separate collections for each of the type classes. This avoids the
need for xsi:type casting in serializations and facilitates tracing path expressions.

3.5.1 objectType : ObjectType[] [0..*]
Collection of ObjectTypes defined in this package.

3.5.2 dataType : DataType[] [0..*]
Collection of DataTypes defined in this package.

3.5.3 primitiveType : PrimitiveType[] [0..*]
Collection of PrimitiveTypes defined in this package.

3.5.4 enumeration : Enumeration[] [0..*]
Collection of Enumerations defined in this package.

3.5.5 package : Package[] [0..*]
Collection of child packages defined in this package.

21

3.6 Type extends ReferencableElement

The goal of a VO-DML data model is to define Types. A type expresses a
particular concept in a formal, machine usable manner. Its definition in a data
model expresses that that concept is important in the universe of discourse
covered/defined by the data model. It makes the concept part of the formal
vocabulary defined by the model. It classifies "instances"/"objects"/"values" in the
world into groups defined by common properties and meaning. Every instance
"worth talking about" "has a"/"is declared to have a" type. Every instance has
exactly one type, though due to inheritance an instance is also an instance of any
super type of the declared type.

VO-DML/Schema

An abstract complexType named Type is introduced that is the super type of all

more concrete type definitions. It extends ReferencableElement, hence all

type definitions can be referenced and MUST have a <vodml-id> element.
Types may be abstract, in which case no instances can be produced (similar to

for example abstract classes in Java. They may also extend another type,
which will be referred to as the super type. The super type is identified by a

utype.

 <xsd:complexType name="Type" abstract="true">

 <xsd:complexContent>

 <xsd:extension base="ReferencableElement">

 <xsd:sequence>

 <xsd:element name="extends" type="ElementRef" minOccurs="0"/>

 </xsd:sequence>
 <xsd:attribute name="abstract" type="xsd:boolean"

 default="false" use="optional" />

 </xsd:extension>

 </xsd:complexContent>

 </xsd:complexType>

3.6.1 Inheritance
Indicates the typical “is a” relation between the sub-type and its super-type (the
one pointed at). It implies that every object that is an instance of the subtype, is
also an instance of the supertype. In VO-DML we do not support multiple
inheritances. Furthermore ObjectTypes extend ObjectTypes, DataTypes extend
DataTypes etc.
This concept corresponds to UML's Generalization. When comparing to UML

VO-UML
Inheritance relationship is represented by a UML generalization arrow from
subtype to super type. The arrow head is an unfilled triangle.

22

VO-DML/XML
 <objectType>

 <vodml-id>source/Source</vodml-id>

 <name>Source</name>

...

 <extends>

 <utype>src:source/AstroObject</utype>

 </extends>

...

3.7 ValueType extends Type

The most important categorization of Types is that between so called object
types and value types. [TBC find equivalent categorizations: reference type vs
value type, ...] A ValueType represents a simple concept that is used to
describe/define more complex concepts such as ObjectTypes. In contrast to
ObjectTypes, instances of ValueType-s, i.e. values, need not be explicitly
identified. They are identified by their value. For example an integer is a value
type; all instances of the integer value '3' represent the same integer.
The domain of a value type, i.e. its set of valid instance/values, is self-evident
from its definition. Hence also the existence of particular values is self-evident
and therefore needs not to be explicitly stated. Also this is in contrast to the case
of ObjectTypes discussed below.

VO-DML/Schema
 <xsd:complexType name="ValueType" abstract="true">

 <xsd:complexContent>

 <xsd:extension base="Type">

 </xsd:extension>

 </xsd:complexContent>

 </xsd:complexType>

3.8 PrimitiveType extends ValueType

A PrimitiveType represents an atomic piece of data, a value. Examples are the
standard types like integer, Boolean, real, and string (which we treat as an
atomic value, not an array of characters), integer and so on.

23

A primitive type can be an extension of another primitive type, but must then
always be considered a restriction on the possible values of that type.
.

VO-UML
A primitive type is represented by the stereotype <<primitive>> and the name of
the type. If it extends an existing type the description, defining the restriction,
may be represented by text below the type name.

VO-DML/SCHEMA
 <xsd:complexType name="PrimitiveType">

 <xsd:complexContent>

 <xsd:extension base="ValueType">

 </xsd:extension>

 </xsd:complexContent>

 </xsd:complexType>

VO-DML/XML
<primitiveType>

 <vodml-id>quantity/Unit</vodml-id>

 <name>Unit</name>

 <description>

 Must conform to definition of unit in VOUnit spec.

 </description>

 <extends>

 <utype>ivoa:string</utype>

 </extends>

</primitiveType>

3.9 Enumeration extends ValueType

An Enumeration is a PrimitiveType with a finite list of possible values, the
Literals. This list restricts the domain of possible instances of the type which are
to be treated as strings.

