
1

!!!UNDER CONSTRUCTION!!!

 International

 Virtual

 Observatory

Alliance

VO-DML: a proposal for a consistent
modelling language for IVOA data models

Version 0.x-20130416

Working Draft 2013 April 16
TODO/TBD

 Update abstract

 Update executive summary.

 Update section 2

This version:
 0.x-20130416

Latest version:
0.x-20130412

Previous version(s):

Editors:
 Gerard Lemson
 Laurent Bourgès

Authors:

UTYPE-s tiger team+Laurent Bourges

2

Abstract

We propose that data models in the IVOA should be written in a consistent
language. In this WD we propose such a language, which we name VO-DML

(VO Data Modelling Language). VO-DML is a conceptual modelling languae
derived from UML and directly borrows concepts from UML's language for
describing "Class Diagrams". It was originally conceived as a simplified
representation of UMLs XML serialization, XMI. An earlier version of VO-DML
has been used extensively in the Simulation Data Model effort1, and relieved that
effort of a lot of work. Extra requirements supported by the current version are
the need for a consistent data modelling language to make sense of the UTYPE
concept [UTYPES], and the ability to reuse models in a consistent manner.
VO-DML as described in this document is an example of a domain specific
modelling language, where the domain is the set of data and meta-data
structures handled in the IVOA and Astronomy at large. It has served well in
various efforts and provides a rigorous framework form which one can define
mappings to various serialization formats [UTYPES]. It provides translational
semantics for VOTable annotations using utypes. But it is a custom language,
specifically designed for the IVOA data modelling efforts. To investigate whether
some existing language might be used instead, in an appendix we provide a
short comparison to some existing languages aimed to support domain specific
modelling.

Status of This Document

This is an IVOA Working Draft for review by IVOA members and other interested
parties. It is a draft document and may be updated, replaced, or obsoleted by
other documents at any time. It is inappropriate to use IVOA Working Drafts as

reference materials or to cite them as other than “work in progress”.

A list of current IVOA Recommendations and other technical documents can be

found at http://www.ivoa.net/Documents/.

1
 The language was developed mainly in the VO-URP project (https://code.google.com/p/vo-urp/)

and was formally defined in its intermediateModel.xsd document
(http://ivoa.net/Documents/SimDM/20120503/uml/intermediateModel.xsd).

http://www.ivoa.net/Documents/
https://code.google.com/p/vo-urp/

3

Contents

1 Background and motivation 4

2 VO-DML, VO-UML, VO-DML/Schema and VO-DML/XML 6

3 Modeling Concepts and Serialization Language 8

3.1 Model 8
3.1.1 name : string [1] 11
3.1.2 description : string [0..1] 11
3.1.3 title : string [0..1] 11
3.1.4 namespaceURI: anyURI[0..1] 11
3.1.5 prefix: ModelPrefix [1] 11
3.1.6 author: string[0..*] 11
3.1.7 version : string [1] 11
3.1.8 previousVersion : anyURI [0..1] 11
3.1.9 import : ModelProxy[] [0..*] 11

3.1.10 package : Package[] [0..*] 12
3.1.11 objectType : ObjectType[] [0..*] 12

3.1.12 dataType : DataType[] [0..*] 12
3.1.13 primitiveType : PrimitiveType[] [0..*] 12

3.1.14 enumeration : Enumeration[] [0..*] 12
3.1.15 ModelProxy 13

3.2 Referencing elements 14

3.3 Package 15

3.3.1 objectType : ObjectType[] [0..*] 16

3.3.2 dataType : DataType[] [0..*] 16
3.3.3 primitiveType : PrimitiveType[] [0..*] 16

3.3.4 enumeration : Enumeration[] [0..*] 16
3.3.5 package : Package[] [0..*] 16

3.4 Type 16
3.4.1 Inheritance 17

3.5 Value Type 18

3.6 PrimitiveType 18

3.7 Enumeration 19
3.7.1 Literal 19

3.8 DataType 19

3.8.1 attribute: Attribute[] [0..*] 21
3.8.2 reference: Reference[] [0..*] 21

3.9 OjectType extends Type 21

3.9.1 container: Container[] [0..1] 23
3.9.2 attribute: Attribute[] [0..*] 23
3.9.3 reference: Reference[] [0..*] 23

3.9.4 collection: Collection[] [0..*] 23
3.10 Role extends ReferencableElement 23

4

3.10.1 datatype : ElementRef 24
3.10.2 multiplicity : Multiplicity 24

3.11 Attribute extends Role 24
3.11.1 constraints : Constraints [0..1] 25
3.11.2 skosconcept : SKOSConcept [0..1] 25

3.12 Constraints 25
3.13 Relation extends Role 25

3.14 Collection extends Relation 25

3.15 Reference extends Role 26

3.16 Multiplicity 27

4 Mapping to other serialization formats 29

4.1 XSD 29

4.2 RDB 29

4.3 Java 30

4.4 VOTable 30

4.5 RDF schema 30

5 Using VO-DML: How to define a data model in the IVOA 30

5.1 Rules ... 31

6 References 32

Appendix A Example Source data model 32

Appendix B Other modelling languages 33

1 Background and motivation
Data models in the IVOA have a particular goal, namely to facilitate
interoperability. In particular they should provide a common language to interpret
and understand data sets that are published online and allow one to explain the
contents of serialized data sets that are used to interchange information.
The form(at) and contents of these data sets are generally not explicitly known;
they have generally been created to serve the purposes of the entity/organization
that owns them. The owners of the data may be willing to described their data
holdings in some standardized form (e.g. TAP), or send their data over the net in
some standardized serialization format (e.g. VOTable), but may be unwilling or
unable to change the structural design of the data holdings or the contents of the
serializations to conform to some model. They may however be able to provide
annotations to explain the contents of the data sets they expose.
The IVOA has one standardized way to provide such annotation, namely UCDs.
These allow one to annotate data elements with some concept from a simple
semantic vocabulary. UTYPEs were supposed to add to this ability by allowing
one to identify data structures with elements defined in some data model. A
simple interpretation of this was however not available, mainly due to a lack of
understanding of the target of these UTYPE pointers.

5

Here we describe a language for expressing data models that is tailored to
provide a target for such annotations and that can provide a consistent,
translational semantics to the annotated elements.

This document contains a specification for a data modeling language, or meta-
model, that all formal data models defined in the IVOA should follow. It consists

of a conceptual part and a serialization language. The latter provides an XML
format and this specification states that all data models in the IVOA MUST have
a representation in that format.
The conceptual part of the spec goes by the name of VO-DML, short for VO Data
Modeling Language. The serialization language goes by the name of VO-
DML/Schema and an XML document conforming to this standard defines a data
model, and is referred to as the VO-MDL/XML representation of that data model.

