
1

 International

 Virtual

 Observatory

Alliance

VO-DML: a proposal for a consistent
modelling language for IVOA data models

Version 0.x-20130416

Working Draft 2013 April 16

!!! UNDER CONSTRUCTION !!!

TODO

 Decide on whether 3, 4 and appendix A can be merged.

 Executive summary.



This version:
 0.x-20130416

Latest version:
0.x-20130412

Previous version(s):

Editors:
 Gerard Lemson
 Laurent Bourgès

Authors:
UTYPE-s tiger team+Laurent Bourges

Abstract

2

We propose that data models in the IVOA should be written in a consistent
language. In this note we propose such a language, which we name VO-DML
(VO Data Modelling Language). We discuss the requirements we feel any such a
language should obey and describe their implementation in VO-DML. An earlier
version of VO-DML has been used extensively in the Simulation Data Model
effort1, and relieved that effort of a lot of work. One of the main requirements
leading to an update of that version to the one proposed here is its use in the
UTYPE specification. We describe how VO-DML helps in that effort.

Status of This Document

This is an IVOA Note for the IVOA DM working group. The first release of this
document was 2013-TBD.

This is an IVOA Note expressing suggestions from and opinions of the authors. It
is intended to share best practices, possible approaches, or other perspectives
on interoperability with the Virtual Observatory. It should not be referenced or
otherwise interpreted as a standard specification.

A list of current IVOA Recommendations and other technical documents can be
found at http://www.ivoa.net/Documents/.

1
 The language was developed mainly in the VO-URP project (https://code.google.com/p/vo-urp/)

and was formally defined in its intermediateModel.xsd document
(http://ivoa.net/Documents/SimDM/20120503/uml/intermediateModel.xsd).

http://www.ivoa.net/Documents/
https://code.google.com/p/vo-urp/

3

Contents

1 Motivation for and overview of VO-DML 5
2 Using VO-DML: How to define a data model in the IVOA 5
2.1 Rules ... 6

3 Modeling Concepts 7
3.1 Model 7

3.1.1 Package 7
3.1.2 ModelImport 7

3.2 Type 8
3.2.1 Value Type 8

3.2.1.1 PrimitiveType 8
3.2.1.2 Enumeration 8
3.2.1.3 DataType 8

3.2.2 OjectType 9
3.3 Role 9

3.3.1 Attribute 9
3.3.2 Collection 9
3.3.3 Reference 9
3.3.4 Extends, inheritance 10

4 VO-DML/XML 10
4.1 ReferencableElement 10

4.1.1 identifier : Identifier[] [1] 11
4.1.2 identification : Identification[] [0..*] 11

4.2 Identifier 11

4.2.1 utype : UTYPE[] [1] 11
4.2.2 Altid : ExtIdentifier[] [0..*] 11
4.2.3 @id : xsd:ID [0..1] 11
4.2.4 Examples 12

4.2.4.1 XML instance 12
4.3 UTYPE extends xsd:string 12

4.4 ExtIdentifier 12
4.4.1 source: anyURI [0..1] 12
4.4.2 id: string [1] 12

4.5 ElementRef 12
4.5.1 modelUtypeRef : UTYPE [0..1] 13
4.5.2 utyperef : UTYPE [1] 13

4.6 ConceptIdentification 13

4.7 Model extends ReferencableElement [] 13
4.7.1 name : string [1] 14
4.7.2 description : string [0..1] 14
4.7.3 title : string [0..1] 14
4.7.4 version : string [0..1] 14
4.7.5 previousVersion : anyURI [0..1] 14

4

4.7.6 import : ModelProxy[] [0..*] 14
4.7.7 remoteModel : RemoteModel[] [0..*] 15
4.7.8 package : Package[] [0..*] 15
4.7.9 objectType : ObjectType[] [0..*] 15
4.7.10 dataType : DataType[] [0..*] 15
4.7.11 primitiveType : PrimitiveType[] [0..*] 15
4.7.12 enumeration : Enumeration[] [0..*] 15