VO-UML
An enumeration is represented by the stereotype <<enumeration>> and the
name of the type. Below the name the literals are listed.

24

VO-DML/XSD
 <xsd:complexType name="Enumeration">

 <xsd:complexContent>

 <xsd:extension base="PrimitiveType">

 <xsd:sequence>

 <xsd:element name="literal" type="EnumLiteral"

 maxOccurs="unbounded">

 </xsd:element>

 </xsd:sequence>

 </xsd:extension>

 </xsd:complexContent>

 </xsd:complexType>

VO-DML/XML
 <enumeration>

 <vodml-id>source/SourceClassification</vodml-id>

 <name>SourceClassification</name>

 <literal>

 <vodml-id>source/SourceClassification.star</vodml-id>

 <name>star</name>

 <description>...</description>

 </literal>

 <literal>

 <vodml-id>source/SourceClassification.galaxy</vodml-id>

 <name>galaxy</name>

 <description>...</description>

 </literal>

...

3.9.1 Literal
A Literal is a possible value of an enumerated type. It is a ReferencableElement
and therefore has a vodml-id and a name which represents the value, and can be
annotated with a description.

VO-DML/XSD
 <xsd:complexType name="EnumLiteral">

 <xsd:complexContent>

 <xsd:extension base="ReferencableElement">

 <xsd:sequence>

 </xsd:sequence>

 </xsd:extension>

 </xsd:complexContent>

 </xsd:complexType>

25

3.10 DataType extends ValueType

A DataType is a value type with structure. The structure is generally defined by
attributes on the DataType, and possibly references. The state of instance of a
DataType, i.e. a value, consists of the assignment of values to all the attributes
and references. This is similar to ObjectTypes defined below, but in contrast to
ObjectTypes, DataTypes have no explicit identity. As is the case for the other
ValueTypes, DataType-s are defined by their state only. I.e. two DataType
instances with the same state are the same instance. Instead, ObjectTypes with
the same state but different identity are not the same
For example the DataType Position3D, with attributes x, y and z, is completely
defined by the values of the three attributes. There are no 2 distinct instances of
this DataType with exact same values (x=1.2,y=2.3,z=3.4).
Note, we are adding the ability to add outgoing references to DataType. This
makes certain patterns more reusable. The reference is assumed to provide
reference datawith respect to which the rest of the value should be interpreted.
For example SkyCoordinate may have a reference to a SkyCoordinateFrame to
help interpret the values of the longitude/latitude attributes.
TODO justify making this distinction.

VO-UML
This concept is directly derived for UML's Data Type17. It is represented by a box
with stereotype <<datatype>> and possibly attributes.

VO-UML/Schema
<xsd:complexType name="DataType">

 <xsd:complexContent>

 <xsd:extension base="ValueType">

 <xsd:sequence>

 <xsd:element name="attribute" type="Attribute"

 minOccurs="0" maxOccurs="unbounded"/>

 <xsd:element name="reference" type="Reference"

 minOccurs="0" maxOccurs="unbounded"/>

 </xsd:sequence>

 </xsd:extension>

 </xsd:complexContent>

</xsd:complexType>

17

http://pic.dhe.ibm.com/infocenter/rsarthlp/v8/index.jsp?topic=%2Fcom.ibm.xtools.modeler.doc%2
Ftopics%2Fcdatatypes.html

26

VO-UML/XML
<dataType>

 <vodml-id>source.SkyCoordinate</vodml-id>

 <name>SkyCoordinate</name>

 <description>...</description>

 <attribute>

 <vodml-id>source.SkyCoordinate.longitude</vodml-id>

 <name>longitude</name>

 <description>...</description>

 <datatype>

 <utype>ivoa:quantity.RealQuantity</utype>

 </datatype>

 <multiplicity>1</multiplicity>

 </attribute>

 <attribute>

 <vodml-id>source.SkyCoordinate.latitude</vodml-id>

 <name>latitude</name>

 <description>...</description>

 <datatype>

 <utype>ivoa:quantity.RealQuantity</utype>

 </datatype>

 <multiplicity>1</multiplicity>

 </attribute>

 <reference>

 <vodml-id>source.SkyCoordinate.frame</vodml-id>

 <name>frame</name>

 <description>...</description>

 <datatype>

 <utype>src:source.SkyCoordinateFrame</utype>

 </datatype>

 <multiplicity>1</multiplicity>

 </reference>

</dataType>

3.10.1 attribute: Attribute[] [0..*]
Collection of Attribute definitions.

3.10.2 reference: Reference[] [0..*]
Collection of Reference definitions. A reference on a DataType is assumed to
provide reference data to help interpreting the values of the attributes of the type.