We also describe a UML Profile [REF] that represents the VO-DML concepts in
UML and allows one to provide a graphical representation of each model. This is
referred to as VO-UML, but is informative, not a normative part of the spec.

These 4 different representations will be discussed and used in the rest of this
document.
Here we focus on the motivation for this proposal.
This document finds its origin in the efforts of the UTYPEs tiger team. During the
deliberations and analysis of the problem it was charged with, it was concluded
that an important ingredient to its resolution was to put the IVOA data modeling
on a firmer and more formal basis. In particular it became clear that to interpret
utypes, one need to make data models first class citizens in a sense we will now
describe.
Most data models in the IVOA had been designed in an ad hoc fashion, with the
precise specification of a data model left to each individual effort. Generally the
most formal result was a serialization format for instances of the data model. This
could be in the form of an XML schema, or a VOTable dialect, or a
TAP_SCHEMA defining the storage of instances in a relational database. Even
when using a common format such as XSD, thanks to the large redundancy of
concepts in that language, there was a large variety of ways by which different
models were expressed.
Such heterogeneity is a problem for a specification of utypes, which were
supposed to be a "pointer into a data model" that can be used by code to infer
information about data serialized in some general manner. Though a syntax for
utypes was proposed at some point [REF to early utypes doc], in contrast to the
original source of the grammar [REF to SimDM], there was no formal language
provided that gave meaning to the components in the grammar.
I.e. there was no formal understanding of what precisely a utype used in some

meta-data annotation could point at, preventing a possible understanding of what
such an annotation might mean.
The approach pioneered in the SimDM effort however did offer such an

interpretation. It was based on a formal data modeling language. This language,
derived from UML, defines some core modeling concepts that can be mapped to
all serializations, and provides a common representation to interpret these. It is

6

implementation neutral and included explicit identifiers to the various data
modeling elements. These can serve as the targets of the pointers that utypes
were supposed to be.
The so called UTYPEs mapping document [REF] works out this mapping in great
detail and provides constraints and semantics to such mappings. The current
document provides the definition of the meta-model itself.
One important further benefit of the particular proposal is that it explicitly and
naturally allows the possibility of model reuse. I.e. the efforts of one modeling

effort can be easily reused in that of another, even though the final goal of one
might be the creation of an XML serialization format, and the other a relational
data model. The actual derivation of these representations can in principle be
fully automated as the VO-URP effort has shown. That project was a side result
of the SimDM effort and provides a generation pipeline deriving RDB, XSD,
JAVA and HTML representations of a model represented in an earlier version of
VO-MDL/XML.
VO-URP showed that it is possible from such a specification alone, one that
could be hand written without undue problems, to generate a (web) service that
allows access to a TAP compatible database automatically created from the
model, which can ingest and deliver XML representations of the stored objects
that follow the standard XML Schema representation.

2 VO-DML, VO-UML, VO-DML/Schema and VO-
DML/XML

In this specification we distinguish between the conceptual meta-model, VO-DML

and the XML based serialization language for expressing data models, which we
refer to as VO-DML/XML. The format and contents of a valid VO-DML/XML file is

prescribed by an XML schema plus schematron file which we denote together as
VO-DML/Schema. Their relation between VO-DMl and VO-DML/XML is

equivalent to the relation between UML [REF] and representations of a UML data
models in the serialization format XMI [REF].
In fact VO-DML is directly derived from UML, more exactly it can be interpreted
as being a UML Profile [REF], a domain specific "dialect" of UML. We actually

use a "real" UML Profile in the UML modeling tool with which we create graphical
examples of models. This profile is complete, i.e. is able represent all elements of
VO-DML. We will refer to this profile as VO-UML2 and show how to use it in the

examples below. We discuss these different components of the specification in
the next subsections.

2.1 VO-DML + VO-UML

VO-DML defines the concepts used to create data models in the IVOA. It uses a
subset of the components from UML Class Diagrams and hence follows an
object-oriented approach, but restricts itself to structure. Operations are explicitly

2
 Omar Laurino suggested this name.

7

excluded from our language. Constraints are supported, but in a restricted
manner.
VO-DML has been expressed as a UML profile, VO-UML, using stereotypes with
tag definitions to enable modeling of domain specific components in the graphical

tool.
But note, though we use UML for illustrations, and have used it to define some
models, VO-DML is not dependent on UML or such tools. VO-DML data models

need not have a UML representation, but they MUST have a serialization in
terms of VO-DML/XML (see section 5 for details on how to define data models).
Hence the VO-UML part in this spec is INFORMATIVE, not NORMATIVE [TBD is
this correct usage of these terms?].

2.2 VO-DML/XML + VO-DML/Schema

For most use cases a VO-DML data model must be serialized in a computer
readable format. The serialization language to be used for this is VO-DML/XML.
VO-DML/XML is XML following a formal syntax defined by an XML schema vo-
dml.xsd 3 and further constrained by an associated Schematron file, vo-
dml.sch.xml4. These files implement all the concepts described in section 3 . The
schema files are self-documented as much as possible, but here we give a few
details of the overall design, focusing on technical aspects of the implementation.

VO-DML/XML is a simple representation of a VO-DML model as an XML
document. This introduction of a custom designed serialization language rather
than using some existing language could be seen as an unnecessary
complication. We could for example also consider using XMI as the standard for

serializing VO-DML models. However, XMI is a rather unwieldy format that hides
many of the features we want to make explicit. Hence as a language from which
to derive information of the model without very sophisticated tools it is ill suited.
Also we do not assume all users have access to a UML modeling tool that can
support all the UML modeling features we need to create VO data models, and
hand editing XMI is nigh impossible. We also foresee that users may want to
derive models from other representations (e.g. XML schema, RDF; see SimTAP
discussions) and XMI as target language for such a tool requires deep
understanding of its format.
We do think XML is a useful language for serializations, in particular because,
being completely under control of the IVOA DM WG, it can be tailored to the
requirements deriving from its usage in the IVOA. We have more freedom to
restrict the format and implement the appropriate constraints. In VO-DML/XML
the format and constraints are explicitly and formally defined using XML schema
and Schematron [REF]. Hence VO-DML/XML files must conform to an XML
schema file (<root-url>/vo-dml.xsd) that defines the structure of valid

serializations, and a Schematron file (<root-url>/vo-dml.sch.xml) that defines
additional constraints on its contents. We refer to this implementation of the

3
 https://volute.googlecode.com/svn/trunk/projects/dm/vo-dml/xsd/vo-dml.xsd

4
 https://volute.googlecode.com/svn/trunk/projects/dm/vo-dml/xsd/vo-dml.sch.xml

8

modeling language as VO-DML/Schema. VO-DML/Schema is a direct
implementation of the UML profile; it exposes all modeling concepts explicitly,
and ignores the many UML/XMI features that are not needed.
VO-DML/Schema is compared to alternative languages and similar approaches
to designing domain specific modeling languages in Appendix B.