4.8 Package extends ReferencableElement[] 15
4.8.1 name: string [1] 15
4.8.2 description: string [0..1] 15
4.8.3 depends : PackageDependency[] [0..*] 15
4.8.4 objectType : ObjectType[] [0..*] 15
4.8.5 dataType : DataType[] [0..*] 15
4.8.6 primitiveType : PrimitiveType[] [0..*] 15
4.8.7 enumeration : Enumeration[] [0..*] 16
4.8.8 package : Package[] [0..*] 16

4.9 ModelProxy extends ReferencableElement [] 16

4.10 Type extends ReferencableElement [] 16
4.10.1 Name 16
4.10.2 Description 16
4.10.3 extends: TypeExtension [0..1] 16

4.11 ObjectType extends Type [] 16

4.11.1 container: Container[] [0..1] 16
4.11.2 attribute: Attribute[] [0..*] 17
4.11.3 reference: Reference[] [0..*] 17
4.11.4 collection: Collection[] [0..*] 17

4.12 ValueType extends Type [] 17

4.13 DataType extends ValueType [] 17

4.14 PrimitiveType extends ValueType [] 17

4.15 Enumeration extends ValueType [] 17

4.16 Literal extends ReferencableElement [] 17

4.17 Role extends ReferencableElement [] 17
4.17.1 datatype : ElementRef 18

4.18 Attribute extends Role [] 18
4.18.1 name : string [1] 18
4.18.2 description : string [1] 18
4.18.3 multiplicity : Multiplicity[] [1] 18
4.18.4 constraints : Constraints [0..1] 18
4.18.5 skosconcept : SKOSConcept [0..1] 18

4.19 Container extends Role 18
4.20 TypeExtension extends Role 18
4.21 Relation extends Role 19

4.21.1 name : string [1] 19
4.21.2 description : string [1] 19
4.21.3 multiplicity : Multiplicity [1] 19

4.22 Reference extends Relation 19
4.23 Collection extends Relation 19

5

4.24 Identification extends Relation 19

4.25 Multiplicity 19
5 Mapping to serialization formats 19

5.1 XSD 20
5.2 RDB 20
5.3 Java 20
5.4 VOTable 20

Appendix A Graphical representation 20

Appendix B TAP in VO-DML 23

Appendix C How to do data modelling 23

1 Motivation for and overview of VO-DML

 Data model in information integration.

 VO-DML as IVOA's Esperanto.

 Data model defines the universe of discourse expressed in common
language.



Consistent language assists in understanding, simplifies modeling, avoid
redundancy, allows reuse, defines targets for mapping (UTYPE-s), can be
mapped consistently to various other representations, is designed for data
modeling, enables interoperability, …

History: Simulation datamodel. UML (standard, implementation neutral), mapping
to RDB (storage, TAP/ADQL compatible), mapping to XML schema (messaging,
ingestion), Java (implementation of database management and web site). HTML
(documentation), UTYPE-s (mapping).

2 Using VO-DML: How to define a data model in the

IVOA
Here we define the procedure for creating an IVOA data model and related
resources according to the VO-DML philosophy.

 Decide "Why"? Default answer: to allow existing and future databases to
describe their contents (at least partially) in a common model. Sometimes,
support for a particular application area (protocol)

 Decide on universe of discourse: what must be described? How rich should
model be?

6

 Create conceptual/logical model. In drawings on whiteboard, then transcribe
to VO-DML. Define concepts completely, realizing that applications may
pick and choose and transform. This is the common language

 Sometimes, in application contexts: derive one or more physical
representations. Use as much as possible standard derivation of VO-DML
to target representation.