3.11 ObjectType extends ValueType

ObjectTypes are the fundamental building blocks of a data model. An ObjectType
represents a full-fledged concept and is built up from properties and relations to
other ObjectTypes. An important feature of ObjectTypes as opposed to
ValueTypes (see below) is that instances of ObjectTypes, i.e. objects, have their

27

own, explicit identity18. That is, we want to assign an explicit identifier to each
particular usage of this concept, for instance here to distinguish between various
Experiment instances.
Another feature of ObjectType-s is that the existence of certain instances is not
self-evident from their definition [TBD defend/explain usage of self-evident here
and above]. For example the definition of the ObjectType Person does not
mandate that a certain person with name="alice" and age=23 years exists.
Hence it is meaningful to list instances of ObjectType-s explicitly to "announce"
their existence. This is indeed why we have serializations of data models in the
first place, to announce the existence of objects of various types.

VO-UML
An ObjectType is represented in VO-UML by a UML Class, a box with a name
and possibly a stereotype such as <<modelelement>>. An ObjectType may have
attributes and be the source or target of relationships..

VO-DML/Schema
In XSD the ObjectType is represented by a complexType definition

ObjectType that extends Type.
<xsd:complexType name="ObjectType">

 <xsd:complexContent>

 <xsd:extension base="Type">

 <xsd:sequence>

 <xsd:element name="container" type="Container"

 minOccurs="0" maxOccurs="1"/>

 <xsd:element name="attribute" type="Attribute"

 minOccurs="0" maxOccurs="unbounded"/>

 <xsd:element name="collection" type="Collection"

 minOccurs="0" maxOccurs="unbounded"/>

 <xsd:element name="reference" type="Reference"

 minOccurs="0" maxOccurs="unbounded"/>

 </xsd:sequence>

 </xsd:extension>

 </xsd:complexContent>

</xsd:complexType>

VO-DML/XML
<objectType>

 <vodml-id>source.Source</vodml-id>

 <name>Source</name>

 <description>...</description>

 <extends>

18

 This is admittedly a somewhat theoretical but important object-oriented concept.

28

 <utype>src:source.AstroObject</utype>

 </extends>

 <attribute>

 <vodml-id>source.Source.name</vodml-id>

 <name>name</name>

 <description>...</description>

 <datatype>

 <utype>ivoa:string</utype>

 </datatype>

 <multiplicity>1</multiplicity>

 </attribute>

 <attribute>

...

3.11.1 container: Container[] [0..1]
Pointer to the ObjectType that is the parent in a collection of which this
ObjectType is the declared child datatype.
[TBD really redundant, mainly here so a foreign key has something to identify
with. Remove and use vo-dml:ObjectType.CONTAINER instead?]

3.11.2 attribute: Attribute[] [0..*]
Collection of Attribute definitions.

3.11.3 collection: Collection[] [0..*]
Collection of collection definitions.

3.11.4 reference: Reference[] [0..*]
Collection of Reference definitions.

3.12 Role extends ReferencableElement

A Role represents the usage of one type (call it "target") in the definition of
another (type "source"). The "target" type is said to play a role in the definition of
the "source" type. Examples are where the target is the super type of the source,
or where the target is the data type of an attribute defined on the source.
There are different kinds of roles, in VO-DML defined as sub types of Role. Role
defines only a "datatype" attribute that has an ElementRef as data type, but is
constrained by Schematron rules to reference a Type. Specializations of Role will
introduce further constraints.

<xsd:complexType name="Role" abstract="true">

 <xsd:complexContent>

 <xsd:extension base="ReferencableElement">

 <xsd:sequence>

 <xsd:element name="datatype" type="ElementRef"/>

 </xsd:sequence>

 </xsd:extension>

 </xsd:complexContent>

</xsd:complexType>

29

VO-DML/Schema
Role is only explicitly represented in the VO-DML/Schema. It defines the

datatype reference that identifies (through a <utype>) the type that is playing

the role on the parent type containing the role. Role is abstract, hence only
subclasses can be instantiated.

<xsd:complexType name="Role" abstract="true">

 <xsd:complexContent>

 <xsd:extension base="ReferencableElement">

 <xsd:sequence>

 <xsd:element name="datatype" type="ElementRef"/>

 <xsd:element name="multiplicity" type="Multiplicity"/>

 </xsd:sequence>

 </xsd:extension>

 </xsd:complexContent>

</xsd:complexType>

3.12.1 datatype : ElementRef
The datatype property of a Role identifies the target type of the role, the one
which actually "plays the role". In VO-DML/Schema it is represented by an

ElementRef that MUST identify a Type.

3.12.2 multiplicity : Multiplicity
Indicates the multiplicity or cardinality of the role. This indicates how many
instances of the target datatype can be assigned to the role property.

3.12.3 subsets: ElementRef
The subsets element indicates that the Role redefines a Role defined on a super
type. It can only do so by restricting the datatype of the Role to a subtype of the
datatype of the Role it overrides. This is a common design pattern and directly
borrowed from UML.

VO-UML
TBD

3.13 Attribute extends Role

An Attribute is the role a ValueType can play in the definition of a structured
type, i.e. an ObjectType or DataType. It represents a typical property of the
parent type such as age, mass, length, position etc.
Attribute restricts the possible types of the Role's datatype attribute to
ValueType-s only.