2.3 Other representations

See section 4 for a discussion on how one might represent data models in
application specific formats. These can be considered physical model that should
implement the logical model defined in VO-DML. One special case there
concerns a possible addition to our family, namely something we might call VO-
DML/I, and instantiation format tailored for VO-DML models. This is discussed in
section 4.6 .

3 Modeling Concepts and Serialization Language
In the following sub-sections we discuss the different components of the meta-
model. We describe their meaning, we indicate where and how they are
implemented in the VO-DML/Schema and how they are represented in the VO-
UML profile, and we give examples of a VO-DML/XML serialization and a
graphical representation. The examples are extracted from a sample data model
that is designed to illustrate most of the modeling components. It models
astronomical sources and is explained in Appendix A. Its VO-DML/XML
representation can be found in the Volute project in GoogleCode 5 [TBD other
location?]. The VO-DML/Schema snippets only indicate the start of a XML
schema definition, the full details can be found in the corresponding schema
documents.
Most modeling concepts have a 1-1 relation between the VO-DML, VO-
DML/Schema and VO-UML representation. In the few cases where we have to
treat one of these specially we will indicate this explicitly.
When referring to a VO-DML concept we will use boldface. When referring to an

XML schema implementation of a concept we will use courier font. When
referring to a UML concept we will use italics. When using UML examples,

screenshots from a UML modeling tool or snippets of XMI, we have used
MagicDraw6 Community Edition 12.1, which supports UML 2.07, serializing its
models to XMI 2.18.

3.1 Model

A (data) model represents a coherent set of type definitions, by which it
represents the concepts that have an explicit place in its universe of discourse,

5
 https://volute.googlecode.com/svn/trunk/projects/dm/vo-dml/models/source/SourceDM.vo-

dml.xml
6
 http://www.nomagic.com/products/magicdraw.html, edition CE 12.1 is no longer available online.

7
 http://schema.omg.org/spec/UML/2.0

8
 http://schema.omg.org/spec/XMI/2.1

http://www.nomagic.com/products/magicdraw.html

9

i.e. which concepts one can talk/"discourse" about. Each data model is generally
represented by a single document. Model is an explicit concept in VO-DML and

its representations, for we need to be able to refer to models explicitly in the
language.

VO-UML
In a UML diagram the Model is represented by a complete XMI document, with

the element representing it showing up in the root of the model. The VO-UML
profile contains a <<model>> stereotype which defines tags which allow one to

define extra metadata about the model and which correspond to the metadata
elements defined in the subsections below.

Figure 1 Root of a UML document defining the example model, SourceDM. Note the use of
the IVOA_UML_PROFILE with its various stereotype definitions. In particular <<model>>
defines various tags corresponding to the meta data elements for a Model.

The tags can be given values as shown in the following example:

10

VO-DML/Schema

In VO-DML/Schema Model is represented by a complexType Model, containing

definitions for meta-data elements and collections of type definitions, possibly
distributed over packages. It defines the type for the only possible root element in

a VO-DML/XML document, named model.

<xsd:complexType name="Model">

 <xsd:sequence>

 <xsd:element name="name" type="xsd:string" minOccurs="1"/>

 <xsd:element name="description" type="xsd:string"

 minOccurs="0"/>

...

 </xsd:sequence>

</xsd:complexType>

<xsd:element name="model" type="Model">

 <xsd:unique name="unique_ids">

 <xsd:selector xpath=".//vodml-id" />

 <xsd:field xpath="." />

 </xsd:unique>

</xsd:element>

11

VO-DML/XML

 <vo-dml:model

 xmlns:vo-dml="http://volute.googlecode.com/dm/vo-dml/v0.9">

 <name>SourceDM</name>

 <description>This is a sample data model. ...

 </description>

 <title>Sample VO-DML data model.</title>

 <prefix>src</prefix>

 <namespaceURI>

 http://www.ivoa.net/vo-dml/models/SourceDM#

 </namespaceURI>

 <version>0.x</version>

 <lastModified>2013-05-04T19:24:52</lastModified>

...

Model has the following components, which have a 1-1 correspondence in the

VO-DML/Schema. See there for more extensive comments.

3.1.1 name : string [1]
The (short) name of the model.

3.1.2 description : string [0..1]
A human readable description of the model.

3.1.3 title : string [0..1]
Formal, long, title of this data model.

3.1.4 namespaceURI: anyURI[0..1]
TBD

3.1.5 prefix: ModelPrefix [1]
TBD

3.1.6 author: string[0..*]
List of names of authors who have contributed to this model.
TBD could be expanded to a Curation like model.

3.1.7 version : string [1]
Label indicating the version of this model.

3.1.8 previousVersion : anyURI [0..1]
This attribute contains a URL[TBD URI?] identifying a VO-DML/XML document
representing the previous version of this data model, from which the current
version was derived.

3.1.9 import : ModelProxy[] [0..*]
For a Model to reuse types from another model, or to use other of its elements,

that model must be "imported" explicitly. An imported model is represented by a

http://www.ivoa.net/vo-dml/models/SourceDM

12

ModelProxy that specifies some of the metadata of the model as well as how it

is to be used.

VO-DML/XML

TBD check/fix
<vo-dml:model>

...

 <import>
 <name>PhotDM-alt</name>
 <url>https://volute.googlecode.com/svn/trunk/projects/dm/vo-
dml/models/photdm-alt/PhotDM-alt.vo-dml.xml</url>
 <prefix>photdm-alt</prefix>
 <documentationURL>https://volute.googlecode.com/svn/trunk/projects/dm/vo-
dml/models/photdm/PhotDM.html</documentationURL>
 </import>
...

3.1.10 package : Package[] [0..*]
A Model can distribute its type definitions over packages. This provides for name
spacing options, allowing multiple types with the same name.

VO-DML/XML
<vo-dml:model>

...

 <package>

 <vodml-id>source/</vodml-id>

 <name>source</name>

...