2.1 Rules ...

A new data model MUST have a VO-DML/XML representation. This is an XML
document that MUST be valid wrt. the vo-dml.xsd schema 2 and the rules
embodied by the vo-dml.sch.xml3 Schematron file. How this representation is
produced is not important. It may be written by hand, derived from a UML/XMI
representation using an XSLT script as in VO--DML or by some other means.
The VO-DML/XML document MUST be available online and an accepted version
MUST be available in an IVOA registry with a standard IVO Identifier.
An IVOA data model MUST have an HTML document in which each data model
element is described and is referencable through a URL consisting of a root URL
linking to the HTML document itself followed by a ‘#” sign and the utype of the
documented element. The XSLT script vo-dml2html.xsl MAY (SHOULD?) be
used to produce such a document from the VO-DML/XML representation. The
HTML document MUST be made available online and the HTML for the accepted
version MUST be registerd in an IVOA registry. TBC.
A VO-DML data model can import other data models. This allows it to use
elements from the other data model in the definition of its own. One particular
model is important and SHOULD be imported by all IVOA data modesl, the
IVOA_Profile 4 . This model contains a set of predefined data types, mainly
primitive types, such as string, boolean, integer and real.
A data model MAY produce an XML schema matching the data model. This
schema SHOULD allow one to define XML documents representing instances of
the data model in 1-1 mapping. The XML schema MAY (SHOULD?) be derived
from the VO-DML representation using a standard mapping as implemented by
the XSLT script vo-dml2xsd.xsl [TBD create this schema], or it MAY be written by
hand. In either case the XSD elements MUST (where appropriate) contain an
app-info element identifying the model element that is represented using its utype
(format of app-info is TBD).

2
 The schema is currently available under http://volute.googlecode.com/svn/trunk/projects/dm/vo-

dml/xsd/vo-dml.xsd .
3
 The schematron file is currently available under

http://volute.googlecode.com/svn/trunk/projects/dm/vo-dml/xsd/vo-dml.sch.xml. A full validation
using both schema and schematron file is part of the ant build script under
https://volute.googlecode.com/svn/trunk/projects/dm/vo-dml/build.xml.
4
 Currently this data model is available under

https://volute.googlecode.com/svn/trunk/projects/dm/vo-dml/models/profile/IVOA_Profile.vo-
dml.xml , its HTML representation from https://volute.googlecode.com/svn/trunk/projects/dm/vo-
dml/models/profile/IVOA_Profile.html .

http://volute.googlecode.com/svn/trunk/projects/dm/vo-dml/xsd/vo-dml.xsd
http://volute.googlecode.com/svn/trunk/projects/dm/vo-dml/xsd/vo-dml.xsd
http://volute.googlecode.com/svn/trunk/projects/dm/vo-dml/xsd/vo-dml.sch.xml
https://volute.googlecode.com/svn/trunk/projects/dm/vo-dml/models/profile/IVOA_Profile.vo-dml.xml
https://volute.googlecode.com/svn/trunk/projects/dm/vo-dml/models/profile/IVOA_Profile.vo-dml.xml
https://volute.googlecode.com/svn/trunk/projects/dm/vo-dml/models/profile/IVOA_Profile.html
https://volute.googlecode.com/svn/trunk/projects/dm/vo-dml/models/profile/IVOA_Profile.html

7

A data model MAY5 produce a TAP schema matching the data model. This can
be one derived from the VO-DML/XML representation using a standard mapping
as implemented by the XSLT script vo-dml2tap.xsl [TODO create this], or may be
written by hand. In either case the TAP schema elements MUST (where
appropriate) contain a utype identifying the model element that is represented.
[TBD for a complete representation a construct similar to the VOTable GROUP
may have to be added to the TAP meta-data elements.]

3 Modeling Concepts
Here we list the main concepts in the VO-DML meta-model. VO-DML follows an
object-oriented approach, but restricts itself to structure mainly. Operations are
explicitly excluded from our language.
Data models in the IVOA have a particular goal, to facilitate interoperability, in
particular to provide a common language to interpret, understand data sets of
various forms. These are generally distributed and out of central control. They
may be willing to send their data over the net in serialized form, but will generally
not have operations to manipulate their data sets. Operations are gwenerally also
very much application specific. Hence we feel we should concentrate on the data
itself.

3.1 Model

A (data) model represents a coherent set of type definitions. It defines which
concepts it is worth talking/"discoursing" about.