VO-UML

30

Figure 4 The rows in the lower part of the box represent attributes. Their name, datatype
and multiplicity are indicated.

VO-DML/Schema
<xsd:complexType name="Attribute">

 <xsd:complexContent>

 <xsd:extension base="Role">

 <xsd:sequence>

 <xsd:element name="constraints" type="Constraints"

 minOccurs="0"/>

 <xsd:element name="skosconcept" type="SKOSConcept"

 minOccurs="0"/>

 </xsd:sequence>

 </xsd:extension>

 </xsd:complexContent>

</xsd:complexType>

VO-DML/XML
 <objectType>

 <vodml-id>source.Source</vodml-id>

 <name>Source</name>

...

 <attribute>

 <vodml-id>source.Source.name</vodml-id>

 <name>name</name>

 <description>...</description>

 <datatype>

 <utype>ivoa:string</utype>

 </datatype>

 <multiplicity>

 <minOccurs>1</minOccurs>

 <maxOccurs>1</maxOccurs>

 </multiplicity>

 </attribute>

...

3.13.1 constraints : Constraints [0..1]
Attributes can be constrained in a number of simple ways that are defined by the
Constraints type. Assigning such a Constraint to the attribute indicates
restrictions on the value of the attribute.

31

3.13.2 skosconcept: SKOSConcept [0..1]
If an Attribute defines a "skosconcept", it indicates that its values should
represent a SKOS concept [TBD add reference]. It implies the value of the
attribute in an instance should be a URI [TBD maybe just a preferredValue ...?]
identifying a concept in some SKOS vocabulary that fulfi lls the constraints of the
SKOSConcept definition. In this case the data type attribute should be
compatible with a string.

3.14 Constraints

It is useful to be able to attach constraints to data model elements beyond the
multiplicity. Constraints apply to instances of types or roles. In general these can
be complex and might require a language such as OCL (=Object Constraint
Language [TBD add reference]). In VO-DML we pre-define some simple
constraints, and only attach them to Attribute definitions.

3.14.1 minLength : integer
For a string attribute, the minimum length the string can have.

3.14.2 maxLength : integer
For a string attribute, the maximum length the string can have. A value <=0,
indicates the string has no length limit.

3.14.3 length : integer
For a string attribute, the exact length the string must have.

3.14.4 uniqueGlobally: boolean
If the value of this field is set to true, this indicates that the value of the attribute
to which the constraint is applied, must be "globally" unique. I.e. when applied to
an attribute, this indicates that in the collection of all 19 instances of the type
owning the attribute, the attributes must have unique values.

3.14.5 uniqueInCollection : boolean
If the value of this field is set to true,, this indicates that the value of the attribute
must be unique in the direct collection of objects that the parent type belongs to.

3.14.6 complexConstraint: ConstraintExpression
An expression constraining the value to which the constraint is applied. May be
human readable, could become a regular expression, or maybe OCL expression
in future. To be implemented by hand in target representations of the model.

19

 This leaves the context open. It could be a database with objects, or the IVOA, or the "world".
Generally to be defined by the application context for which the model is to be used.

32

3.15 ConstraintExpression

Sometimes constraints are more complex than some simple limit on ranges or
values supported by the various explicit choices in the Constraints type.
Designers can define more complex expressions using the current class.

3.15.1 expression: string
This attribute holds the expression defining the constraint.

3.15.2 language: string
This attributes defines the language in which the constraint in expression is
expressed. This attribute is enumerated with the following values

 XSD expression is an XSD 'pattern' regular expression [TBD ref]

 Java expression is a java.util.regex.Pattern regular expression [TBD ref].

 OCL expression is an OCL constraint [TBD ref]

 Custom: expression is natural language sentence, to be interpreted and
implemented by humans.

3.16 Relation extends Role

A Relation is a role played by an ObjectType in the definition of another
ObjectType, or possibly a DataType. It indicates that the ObjectType that is the
target (datatype) of the relation is related in some fashion to the source type.
In VO-UML relations are indicated by lines connecting the two types in the
relation, always with an arrow on the side of the type that plays the role. Details
depend on the type of relation. VO-DML defines two types, Collection and
Reference that are both subtypes of Relation.
Note, also the inheritance relation would seem

3.17 Collection extends Relation

An ObjectType may be "composed of" other object types. A Collection
represents this composition relationship between a parent and child ObjectType.
The life cycles of the child objects are governed by that of the parent. In VO-DML
we impose the restriction that an ObjectType can only be the target of at most
one Collection relation. This includes relationships inherited from a super type.
The only case where this rule may be broken is where a collection explicitly
subsets another, inherited collection.

VO-UML
In VO-UML a collection relation is represented by a composition association, an
arrow with a closed diamond indicating a composition side of the container and
an arrow on the end of the contained class. We generally use a blue colour for
this relation.