3.1.11 objectType : ObjectType[] [0..*]
Collection of ObjectType-s defined directly under the model. In many IVOA data
models packages have not been explicitly defined. Instead types were defined
directly under the model. In this meta-model we support this as well by adding
collections for each of the different “types of types”.

3.1.12 dataType : DataType[] [0..*]
Collection of DataType-s defined directly under the model.

3.1.13 primitiveType : PrimitiveType[] [0..*]
Collection of PrimitiveType-s defined directly under the model.

3.1.14 enumeration : Enumeration[] [0..*]
Collection of Enumeration-s defined directly under the model.

13

3.1.15 ModelProxy
A Model can import another model. This implies generally that elements of the
external model are used in the definition of elements in the current model. The
external model must be represented by a ModelProxy. This "proxy" provides
metadata allowing one to access the remote model and its documentation, as
well as a prefix that must be used when referring to elements in the remote
model.

VO-UML
A ModelProxy is represented by a child Model element with special stereotype

<<modelimport>>. Graphically and possibly some contained type proxies. The
latter MUST define a value for the 'vodml-id' tag.

Figure 2 Stereotype definition for <<modelimport>>.

Figure 3 Graphical representation of an imported model. Note the usage of the
stereotype <<modelimport>> and the values assigned to the various tags.

VO-DML/Schema

<xsd:complexType name="ModelProxy">

 <xsd:sequence>

 <xsd:element name="name" type="xsd:string" minOccurs="0"/>

 <xsd:element name="ivoId" type="xsd:anyURI" minOccurs="0"/>

 <xsd:element name="url" type="xsd:anyURI" />

 <xsd:element name="prefix" type="ModelPrefix" />

 <xsd:element name="documentationURL" type="xsd:anyURI" />

 </xsd:sequence>

 </xsd:complexType>

14

VO-DML/XML

 <import>

 <name>PhotDM-alt</name>

 <url>

 https://volute.googlecode.com/svn/trunk/projects/dm/vo-

dml/models/photdm-alt/PhotDM-alt.vo-dml.xml

 </url>

 <prefix>photdm-alt</prefix>

 <documentationURL>

https://volute.googlecode.com/svn/trunk/projects/dm/vo-

dml/models/photdm/PhotDM.html

 </documentationURL>

 </import>

3.2 Referencing elements

A data model consists of model elements of various types. In the VO-DML/XML
serialization almost all of these must have an explicit identifier element that
makes it possible for them to be explicitly referenced, either from inside the
model, or from an external context. VO-DML/Schema defines a special types that
represents these referencable elements, and a type that indicates how to refer to
such elements inside VO-DML.

VO-DML/Schema

All elements (apart from Model) discussed in this section extend

ReferencableElement. This abstract base class has an identifier element

<vodml-id>, the value of which must be unique in the model. This means that

these elements can be referenced using this identifier. In VO-DML this is used

explicitly in the ElementRef type that represents such references inside the

meta-model using a <utype> element. The type definitions for vodml-id and

utype are restricted strings, the details of which are TBD.

<xsd:simpleType name="ElementID" >

 <xsd:restriction base="xsd:string">

 <xsd:pattern value="[\w\./_*]+"/>

 </xsd:restriction>

</xsd:simpleType>

<xsd:complexType name="ReferencableElement" abstract="true">

 <xsd:sequence>

 <xsd:element name="vodml-id" type="ElementID " minOccurs="1"/>

 </xsd:sequence>

</xsd:complexType>

<xsd:simpleType name="ModelPrefix">

 <xsd:restriction base="xsd:string">

 <xsd:pattern value="[\w_-]+"/>

 </xsd:restriction>

https://volute.googlecode.com/svn/trunk/projects/dm/vo-dml/models/photdm-alt/PhotDM-alt.vo-dml.xml
https://volute.googlecode.com/svn/trunk/projects/dm/vo-dml/models/photdm-alt/PhotDM-alt.vo-dml.xml
https://volute.googlecode.com/svn/trunk/projects/dm/vo-dml/models/photdm/PhotDM.html
https://volute.googlecode.com/svn/trunk/projects/dm/vo-dml/models/photdm/PhotDM.html

15

</xsd:simpleType>

<xsd:simpleType name="UTYPE">

 <xsd:restriction base="xsd:string">

 <xsd:pattern value="[\w_-]+:[\w\./_*]+" />

 </xsd:restriction>

</xsd:simpleType>

VO-DML/XML

3.3 Package

Packages divide the set of types in a model in subsets, providing these with a

common namespace. Their names must be unique in this context only. A package
may contain child packages.
This concept is equivalent to the UML Package and similar to an XML namespace

or a Java package.

VO-UML
TBC A Package is represented by the UML Package element

VO-DML/Schema
In VO-DML/Schema, Package is represented by a complex type of the same

name and extends ReferencableElement.
<xsd:complexType name="Package">

 <xsd:complexContent>

 <xsd:extension base="ReferencableElement">

 <xsd:sequence>

 <xsd:element name="objectType" type="ObjectType" minOccurs="0"

16

 maxOccurs="unbounded"/>

 <xsd:element name="dataType" type="DataType" minOccurs="0"

 maxOccurs="unbounded"/>

 <xsd:element name="enumeration" type="Enumeration"

 minOccurs="0" maxOccurs="unbounded"/>

 <xsd:element name="primitiveType" type="PrimitiveType"

 minOccurs="0" maxOccurs="unbounded"/>

 <xsd:element name="package" type="Package" minOccurs="0"

 maxOccurs="unbounded"/>

...

</xsd:complexType>

VO-DML/XML
<package>

 <vodml-id>source</vodml-id>

 <name>source</name>

 <description>...</description>

 <objectType>

 <vodml-id>source.LuminosityMeasurement</vodml-id>

 <name> LuminosityMeasurement</name>

...

A package has separate collections for each of the type classes. This avoids the
need for xsi:type casting in serializations and facilitates tracing path expressions.

3.3.1 objectType : ObjectType[] [0..*]
Collection of ObjectTypes defined in this package.

3.3.2 dataType : DataType[] [0..*]
Collection of DataTypes defined in this package.

3.3.3 primitiveType : PrimitiveType[] [0..*]
Collection of PrimitiveTypes defined in this package.

3.3.4 enumeration : Enumeration[] [0..*]
Collection of Enumerations defined in this package.

3.3.5 package : Package[] [0..*]
Collection of child packages defined in this package.