3.1.1 Package
A package provides "name spacing" to a data model. Packages divide the set of
types in a model in subsets. Certain constraints, such as uniqueness of the type's
name, are defined only within the context of the package. This concept is
equivalent to similar concept in UML and other modeling systems and languages.
A package groups related elements such as type definitions and possibly sub
packages. Packages can depend on each other, which means that elements in one
package can use elements in the target package in their definition. This relation is
transitive. A package is similar to an XML namespace or a Java package.

3.1.2 ModelImport
A model can use the types defined in another model. To this end it must use an
explicit import. The types in the remote model can be used in role definitions

5
 Not all data models lend themselves to an Object-Relational Mapping (ORM). Particular for

models that are heavy on value types rather than object types such a representation may not be
natural.

8

3.2 Type

The goal of a (data) model is to define types. A type expresses a particular
concept in a formal, machine usable manner. Its definition in a data model
expresses that that concept is important in the universe of discourse
covered/defined by the data model. It makes the concept part of the formal
vocabulary defined by the model. It classifies "instances"/"objects"/"values" in the
world into groups defined by common properties and meaning. Every instance
"worth talking about" "has a"/"is declared to have a" type. Every instance has
exactly one type, though due to inheritance an instance is also an instance of any
base type of the declared type.
The most important categorization of Types is that between so called object
types and value types.
[TBD find equivalent categorizations: reference type vs value type, ...]

3.2.1 Value Type
A ValueType represents a simple concept that is used to describe/define more
complex concepts such as ObjectTypes. Instances of ValueType-s, i.e. values,
are, in contrast to ObjectTypes not explicitly identified. They are identified by their
value. For example an integer is a value type; all instances of the integer value '3'
represent the same integer.
The domain of a value type, i.e. its set of valid instance/values, is self-evident
from its definition. This is in contrast to the case of ObjectTypes discussed below.

3.2.1.1 PrimitiveType

A PrimitiveType represents an atomic piece of data, a value. Examples are the
standard types like integer, Boolean, real, and string (which we treat as an
atomic value, not an array of characters).

3.2.1.2 Enumeration

An Enumeration is a PrimitiveType with a finite list of possible values, the Literals.
This list restricts the domain of possible values which are to be treated as strings.

3.2.1.3 DataType

A DataType is a value type with structure. The structure is generally defined by
attributes on the DataType. An instance of a DataType, also a value, consists of
giving values for the attributes. This is similar to ObjectTypes defined below, but
in contrast to ObjectTypes, datatypes have no explicit identity, also DataType-s
are defined by their value only. For example the DataType Position3D, with
attributes x,y and z, is completely defined by the values of the three attributes.
There are no 2 distinct instances of this DataType with exact same values
(x=1.2,y=2.3,z=3.4).

9

3.2.2 OjectType
ObjectTypes are the fundamental building blocks of a data model. An ObjectType
represents a full-fledged concept and is built up from properties and relations to
other ObjectTypes. An important feature of ObjectTypes as opposed to
ValueTypes (see below) is that instances of ObjectTypes, i.e. objects, have their
own, explicit identity6. That is, we want to assign an explicit identifier to each
particular usage of this concept, for instance here to distinguish between various
Experiment instances.
Another feature of ObjectType-s is that the existence of certain instances is not
self-evident from their definition. For example the definition of the ObjectType
Person does not mandate that a certain person with name="alice" and age=23
years exists. Hence it is meaningful to list instances of ObjectType-s explicitly to
"announce" their existence. This is indeed why we have serializations of data
models in the first place, to announce the existence of objects of various types.

3.3 Role

Types can "play a role" in the definition of another type. This concept is made
explicit in VO-DML using the abstract base class Role. All explicit roles are
defined in the subsections. A Role definition always indicates, through its
datatype which type it is that is playing the role. Different Roles have different
restrictions on which "type of" type can play the role

3.3.1 Attribute
An attribute is the role a value type can play in the definition of a structured type,
i.e. an ObjectType or DataType. It represents a typical property such as age,
mass, length etc.