33

VO-DML/Schema
 <xsd:complexType name="Collection">

 <xsd:complexContent>

 <xsd:extension base="Relation">

 <xsd:sequence>

 <xsd:element name="isOrdered" type="xsd:boolean"

 default="false" minOccurs="0">

 </xsd:element>

 </xsd:sequence>

 </xsd:extension>

 </xsd:complexContent>

 </xsd:complexType>

VO-DML/XML
 <objectType>

 <vodml-id>source.Source</vodml-id>

 <name>Source</name>

...

 <collection>

 <vodml-id>source.Source.luminosity</vodml-id>

 <name>luminosity</name>

 <description>

 Collection of luminosity measurements for the parent source.

 </description>

 <datatype>

 <utype>src:source.LuminosityMeasurement</utype>

 </datatype>

 <multiplicity>

 <minOccurs>0</minOccurs>

 <maxOccurs>-1</maxOccurs>

 </multiplicity>

 </collection>

 </objectType>

34

3.18 Reference extends Relation

A reference is a relation that indicates a kind of usage, or dependency of one object

(the source, or referrer) on another (the target). Such a relation may in general

shared, i.e. many referrer objects may reference a single target object.

In general a reference relates two ObjectTypes, but a DataType-s can have a
reference as well. An example of this is a coordinate on the sky consisting of a
longitude and latitude, which requires a reference to a CoordinateFrame for its
interpretation. I.e. the frame is used as "reference data".

VO-UML
A reference is indicated by a (green) arrow from referrer (an ObjectTYpe or
DatType) to the target (an ObjectType). In UML an association is used, though
the reference is actually most similar to a binary association end.

Figure 5 Reference (green arrow) from an ObjectTYpe to an ObjectType.

Figure 6 Reference from a DataType to an ObjectType

VO-DML/XML
 <dataType>

 <vodml-id>source/SkyCoordinate</vodml-id>

 <name>SkyCoordinate</name>

...

 <reference>

 <vodml-id>source/SkyCoordinate.frame</vodml-id>

 <name>frame</name>

 <description>

...

 </description>

 <datatype>

 <utype>src:source/SkyCoordinateFrame</utype>

 </datatype>

 <multiplicity>1</multiplicity>

 </reference>

35

...

3.19 Multiplicity

Multiplicity indicates the cardinality of roles.We model this similar to the way this
is done in XML schema, namely with a minOccurs/maxOccurs pair of values. The
former indicates the minimum number of instances or values that can be
assigned to a given role, the latter the maximum number. Also XMI supports two
values and we follow it in using -1 (or any negative value) as a possible value for
maxOccurs that indicates that there is no limit on the possible number of
instances. In XML schema this is indicated using the string value 'unbounded', in

UML diagrams generally with a ''.20

VO-UML
In VO-UML the multiplicity, when assigned to an attribute, shows up in square
brackets after the attribute's type. If minOccurs and maxOccurs have the same
value, that single value is shown. If they have different values they show up

separated by two dots, '..'. The value of -1 for maxOccurs is represented by a '':

When the multiplicity is assigned to a relation, a similar pattern is shown near the
name of the relation, close to the target datatype of the relation:

20

 TBD We may consider restricting the possible values for maxOccurs for Attribute declarations
to not allow negative values. I.e. the size of possible value collections represented by an attribute
with maxOccurs > 0 should always be fixed.I.e. they would work more as array declarations in
many languages, for which the initial length must be set. Motivation comes mainly from relational
mapping that would be complicated . Attributes generally map to a column,, and unless one

designs a special way to store multiple values in a single column, something which breaks 1
st

normal form, one may need a special child table for storing the values. With a fixed length array
one may decide that each element in the array gets its own column.

36

Note that the 0..* here indicates minOccurs = 0, maxOccurs = -1.

VO-DML/Schema
 <xsd:complexType name="Multiplicity">

 <xsd:sequence>

 <xsd:element name="minOccurs" type="xsd:nonNegativeInteger"

 default="1"/>

 <xsd:element name="maxOccurs" type="xsd:int" default="1"/>

 </xsd:sequence>

 </xsd:complexType>

VO-DML/XML
<objectType>

 <vodml-id>source.Source</vodml-id>

 <name>Source</name>

...

 <attribute>

 <vodml-id>source.Source.name</vodml-id>

 <name>name</name>

...

 <multiplicity>

 <minOccurs>1</minOccurs>

 <maxOccurs>1</maxOccurs>

 </multiplicity>

 </attribute>

...

 <collection>

 <vodml-id>source.Source.luminosity</vodml-id>

 <name>luminosity</name>

...