3.4 Type

The goal of a VO-DML data model is to define Types. A type expresses a

particular concept in a formal, machine usable manner. Its definition in a data
model expresses that that concept is important in the universe of discourse
covered/defined by the data model. It makes the concept part of the formal
vocabulary defined by the model. It classifies "instances"/"objects"/"values" in the
world into groups defined by common properties and meaning. Every instance

17

"worth talking about" "has a"/"is declared to have a" type. Every instance has
exactly one type, though due to inheritance an instance is also an instance of any
base type of the declared type.

VO-DML/Schema

An abstract complexType named Type is introduced that is the base class of all

more concrete type definitions. It extends ReferencableElement, hence all

type definitions can be referenced and MUST have a <vodml-id> element.
Types may be abstract, in which case no instances can be produced (similar to

for example abstract classes in Java. They may also extend another type,

which will be referred to as the base type. The base type is identified by a utype.

 <xsd:complexType name="Type" abstract="true">

 <xsd:complexContent>

 <xsd:extension base="ReferencableElement">

 <xsd:sequence>

 <xsd:element name="extends" type="ElementRef" minOccurs="0"/>

 </xsd:sequence>

 <xsd:attribute name="abstract" type="xsd:boolean"

 default="false" use="optional" />

 </xsd:extension>

 </xsd:complexContent>

 </xsd:complexType>

3.4.1 Inheritance
Indicates the typical “is a” relation between the sub-type and its base-type (the one
pointed at). In VO-DML we do not support multiple inheritances. Furthermore
ObjectTypes extend ObjectTypes, DataTypes extend DataTypes etc.

VO-UML

Inheritance relationship is represented by a UML generalization arrow from
subclass to base class. The arrow is

VO-DML/XML
 <objectType>

 <vodml-id>source/Source</vodml-id>

 <name>Source</name>

18

...

 <extends>

 <utype>src:source/AstroObject</utype>

 </extends>

...

3.5 Value Type

The most important categorization of Types is that between so called object
types and value types. [TBC find equivalent categorizations: reference type vs
value type, ...] A ValueType represents a simple concept that is used to

describe/define more complex concepts such as ObjectTypes. In contrast to
ObjectTypes, instances of ValueType-s, i.e. values, need not be explicitly

identified. They are identified by their value. For example an integer is a value
type; all instances of the integer value '3' represent the same integer.
The domain of a value type, i.e. its set of valid instance/values, is self-evident
from its definition. Hence also the existence of particular values is self-evident

and therefore needs not to be explicitly stated. Also this is in contrast to the case
of ObjectTypes discussed below.

VO-DML/Schema
 <xsd:complexType name="ValueType" abstract="true">

 <xsd:complexContent>

 <xsd:extension base="Type">

 </xsd:extension>

 </xsd:complexContent>

 </xsd:complexType>

3.6 PrimitiveType

A PrimitiveType represents an atomic piece of data, a value. Examples are the

standard types like integer, Boolean, real, and string (which we treat as an
atomic value, not an array of characters), integer and so on.

A primitive type can be an extension of another primitive type, but must then
always be considered a restriction on the possible values of that type.
.

VO-UML

VO-DML/XML
<primitiveType>

19

 <vodml-id>quantity/Unit</vodml-id>

 <name>Unit</name>

 <description>

 Must conform to definition of unit in VOUnit spec.

 </description>

 <extends>

 <utype>ivoa:string</utype>

 </extends>

</primitiveType>

3.7 Enumeration

An Enumeration is a PrimitiveType with a finite list of possible values, the Literals.
This list restricts the domain of possible values which are to be treated as strings.

VO-UML

VO-DML/XML
 <enumeration>

 <vodml-id>source/SourceClassification</vodml-id>

 <name>SourceClassification</name>

 <literal>

 <vodml-id>source/SourceClassification.star</vodml-id>

 <name>star</name>

 <description>...</description>

 <value>star</value>

 </literal>

 <literal>

 <vodml-id>source/SourceClassification.galaxy</vodml-id>

 <name>galaxy</name>

 <description>...</description>

 <value>galaxy</value>

 </literal>

...

3.7.1 Literal

3.8 DataType

A DataType is a value type with structure. The structure is generally defined by
attributes on the DataType, and possibly references. The state of instance of a
DataType, i.e. a value, consists of the assignment of values to all the attributes

and references. This is similar to ObjectTypes defined below, but in contrast to
ObjectTypes, datatypes have no explicit identity. Also, DataType-s are defined by
their state only. I.e. two DataType instances with the same state are the same

20

instance. Instead, ObjectTypes with the same state but different identity are not
the same
For example the DataType Position3D, with attributes x, y and z, is completely
defined by the values of the three attributes. There are no 2 distinct instances of
this DataType with exact same values (x=1.2,y=2.3,z=3.4).
Note, we are adding the ability to add outgoing references to DataType. This
makes certain patterns more reusable. The reference is assumed to provide
reference data wrt which the rest of the value should be interpreted. For example
a SkyCoordinate may have a reference to a SkyCoordinateFrame to help
interpret the values of the longitude/latitude attributes. [TBD check proper STC
example? Or use other example?].

VO-UML

This concept is directly derived for UML's Data Type9. It is represented by a box
with stereotype <<datatype>> and possibly attributes.

VO-UML/Schema
<xsd:complexType name="DataType">

 <xsd:complexContent>

 <xsd:extension base="ValueType">

 <xsd:sequence>

 <xsd:element name="attribute" type="Attribute"

 minOccurs="0" maxOccurs="unbounded"/>

 <xsd:element name="reference" type="Reference"

 minOccurs="0" maxOccurs="unbounded"/>

 </xsd:sequence>

 </xsd:extension>

 </xsd:complexContent>

</xsd:complexType>

VO-UML/XML
<dataType>

 <vodml-id>source.SkyCoordinate</vodml-id>

 <name>SkyCoordinate</name>

 <description>...</description>

 <attribute>

 <vodml-id>source.SkyCoordinate.longitude</vodml-id>

 <name>longitude</name>

 <description>...</description>

9

http://pic.dhe.ibm.com/infocenter/rsarthlp/v8/index.jsp?topic=%2Fcom.ibm.xtools.modeler.doc%2
Ftopics%2Fcdatatypes.html

21

 <datatype>

 <utype>ivoa:quantity.RealQuantity</utype>

 </datatype>

 <multiplicity>1</multiplicity>

 </attribute>

 <attribute>

 <vodml-id>source.SkyCoordinate.latitude</vodml-id>

 <name>latitude</name>

 <description>...</description>

 <datatype>

 <utype>ivoa:quantity.RealQuantity</utype>

 </datatype>

 <multiplicity>1</multiplicity>

 </attribute>

 <reference>

 <vodml-id>source.SkyCoordinate.frame</vodml-id>

 <name>frame</name>

 <description>...</description>

 <datatype>

 <utype>src:source.SkyCoordinateFrame</utype>

 </datatype>

 <multiplicity>1</multiplicity>

 </reference>

</dataType>

3.8.1 attribute: Attribute[] [0..*]
Collection of Attribute definitions.