3.3.2 Collection
An ObjectType may be "composed of" other object types. It does so through the
definition of collections of the child types.
The life cycles of the child objects are governed by that of the parent.
In UML a composition relation is represented by a binary association end.

3.3.3 Reference
A reference is a relation that indicates a kind of usage, or dependency of one object
on another. It is in general shared, i.e. many objects may reference a single other
object. Accordingly the referenced object is independent of the "referee".

DataType-s can have a reference as well. An example of this is a coordinate on
the sky consisting of a longitude and latitude, which requires a reference to a
CoordinateFrame for its interpretation. I.e. the frame is used as "reference data".

6
 This is admittedly a somewhat theoretical but important object-oriented concept.

10

3.3.4 Extends, inheritance
Indicates the typical “is a” relation between the sub-type and its base-type (the one
pointed at). In this meta-model we do not support multiple inheritances. Furthermore

ObjectTypes extend ObjectTypes, DataTypes extend Datatypes etc.

4 VO-DML/XML
Here we document the formal definition of the VO-DML meta-model. The official
format of a VO-DML data model is an XML document conforming to the XML
schema vo-dml.xsd7 and further constrained by an associated Schematron file,
vo-dml.sch.xml8. We will refer to this format as VO-DML/XML. The schema
should be self-documented as much as possible.
In the following subsections the main model elements are described, and the
corresponding XML schema element is given. For concrete cases a UML
example is given with its mapping to VO-DML/XML [TBD do next as well? and an
example instance is given using an XML element from a typical mapping of VO-
DML to XML schema.] The examples are all extracted from the TAP data model
that is described in Appendix B.

[TBD I am using a pinkish shading for concepts that I think are not really required
or should be discussed]

4.1 ReferencableElement

All elements listed explicitly in this section are subclasses of
ReferencabbleElement. This abstract base class has an identifier (containing the
"utype") which must be unique in the model. This means that this element (well
its concrete sub types) can be referenced by using their identifier. This is used
explicitly in the ElementRef type that implements such references inside VO-DML.
It can also be used in other contexts such as the VOTable's utype attributes [TBD
add reference to the UTYPEs document]
ReferencableElement may also itself be identified with elements in other models
using possible Identification relationships.

<xsd:complexType name="ReferencableElement" abstract="true">

 <xsd:sequence>

 <xsd:element name="identifier" type="Identifier"

 minOccurs="1"/>

 <xsd:element name="identifaction" type="ConceptIdentification"

 minOccurs="0" maxOccurs="unbounded"/>

 </xsd:sequence>

</xsd:complexType>

7
 https://volute.googlecode.com/svn/trunk/projects/dm/vo-dml/xsd/vo-dml.xsd

8
 https://volute.googlecode.com/svn/trunk/projects/dm/vo-dml/xsd/vo-dml.sch.xml

11

4.1.1 identifier : Identifier[] [1]
The identifier contains a utype child element that must be unique within a model.
If it is decided that each model must have a unique utype and that that utype
should act as prefix for the utypes within the model, global uniqueness is ensure.

4.1.2 identification : Identification[] [0..*]
Indicates that the concept represented by the element is similar to/can be
identified with a concept defined in another model. That model must be imported
by the current model, and the corresponding concept must have been imported
as well.

4.2 Identifier

We use a separate Identifier class to model how one can identify elements in a
data model. We do this to enable generalization of the single ID or utype. If this is
deemed not useful it can be replaces with adding an @id attribute and utype
element on ReferencableElement directly.

<xsd:complexType name="Identifier">

 <xsd:sequence>

 <xsd:element name="utype" type="UTYPE"/>

 <xsd:element name="altid" type="ExtIdentifier"

 minOccurs="0" maxOccurs="unbounded"/>

 </xsd:sequence>

 <xsd:attribute name="id" type="xsd:string" use="optional"/>

</xsd:complexType>

4.2.1 utype : UTYPE[] [1]
The utype identifies the containing ReferencableElement and can be used to
reference it from inside the model or from the outside, for example through a
@utype attribute in a VOTable document.