 <multiplicity>

 <minOccurs>0</minOccurs>

 <maxOccurs>-1</maxOccurs>

 </multiplicity>

 </collection>

 </objectType>

37

4 Rules on defining data models in the IVOA
Assuming one has a standardized data modeling language now allows one to be
more formal on what the acceptable end product of an IVOA data modeling effort
should be. Here we define the procedure for creating an IVOA data model and
related resources according to the VO-DML philosophy.
Before stating the formal rules, first some slightly philosophical considerations

 Decide why one wants to create a data model. Default goal for any IVOA
data model should be that it allows existing and future databases to
describe their contents (at least partially) in terms of a common model,
often called a global schema. In certain cases a model may be developed
to provide support for a particular application area, for example when
defining a data access protocol. Here one can decide to support faithful
serialization of data models in targeted XML documents as well as
annotated serialization in VOTable.

 Decide on universe of discourse: what concepts must be described? How
rich should the model be?

 Create a conceptual/logical model. In drawings on whiteboard ("VO-
UML"), then transcribe to VO-DML/XML. Define concepts completely,
realizing that applications may pick and choose and transform.

 Sometimes, in application contexts: derive one or more physical
representations. Use as much as possible standard, if possible automated
derivation methods of VO-DML to target representation.

4.1 Procedure

A new data model MUST have a VO-DML/XML representation. This is an XML
document that MUST be valid with respect to the vo-dml.xsd schema21 and the
rules embodied by the vo-dml.sch.xml22 Schematron file. How this representation
is produced is not important. It may be written by hand, it may be derived from a
UML/XMI representation using an XSLT script, or by some other means. The
VO-DML/XML document MUST be available online and an accepted version
MUST be available in an IVOA registry with a standard IVO Identifier.
An IVOA data model MUST have an HTML document in which each data model
element is described and is referencable through a URL consisting of a root URL
linking to the HTML document itself followed by a ‘#” sign and the utype of the

21

 The schema is currently available under http://volute.googlecode.com/svn/trunk/projects/dm/vo-
dml/xsd/vo-dml.xsd .
22

 The schematron file is currently available under

http://volute.googlecode.com/svn/trunk/projects/dm/vo-dml/xsd/vo-dml.sch.xml. A full validation
using both schema and schematron file is part of the ant build script under
https://volute.googlecode.com/svn/trunk/projects/dm/vo-dml/build.xml.

http://volute.googlecode.com/svn/trunk/projects/dm/vo-dml/xsd/vo-dml.xsd
http://volute.googlecode.com/svn/trunk/projects/dm/vo-dml/xsd/vo-dml.xsd
http://volute.googlecode.com/svn/trunk/projects/dm/vo-dml/xsd/vo-dml.sch.xml

38

documented element. The XSLT script vo-dml2html.xsl MAY (SHOULD?) be
used to produce such a document from the VO-DML/XML representation. The
HTML document MUST be made available online and the HTML for the accepted
version MUST be registerd in an IVOA registry. TBC.
A VO-DML data model can import other data models. This allows it to use
elements from the other data model in the definition of its own. Of particular
importance is the model named "ivoa" which SHOULD be imported by all IVOA
data models, the IVOA_Profile23. This model contains a set of predefined data
types, mainly primitive types, such as string, boolean, integer and real. It also
predefines a set of Quantity types that the UTYPEs spec uses to allow mapping
of scientific measurement values directly to FIELD-s and PARAM-s in a
VOTable. These standard types SHOULD be used to represent these common
concepts in all models.
A data model MAY produce an XML schema that represents a faithful
representation24 of the model. If this is done, the schema MUST allow one to
define XML documents representing instances of the data model in 1-1 mapping.
If the IVOA at some point defines one or more standard mappings between VO-
DML and XSD, one of those mappings MUST be used (see B.1 for a first
approach to such a mapping). The XSD elements MUST (where appropriate)
contain an app-info element identifying the model element that is represented
using its utype (format of app-info is TBD).
A data model MAY25 produce a TAP schema matching the data model. If this is
done, the TAP schema MUST represent a 1-1 relational mapping of the data
model. If the IVOA at some point defines one or more standard mappings
between VO-DML and TAP_SCHEMA, one of those mappings MUST be used
(see B.2 for a first approach to such a mapping). The TAP_SCHEMA MUST be
represented by a VOTable that has a TABLE element for each table in the
schema and these MUST be annotated in the manner described in the UTYPE
document with model elements identifying the corresponding VO-DML elements.