3.8.2 reference: Reference[] [0..*]
Collection of Reference definitions. A reference on a DataType is assumed to
provide reference data to help interpreting.

3.9 OjectType extends Type

ObjectTypes are the fundamental building blocks of a data model. An ObjectType
represents a full-fledged concept and is built up from properties and relations to
other ObjectTypes. An important feature of ObjectTypes as opposed to
ValueTypes (see below) is that instances of ObjectTypes, i.e. objects, have their
own, explicit identity10. That is, we want to assign an explicit identifier to each
particular usage of this concept, for instance here to distinguish between various
Experiment instances.
Another feature of ObjectType-s is that the existence of certain instances is not

self-evident from their definition. For example the definition of the ObjectType
Person does not mandate that a certain person with name="alice" and age=23
years exists. Hence it is meaningful to list instances of ObjectType-s explicitly to

10

 This is admittedly a somewhat theoretical but important object-oriented concept.

22

"announce" their existence. This is indeed why we have serializations of data
models in the first place, to announce the existence of objects of various types.

VO-UML
An ObjectType is represented in VO-UML by a UML Class, a box with a name
and possibly a stereotype such as <<modelelement>>. An ObjectType may have

attributes and be the source or target of relationships..

VO-DML/Schema
In XSD the ObjectType is represented by a complexType definition

ObjectType that extends Type.
<xsd:complexType name="ObjectType">

 <xsd:complexContent>

 <xsd:extension base="Type">

 <xsd:sequence>

 <xsd:element name="container" type="Container"

 minOccurs="0" maxOccurs="1"/>

 <xsd:element name="attribute" type="Attribute"

 minOccurs="0" maxOccurs="unbounded"/>

 <xsd:element name="collection" type="Collection"

 minOccurs="0" maxOccurs="unbounded"/>

 <xsd:element name="reference" type="Reference"

 minOccurs="0" maxOccurs="unbounded"/>

 </xsd:sequence>

 </xsd:extension>

 </xsd:complexContent>

</xsd:complexType>

VO-DML/XML

<objectType>
 <vodml-id>source.Source</vodml-id>
 <name>Source</name>
 <description>...</description>
 <extends>
 <utype>src:source.AstroObject</utype>
 </extends>
 <attribute>
 <vodml-id>source.Source.name</vodml-id>
 <name>name</name>
 <description>...</description>
 <datatype>
 <utype>ivoa:string</utype>
 </datatype>
 <multiplicity>1</multiplicity>
 </attribute>

23

 <attribute>
...

3.9.1 container: Container[] [0..1]
Pointer to the ObjectType that is the parent in a collection of which this
ObjectType is the declared child datatype.
[TBD really redundant, mainly here so a foreign key has something to identify
with. Remove and use vo-dml:ObjectType.CONTAINER instead?]

3.9.2 attribute: Attribute[] [0..*]
Collection of Attribute definitions.

3.9.3 reference: Reference[] [0..*]
Collection of Reference definitions.

3.9.4 collection: Collection[] [0..*]
Collection of collection definitions.

3.10 Role extends ReferencableElement

A Role represents the usage of one type (call it "target") in the definition of

another (type "source"). The "target" type is said to play a role in the definition of
the "source" type. Examples are where the target is the base class of the source,
or where the target is the data type of an attribute defined on the source.
There are different kinds of roles, in VO-DML defined as sub types of Role. Role

defines only a "datatype" attribute that has an ElementRef as data type, but is
constrained by Schematron rules to reference a Type. Specializations of Role will
introduce further constraints.

<xsd:complexType name="Role" abstract="true">

 <xsd:complexContent>

 <xsd:extension base="ReferencableElement">

 <xsd:sequence>

 <xsd:element name="datatype" type="ElementRef"/>

 </xsd:sequence>

 </xsd:extension>

 </xsd:complexContent>

</xsd:complexType>

VO-DML/Schema
Role is only explicitly represented in the VO-DML/Schema. It defines the

datatype reference that identifies (through a <utype>) the type that is playing

the role on the parent type containing the role. Role is abstract, hence only

subclasses can be instantiated.

<xsd:complexType name="Role" abstract="true">

 <xsd:complexContent>

 <xsd:extension base="ReferencableElement">

 <xsd:sequence>

24

 <xsd:element name="datatype" type="ElementRef"/>

 <xsd:element name="multiplicity" type="Multiplicity"/>

 </xsd:sequence>

 </xsd:extension>

 </xsd:complexContent>

</xsd:complexType>

3.10.1 datatype : ElementRef
The datatype property of a Role identifies the target type of the role, the one

which actually "plays the role". In VO-DML/Schema it is represented by an

ElementRef that MUST identify a Type.

3.10.2 multiplicity : Multiplicity
Indicates the multiplicity or cardinality of the role. This indicates how many
instances of the target datatype can be assigned to the role property.

3.11 Attribute extends Role

An Attribute is the role a value type can play in the definition of a structured type,
i.e. an ObjectType or DataType. It represents a typical property of the parent

type such as age, mass, length, position etc.
Rules:

 The datatype of an Attribute, inherited from Role, MUST be a ValueType.

VO-UML

Figure 4 The rows in the lower part of the box represent attributes. Their name, datatype
and multiplicity are indicated.

VO-DML/Schema
<xsd:complexType name="Attribute">

 <xsd:complexContent>

 <xsd:extension base="Role">

 <xsd:sequence>

 <xsd:element name="constraints" type="Constraints"

 minOccurs="0"/>

 <xsd:element name="skosconcept" type="SKOSConcept"

 minOccurs="0"/>

 </xsd:sequence>

 </xsd:extension>

 </xsd:complexContent>

25

</xsd:complexType>

VO-DML/XML

3.11.1 constraints : Constraints [0..1]

3.11.2 skosconcept : SKOSConcept [0..1]
If an Attribute defines a "skosconcept", it indicates that its values should
represent a SKOS concept [TBD add reference]. It implies the value of the
attribute in an instance should be a URI [TBD maybe just a preferredValue ...?]
identifying a concept in some SKOS vocabulary that fulfills the constraints of the
SKOSConcept definition. In this case the data type attribute should be
compatible with a string.