4.2.2 Altid : ExtIdentifier[] [0..*]
Any set of alternative identifiers for the parent concept RerferencableElement.
E.g. the XMI:ID of an original UML model, or a publisherDID or ...

4.2.3 @id : xsd:ID [0..1]
An id attribute can be added to an identifier element. This is meant only to have
meaning inside the document, for example it can be used for referencing the
identified element. The XSLT script xmi2vo-dml.xsl uses this attribute as a place
holder when generating the VO-DMl/XML representation form a UML diagram. In
the first step the @id and utype will be set to the original xmiid attribute of the
corresponding UML element. In the post-processing step where the utype-s are
generated, the equality of @id and utype is used as criterion to decide that the
utype should be generated according to the grammar. The two will not be the
same if the utype was explicitly defined in the model itself. IN principle this role
could be taken over by the altid element as well, currently there is some
redundancy. [TBD this should be resolved].

12

4.2.4 Examples

4.2.4.1 XML instance

<identifier id=”_ueykdahxeoimoiuseoi”>

 <utype>TAP:Column.name</utype>

</identifier>

4.3 UTYPE extends xsd:string

We introduce a special (simple)type for representing UTYPE values in identifier
elements.. This is for the case where we want to put restrictions on the utype
syntax. We can leave the syntax of utype-s free, or insist (only) on a prefix that
MUST be the {UTYPE of the Model + ‘:’}, or insist on some grammar for deriving
the utype from the data model element it identifies.
The HTML documentation SHOULD support looking up an element by UTYPE by
providing an anchor for each referencable element.

<xsd:simpleType name="UTYPE">

 <xsd:restriction base="xsd:string">

 <!-- TBD add a restriction, e.g. a format -->

 </xsd:restriction>

</xsd:simpleType>

4.4 ExtIdentifier

Alternative identifier possibly obtained from a source document from which the
model was derived. May have a URL to the source and a simple string as id.

4.4.1 source: anyURI [0..1]
This element allows one to indicate the context within which the id element has a
meaning, "where" one should go to look up the element using the id.

4.4.2 id: string [1]
The identifier of this element in the external context identified by the source
Modeled as a string, could be "anyType".

4.5 ElementRef

When referring to other elements in the current or a remote, imported model, an
instance of ElementRef is to be used. It encapsulates the data structure allowing
one to identify the referenced element.

<xsd:complexType name="ElementRef">

 <xsd:sequence>

 <xsd:element name="modelUtypeRef" type="xsd:string"

 minOccurs="0"/>

 <xsd:element name="utyperef" type="UTYPE" minOccurs="1"/>

 </xsd:sequence>

13

 <xsd:attribute name="external" type="xsd:boolean" use="optional"

 default="false"/>

 <xsd:attribute name="idref" type="xsd:string" use="optional">

</xsd:complexType>

4.5.1 modelUtypeRef : UTYPE [0..1]
Element holding on to the "utype" of the model to which the referenced element
belongs. This should be the same as the utype of the current model, or of one of
the imported models. If this element is not specified, it is assumed the referenced
element belongs to the current model. Note, this is an attempt at normalizing the
utype referencing model. The alternative is to use a prefix on the utyperef
element to identify the model.

4.5.2 utyperef : UTYPE [1]
This element represents the utype of the element that is actually referenced.
Depending on context there may be additional constraints on the type of the
referenced element.
[TBD
Currently it is assumed that the utyperef string must have a prefix that identifies
the model the referenced element belongs to. But see previous item. It is TBD
whether different usages of a model might refer to a model's elements with
different prefixes. If that were allowed, it would make it easier to support the use
of custom models even before these have been accepted as a standard (if they
ever will). In that case though we MUST have rules how to look up remote
elements. E.g. substitute remote model's utype for prefix before looking up
element. Or utype-identifiers in a model MUST not have a prefix?
]

4.6 ConceptIdentification

Represents a similarity/equivalence/... of a concept in an external data model or
other set of concept definitions to the current element. We do not assume that
the external model is VO-DML or imported. Hence the remoteid may be a utype
or not. In principle the description could give that info. Or a remoteURL attribute
should be added.