5 References
[2]. [Schematron] http://www.schematron.com/
[3]. [SIMDM] http://www.ivoa.net/documents/SimDM/index.html
[4]. [UTYPES] utypes mapping document
[5]. [UML] http://www.omg.org/spec/UML
[6]. [UML-Infr2.0] http://www.omg.org/spec/UML/2.0/Infrastructure/PDF/

23

 Currently this data model is available under
https://volute.googlecode.com/svn/trunk/projects/dm/vo-dml/models/profile/IVOA_Profile.vo-
dml.xml , its HTML representation from https://volute.googlecode.com/svn/trunk/projects/dm/vo-
dml/models/profile/IVOA_Profile.html .
24

 See Appendix B for a definition of this concept. [TBD maybe already in introduction?]
25

 Not all data models lend themselves to an Object-Relational Mapping (ORM). Particular for
models that are heavy on value types rather than object types such a representation may not be
natural.

http://www.ivoa.net/documents/SimDM/index.html
http://www.omg.org/spec/UML
http://www.omg.org/spec/UML/2.0/Infrastructure/PDF/
https://volute.googlecode.com/svn/trunk/projects/dm/vo-dml/models/profile/IVOA_Profile.vo-dml.xml
https://volute.googlecode.com/svn/trunk/projects/dm/vo-dml/models/profile/IVOA_Profile.vo-dml.xml
https://volute.googlecode.com/svn/trunk/projects/dm/vo-dml/models/profile/IVOA_Profile.html
https://volute.googlecode.com/svn/trunk/projects/dm/vo-dml/models/profile/IVOA_Profile.html

39

[7]. [UML-Sup2.0] http://www.omg.org/spec/UML/2.0/Superstructure/PDF/
[8]. [VO-URP] http://vo-urp.googlecode.com/
[9]. [XMI2.1] http://www.omg.org/spec/XMI/2.1/
[10]. http://www.uml-diagrams.org/

Appendix A Relation to UML
VO-DML is clearly strongly influenced by UML. In fact most of the modelling
concepts form VO-DML have a counterpart in UML's class diagrams. We "only"
add some features to some of the concepts, rename and possibly slightly re-
interpret others, but especially severely restrict the UML concepts we use.
The following table lists the VO-DML concept, and provides the corresponding
UML concept 26 with a short comment. The UML concepts are linked to a
definition and more detailed description in the useful web site www.uml-
diagrams.org.

VO-DML concept UML concept Comment

Model Class Diagram This is a loose relation, as UML does not
have an explicit Model element. But each
Model that we have drawn in VO-UML has
used a class diagram.

ModelImport none UML models can not explicitly "import",
"reuse" another model. UML has the
concept of a package import, but that is
more like Java's 'import' of a package, which
allows one to refer to its classes without
requiring a fully qualified name.

Package Package Essentially the same concept, providing a
namespace for its contained elements, so
that these need only worry about
uniqueness of names inside the package
context.

Type Classifier UML Classifier is a base class of all kinds of
types. UML also has a Type, a supertype of
Classifier. We use Classifier here as it is the
nearest supertype to Class and DataType.

ObjectType Class Using a different name to avoid the software
feel of the word Class.

ValueType none

In VO-DML, ValueType is an abstraction of
DataType, PrimitiveType and Enumeration,
and is used by the definition of Attributes. In
UML this role is in a sense taken by
DataType, though without the restrictions on
attributes!.

DataType DataType Possibly DataType is the real representative

26

 TBD which version of UML we will use.

http://www.omg.org/spec/UML/2.0/Superstructure/PDF/
http://vo-urp.googlecode.com/
http://www.omg.org/spec/XMI/2.1/
http://www.uml-diagrams.org/
http://www.uml-diagrams.org/
http://www.uml-diagrams.org/class-diagrams-overview.html
http://www.uml-diagrams.org/package-diagrams.html#package
http://www.uml-diagrams.org/classifier.html
http://www.uml-diagrams.org/uml-core.html#type
http://www.uml-diagrams.org/class-diagrams.html#class
http://www.uml-diagrams.org/class-diagrams.html#data-type
http://www.uml-diagrams.org/class-diagrams.html#data-type

40

of our ValueType, though it allows the
attributes. In that interpretation a
PrimitiveType is a special datatype, namely
one representing a single value, rather than
a set of values, identified by a named
attribute.
This is certainly a valid interpretation.

PrimitiveType <<primitive>>
DataType

UML considers a PrimitiveType to be a
special DataType, representing atomic
values and without attributes. Note that the
stereotype <<primitive>> is special to the
UML tool we used in the diagrams in this
document. Other tools may use different
names for this, or may even not support
primitive types altogether. [TBD depends on
UML type?]

Enumeration Enumeration

Role Structural Feature,
Typed Element

Our name "Role" is derived from one view,
"the role a type plays" in the definition of
another type. UML refers to this very
general concept as a Typed Element. In
particular our Role-s are structural features
though.

Attribute (UML 1.x)
Attribute, (UML
2.x) Property with
a value type as
datatype.

An Attribute is a Property with a value type
as datatype. UML represents these as
strings inside the class/datatype definition.
Older versions of UML (e.g. 1.4.2) has an
explicit Attribute concept.

Relation (Binary)
Association (End)

Reference Navigable
Association End of
shared binary
association

Collection Composition
Aggregation

Inheritance Generalization We only allow single inheritance (like Java,
C#, unlike C++ and UML).