3.12 Constraints

TBD

3.13 Relation extends Role

A Relation is a role played by an ObjectType in the definition of either another

ObjectType or a DataType. It indicates the ObjectType that is the target
(datatype) of the relation is related in some fashion to the source type.

3.14 Collection extends Relation

An ObjectType may be "composed of" other object types. A Collection

represents this composition relationship between a parent and child ObjectType.
The life cycles of the child objects are governed by that of the parent.

VO-UML

In VO-UML a collection relation is represented by a composition association, an
arrow with a closed diamond indicating a composition side of the container and an
arrow on the end of the contained class. We generally use a blue colour for this
relation.

26

VO-DML/XML

3.15 Reference extends Role

A reference is a relation that indicates a kind of usage, or dependency of one object

(the source, or referrer) on another (the target). Such a relation may in general

shared, i.e. many referrer objects may reference a single target object.

In general a reference relates two ObjectTypes, but a DataType-s can have a
reference as well. An example of this is a coordinate on the sky consisting of a
longitude and latitude, which requires a reference to a CoordinateFrame for its
interpretation. I.e. the frame is used as "reference data".

VO-UML

A reference is indicated by a (green) arrow from referrer (an ObjectTYpe or
DatType) to the target (an ObjectType). In UML an association is used, though
the reference is actually most similar to a binary association end.

Figure 5 Reference (green arrow) from an ObjectTYpe to an ObjectType.

27

Figure 6 Reference from a DataType to an ObjectType

VO-DML/XML
 <dataType>

 <vodml-id>source/SkyCoordinate</vodml-id>

 <name>SkyCoordinate</name>

...

 <reference>

 <vodml-id>source/SkyCoordinate.frame</vodml-id>

 <name>frame</name>

 <description>

...

 </description>

 <datatype>

 <utype>src:source/SkyCoordinateFrame</utype>

 </datatype>

 <multiplicity>1</multiplicity>

 </reference>

...

3.16 Multiplicity

Multiplicity indicates the cardinality of roles.We model this similar to the way this

is done in XML schema, namely with a minOccurs/maxOccurs pair of values. The
formar indicates the minimum number of instances or values that can be
assigned to a given role, the latter the maximum number. Also XMI supports two
values and we follow it in using -1 (or any negative value) as a possible value for
maxOccurs that indicates that there is no limit on the possible number of
instances. In XML schema this is indicated using the string value 'unbounded', in

UML diagrams generally with a ''.
[TBD We may wish to restrict the possible values for maxOccurs for Attribute
declarations to not allow negative values. I.e. the size of possible value

collections represented by an attribute with maxOccurs > 0 should always be
fixed. Motivation length, later...]

VO-UML

In VO-UML the cardinality, when assigned to an attribute, shows up in square
brackets after the attribute's type. If minOccurs and maxOccurs have the same
value, that single value is shown. If they have different values they show up

separated by '..'. The value of -1 for maxOccurs is represented by a '':

28

When the multiplicity is assigned o a relation, a similar pattern is shown near the
name of the relation, close to the target datatype of the relation:

Note that the 0..* here indicates minOccurs=0, maxOccurs=-1.

VO-DML/Schema
 <xsd:complexType name="Multiplicity">

 <xsd:sequence>

 <xsd:element name="minOccurs" type="xsd:nonNegativeInteger"

 default="1"/>

 <xsd:element name="maxOccurs" type="xsd:int" default="1"/>

 </xsd:sequence>

 </xsd:complexType>

VO-DML/XML
<objectType>

 <vodml-id>source.Source</vodml-id>

 <name>Source</name>

...

 <attribute>

 <vodml-id>source.Source.name</vodml-id>

 <name>name</name>

...

 <multiplicity>

 <minOccurs>1</minOccurs>

 <maxOccurs>1</maxOccurs>

 </multiplicity>

 </attribute>

...

 <collection>

 <vodml-id>source.Source.luminosity</vodml-id>

 <name>luminosity</name>

29

...

 <multiplicity>

 <minOccurs>0</minOccurs>

 <maxOccurs>-1</maxOccurs>

 </multiplicity>

 </collection>

 </objectType>

4 Mapping to other serialization formats
[Here we can discuss how one might map a VO-DML data model to a physical
representation format. This mapping would define how instances of the data
model can be serialized in the target representation.

4.1 XSD

ObjectType complexType

DataType complexType

Enumeration simpleType with restriction list
elements for the EnumL:iterals

PrimitiveType simpleType, possibly with restriction

Attribute Element on complexType, type
corresponding to mapping of datatype

Collection Element on complexType, , type
corresponding to mapping of datatype

Reference Element on complexTypwe, type must
be able to perform remote referencing

Extend xsd:extension of type definition

4.2 RDB

[Follow typical Object-Relational mapping rules.

ObjectType Table

DataType Implicit, one or more columns in a table
Enumeration Column in a table

PrimitiveType simpleType, possibly with restriction

Attribute One or more columns in a table
depending on type

Collection Foreign key

Reference Element on complexTypwe, type must
be able to perform remote referencing

30

4.3 Java

[TBD]

4.4 VOTable

[This is the purpose of the UTPE mapping document in …]

4.5 RDF schema

…

4.6 VO-DML/I: A default serialization language?

For examples it may be useful to define an explicit default serialization language
that is explicitly tailored to the VO-DML meta-model, rather than to a particular
implementation context. It should be able to express explicitly a set of instances
of a data model, and od so in terms of the meta-model itself. Its use could be to
make the mapping discussion more explicit, for in many cases there are osme
decisions that must be made that rely on elements that are not explicitly part of a
data model, but are implied by its definition in terms of VO-DML.
An example of this is the fact that it is assumed that every object, i.e. instance
ObjectType, has an identifier that identifies it. This element is never mentioned

explicitly in a VO-DML data model, and indeed its precise nature often depends
on a particular serialization format. But when describing mappings it is often
important to be able to define how this element is mapped as well.
A default and explicit serialization language will allow us to investigate the
mapping procedure more carefullt,as well as provide implementation neutral
example instance documents that can be compared to their expression in a
target serialization format.
UML allows something similar to this; it allows one to create Object-s that are
explicitly linked to types defined in a data model, with slots for setting values to
attributes and links to represent instances of relations.

5 Using VO-DML: How to define a data model in the

IVOA
Here we define the procedure for creating an IVOA data model and related
resources according to the VO-DML philosophy.