4.7 Model extends ReferencableElement []

This class represents the data model as a whole. It defines the type for the only
possible root element in a VO-DML/XML document. It contains some meta-data
elements and otherwise mainly type definition, possibly distributed over
packages. A Model MAY import other VO-DML models and may also have still
looser relations to other types of models.

<xsd:complexType name="Model">

 <xsd:complexContent>

 <xsd:extension base="ReferencableElement">

 <xsd:sequence>

14

 <xsd:element name="name" type="xsd:string" minOccurs="1"/>

 <xsd:element name="description" type="xsd:string"

 minOccurs="0"/>

 <xsd:element name="title" type="xsd:string" minOccurs="0"/>

 <xsd:element name="author" type="xsd:string"

 minOccurs="0" maxOccurs="unbounded" />

 <xsd:element name="version" type="xsd:string"/>

 <xsd:element name="previousVersion" type="xsd:anyURI"

 minOccurs="0" />

 <xsd:element name="lastModified" type="xsd:dateTime" />

 <xsd:element name="import" type="ModelProxy"

 minOccurs="0" maxOccurs="unbounded"/>

 <xsd:element name="remotemodel" type="RemoteModel"

 minOccurs="0" maxOccurs="unbounded"/>

 <xsd:element name="package" type="Package"

 minOccurs="0" maxOccurs="unbounded"/>

 <xsd:element name="objectType" type="ObjectType"

 minOccurs="0" maxOccurs="unbounded" />

 <xsd:element name="dataType" type="DataType"

 minOccurs="0" maxOccurs="unbounded" />

 <xsd:element name="enumeration" type="Enumeration"

 minOccurs="0" maxOccurs="unbounded" />

 <xsd:element name="primitiveType" type="PrimitiveType"

 minOccurs="0" maxOccurs="unbounded" />

 </xsd:sequence>

 </xsd:extension>

 </xsd:complexContent>

</xsd:complexType>

4.7.1 name : string [1]
The (short) name of the model.

4.7.2 description : string [0..1]
A human readable description of the model.

4.7.3 title : string [0..1]
Formal, long, title of this data model.

4.7.4 version : string [0..1]
Label indicating the version of this model.

4.7.5 previousVersion : anyURI [0..1]
URL to the VO-DML/XML document with the previous version of this data model
from which the current version was derived.

4.7.6 import : ModelProxy[] [0..*]
For a Model to reuse types form another model, or to indicate identifications
between its elements and an external model, a ModelProxy must be created
through an import element.

15

4.7.7 remoteModel : RemoteModel[] [0..*]
A 'remoteModel' element indicates that information in the current model uses
some remote model, but in a loose manner. For example a concept in the current
model may be declared to be "similar" to a concept defined in a remote model,
where this remote model need not be a VO-DML model, but may ba an XML
schema for example.

4.7.8 package : Package[] [0..*]
A Model can distribute its type definitions over packages. This provides for name
spacing options, allowing multiple types with the same name.

4.7.9 objectType : ObjectType[] [0..*]
Collection of ObjectType-s defined directly under the model. In many IVOA data
models packages have not been explicitly defined. Instead types were defined
directly under the model. In this meta-model we support this as well by adding
collections for each of the different “types of types”.

4.7.10 dataType : DataType[] [0..*]
Collection of DataType-s defined directly under the model.

4.7.11 primitiveType : PrimitiveType[] [0..*]
Collection of PrimitiveType-s defined directly under the model.

4.7.12 enumeration : Enumeration[] [0..*]
Collection of Enumeration-s defined directly under the model.

4.8 Package extends ReferencableElement[]

4.8.1 name: string [1]
The name of the package, which must be unique in the parent container of the
package, either the model, or another package. The uniqueness is determined
over all child elements of the container at the same level, both types and other
packages.