Multiplicity Multiplicity Our representation in VO-DML/XML is
closer to XML schema, with separate
definitions of minOccurs and maxOccurs.
But the same concept is intended that in
UML is represented by an m..n notation

http://www.uml-diagrams.org/class-diagrams.html#data-type
http://www.uml-diagrams.org/class-diagrams.html#enumeration
http://www.uml-diagrams.org/uml-core.html#structural-feature
http://www.uml-diagrams.org/uml-core.html#type
http://www.uml-diagrams.org/property.html#classifier-attribute
http://www.uml-diagrams.org/property.html
http://www.uml-diagrams.org/association.html#binary-association
http://www.uml-diagrams.org/association.html
http://www.uml-diagrams.org/generalization.html
http://www.uml-diagrams.org/multiplicity.html

41

Appendix B Mapping to serialization meta-models
Here we give examples how one might map a VO-DML data model to a physical
representation format described by its own meta-model. These mapping aim to
be as close to 1-1 as possible, providing what we call faithful representations of
the model. Developing standard mappings like these could greatly simplify a
modeling process, as one need only define the conceptual model itself and use
automated procedures to derive the serialization formats.

B.1 XSD

VO-DML concept XSD concept

ObjectType complexType

DataType complexType

Enumeration simpleType with restriction list
elements for the EnumLiterals

PrimitiveType simpleType, possibly with restriction
Attribute Element on complexType, type

corresponding to mapping of datatype

Collection Element on complexType, , type
corresponding to mapping of datatype

Reference Element on complexType, type must
be able to perform remote referencing

Extend xsd:extension of type definition

B.2 RDB
[Follow typical Object-Relational mapping rules.

VO-DML concept RDB concept

ObjectType Table

DataType Implicit, one or more columns in a table

Enumeration Column in a table
PrimitiveType simpleType, possibly with restriction

Attribute One or more columns in a table
depending on type

Collection Foreign key from child to parent

Reference Foreign key form referrer to referent.

B.3 Java
[TBD]

B.4 VO-DML/I: A default serialization language?
To best express example instances of a VO-DML data model, it may be useful to
define a serialization language that is explicitly tailored to the VO-DML meta-
model, rather than to a particular implementation context. It should be able to
express explicitly a set of instances of a data model, and od so in terms of the

42

meta-model itself. Its use could be to make the mapping discussion more explicit,
for in many cases there are osme decisions that must be made that rely on
elements that are not explicitly part of a data model, but are implied by its
definition in terms of VO-DML.
An example of this is the fact that it is assumed that every object, i.e. instance
ObjectType, has an identifier that identifies it. This element is never mentioned
explicitly in a VO-DML data model, and indeed its precise nature often depends
on a particular serialization format. But when describing mappings it is often
important to be able to define how this element is mapped as well.
A default and explicit serialization language will allow us to investigate the
mapping procedure more carefullt,as well as provide implementation neutral
example instance documents that can be compared to their expression in a
target serialization format.
UML allows something similar to this; it allows one to create Object-s that are
explicitly linked to types defined in a data model, with slots for setting values to
attributes and links to represent instances of relations.
[TBD Is it possible to integrate VO-DML/I into VO-DML/Schema? (Suggestion
from Norman)]

Appendix C vodml-id generation rules
The only requirement on the <vodml-id> identifying model elements is that it is
unique within the context of the model. In the past27 rules have been defined for
generating such unique values from the model that also provide a human
readable representation of the location of the identified element in the model.
Here we reproduce this generational grammar with some small changes. Note
that uniqueness depends on rules on the uniqueness of names in a particular
context, here represented by a location in a hierarchy:

vodml-id := [package-vodml-id | class-vodml-id | attribute-vodml-id |

 collection-vodml-id | reference-vodml-id | container-vodml-id

package-vodml-id := <package-name> [“.” <package-name>]*

class-vodml-id := package-utype “.” <class-name>

attribute-vodml-id := class-vodml-id “.” <attribute-name>

collection-vodml-id := class-vodml-id “.” <collection-name>

reference-vodml-id := class-vodml-id “.” <reference-name>

container-vodml-id := class-vodml-id “.” “CONTAINER”

Appendix D Example Source data model
We use a simple data model with hopefully some familiarity to the readers as
illustration to the various examples. It is a VO-DML representation of the TAP
data model. It can be more fully examined in
https://volute.googlecode.com/svn/trunk/projects/dm/vo-dml/models/source .

27

 The Simulation Data Model [LINK] provided such a grammar for the first time for the list of
utypes accompanying that model, which was taken over by an early draft of a UTYPE document
[LINK].

https://volute.googlecode.com/svn/trunk/projects/dm/vo-dml/models/source

43

The following figure shows a UML version of the model following the graphical
rules explained in section 3 .

Figure 7 Simple Source data model used for illustrations in this document.

	UTYPES
	Schematron
	SIMDM
	UML
	UMLInfr20
	UMLSup20
	VOURP
	XMI