 Decide "Why"?
Default answer: to allow existing and future databases to describe their
contents (at least partially) in a common model. Sometimes, support for a
particular application area (protocol). Support faithful serialization of data
models in targeted XML documents and annotated serialization in
VOTable.

31

 Decide on universe of discourse: what must be described? How rich
should model be?

 Create conceptual/logical model. In drawings on whiteboard ("VO-UML"),
then transcribe to VO-DML and/or VO-DML/XML. Define concepts
completely, realizing that applications may pick and choose and transform.

 Sometimes, in application contexts: derive one or more physical
representations. Use as much as possible standard derivation of VO-DML
to target representation.

5.1 Rules ...

A new data model MUST have a VO-DML/XML representation. This is an XML
document that MUST be valid wrt. the vo-dml.xsd schema 11 and the rules
embodied by the vo-dml.sch.xml12 Schematron file. How this representation is
produced is not important. It may be written by hand, derived from a UML/XMI
representation using an XSLT script as in VO--DML or by some other means.
The VO-DML/XML document MUST be available online and an accepted version
MUST be available in an IVOA registry with a standard IVO Identifier.
An IVOA data model MUST have an HTML document in which each data model
element is described and is referencable through a URL consisting of a root URL
linking to the HTML document itself followed by a ‘#” sign and the utype of the
documented element. The XSLT script vo-dml2html.xsl MAY (SHOULD?) be
used to produce such a document from the VO-DML/XML representation. The
HTML document MUST be made available online and the HTML for the accepted
version MUST be registerd in an IVOA registry. TBC.
A VO-DML data model can import other data models. This allows it to use

elements from the other data model in the definition of its own. One particular
model is important and SHOULD be imported by all IVOA data modesl, the
IVOA_Profile 13 . This model contains a set of predefined data types, mainly
primitive types, such as string, boolean, integer and real.
A data model MAY produce an XML schema matching the data model. This
schema SHOULD allow one to define XML documents representing instances of
the data model in 1-1 mapping. The XML schema MAY (SHOULD?) be derived
from the VO-DML representation using a standard mapping as implemented by
the XSLT script vo-dml2xsd.xsl [TBD create this schema], or it MAY be written by
hand. In either case the XSD elements MUST (where appropriate) contain an

11

 The schema is currently available under http://volute.googlecode.com/svn/trunk/projects/dm/vo-

dml/xsd/vo-dml.xsd .
12

 The schematron file is currently available under
http://volute.googlecode.com/svn/trunk/projects/dm/vo-dml/xsd/vo-dml.sch.xml. A full validation
using both schema and schematron file is part of the ant build script under
https://volute.googlecode.com/svn/trunk/projects/dm/vo-dml/build.xml.
13

 Currently this data model is available under

https://volute.googlecode.com/svn/trunk/projects/dm/vo-dml/models/profile/IVOA_Profile.vo-
dml.xml , its HTML representation from https://volute.googlecode.com/svn/trunk/projects/dm/vo-
dml/models/profile/IVOA_Profile.html .

http://volute.googlecode.com/svn/trunk/projects/dm/vo-dml/xsd/vo-dml.xsd
http://volute.googlecode.com/svn/trunk/projects/dm/vo-dml/xsd/vo-dml.xsd
http://volute.googlecode.com/svn/trunk/projects/dm/vo-dml/xsd/vo-dml.sch.xml
https://volute.googlecode.com/svn/trunk/projects/dm/vo-dml/models/profile/IVOA_Profile.vo-dml.xml
https://volute.googlecode.com/svn/trunk/projects/dm/vo-dml/models/profile/IVOA_Profile.vo-dml.xml
https://volute.googlecode.com/svn/trunk/projects/dm/vo-dml/models/profile/IVOA_Profile.html
https://volute.googlecode.com/svn/trunk/projects/dm/vo-dml/models/profile/IVOA_Profile.html

32

app-info element identifying the model element that is represented using its utype
(format of app-info is TBD).
A data model MAY14 produce a TAP schema matching the data model. This can
be one derived from the VO-DML/XML representation using a standard mapping
as implemented by the XSLT script vo-dml2tap.xsl [TODO create this], or may be
written by hand. In either case the TAP schema elements MUST (where
appropriate) contain a utype identifying the model element that is represented.
[TBD for a complete representation a construct similar to the VOTable GROUP
may have to be added to the TAP meta-data elements.]

6 References
[UTYPES] utypes mapping document
[UML-Infr2.0] http://www.omg.org/spec/UML/2.0/Infrastructure/PDF/
[UML-Sup2.0] http://www.omg.org/spec/UML/2.0/Superstructure/PDF/
[XMI2.1] http://www.omg.org/spec/XMI/2.1/

Appendix A Example Source data model
We use a simple data model with hopefully some familiarity to the readers as
illustration to the various examples. It is a VO-DML representation of the TAP
data model. It can be more fully examined in
https://volute.googlecode.com/svn/trunk/projects/dm/vo-dml/models/source .
The following figure shows a UML version of the model following the graphical
rules explained in section 3 .

14

 Not all data models lend themselves to an Object-Relational Mapping (ORM). Particular for
models that are heavy on value types rather than object types such a representation may not be
natural.

https://volute.googlecode.com/svn/trunk/projects/dm/vo-dml/models/source

33

Figure 7 Simple Source data model used for illustrations in this document.

Appendix B Other modelling languages
The goal of VO-DML is to provide a domain specific modelling language, for the
VO domain. Similar efforts have been made for other domains and a meta-meta-
language has even been proposed to provide common semantics for such meta-
languages. Here we shortly link to some of these efforts.

B.1 XMI
See [XMI

B.2 (E)MOF
…

B.3 EMF/Ecore

B.4 OData/CSDL: Common Schema Definition Language
Language to support OData protocol, standard web protocol for querying,
retrieving, updating, deleting data on the web.

34

See http://www.odata.org/documentation/odata-v3-documentation/common-
schema-definition-language-csdl/#18_Informative_XSD_for_CSDL

See also Gdata15, "The Google Data Protocol is a REST-inspired technology for
reading, writing, and modifying information on the web."

B.5 RDF Schema
http://www.w3.org/TR/rdf-schema/

15

 https://developers.google.com/gdata/

http://www.odata.org/documentation/odata-v3-documentation/common-schema-definition-language-csdl/#18_Informative_XSD_for_CSDL
http://www.odata.org/documentation/odata-v3-documentation/common-schema-definition-language-csdl/#18_Informative_XSD_for_CSDL
http://www.w3.org/TR/rdf-schema/