4.8.2 description: string [0..1]
A short description of this package.

4.8.3 depends : PackageDependency[] [0..*]
A package can "depend" on other packages. This generally implies that types in
one package depend on one or more types in the other package.

4.8.4 objectType : ObjectType[] [0..*]
Collection of ObjectTypes defined in this package.

4.8.5 dataType : DataType[] [0..*]
Collection of DataTypes defined in this package.

4.8.6 primitiveType : PrimitiveType[] [0..*]
Collection of PrimitiveTypes defined in this package.

16

4.8.7 enumeration : Enumeration[] [0..*]
Collection of Enumerations defined in this package.

4.8.8 package : Package[] [0..*]
Collection of child packages defined in this package.

4.9 ModelProxy extends ReferencableElement []

A model can import another model. This implies generally that elements of the
external model are used in the definition of elements in the current model. This
"proxy" provides a URL identifying the VO-DML/XML representation of the
imported model, as well as a URL to the documentation of that model. It also
MAY define a prefix that is to be used when interpreting ElementRef elements in
the current model, but see the discussion in the section on the utyperef element

in ElementRef[].

<xsd:complexType name="ModelProxy">

 <xsd:complexContent>

 <xsd:extension base="ReferencableElement">

 <xsd:sequence>

 <xsd:element name="name" type="xsd:string" minOccurs="0"/>

 <xsd:element name="ivoId" type="xsd:anyURI" minOccurs="0"/>

 <xsd:element name="url" type="xsd:anyURI" minOccurs="1">

 <xsd:element name="prefix" type="xsd:string" minOccurs="0"/>

 <xsd:element name="documentationURL" type="xsd:anyURI"

 minOccurs="1"/>

 </xsd:sequence>

 </xsd:extension>

 </xsd:complexContent>

</xsd:complexType>

4.10 Type extends ReferencableElement []

This is the base class of all type definitions. A Type is a ... [TBD]

4.10.1 Name
The name of the type. Must be unique in the collection of names of
types+packages in the direct container (Model or Package) of the Type.

4.10.2 Description
Free form description of the Type.

4.10.3 extends: TypeExtension [0..1]
If not null, defines the base type of this Type.

4.11 ObjectType extends Type []

Represents the ObjectType concept defined in section 3.2.2 .

4.11.1 container: Container[] [0..1]
Pointer to the ObjectType that is the parent in a collection of which this
ObjectType is the declared child datatype.

17

[TBD really redundant, mainly here so a foreign key has something to identify
with.]

4.11.2 attribute: Attribute[] [0..*]
Collection of Attribute definitions.

4.11.3 reference: Reference[] [0..*]

4.11.4 collection: Collection[] [0..*]

4.12 ValueType extends Type []

4.13 DataType extends ValueType []

4.14 PrimitiveType extends ValueType []

PrimitiveTypes are the simplest examples of ValueTypes. They are represented by a
single value only. A set of PrimitiveTypes is predefined in the IVOA_Profile data
model in https://volute.googlecode.com/svn/trunk/projects/dm/vo-
dml/models/profile/IVOA_Profile.vo-dml.xml .

4.15 Enumeration extends ValueType []

4.16 Literal extends ReferencableElement []

4.17 Role extends ReferencableElement []

A Role represents the usage of one type (call it "target") in the definition of
another (type "source"). The "target" type is said to play a role in the definition of
the "source" type. Examples are where the target is the base class of the source,
or where the target is the data type of an attribute defined on the source.
There are different kinds of roles, in VO-DML defined as sub types of Role. Role
defines only a "datatype" attribute that has an ElementRef as data type, but is
constrained by Schematron rules to reference a Type. Specializations of Role will
introduce further constraints.

<xsd:complexType name="Role" abstract="true">

 <xsd:complexContent>

 <xsd:extension base="ReferencableElement">

 <xsd:sequence>

 <xsd:element name="datatype" type="ElementRef"/>

 </xsd:sequence>

 </xsd:extension>

https://volute.googlecode.com/svn/trunk/projects/dm/vo-dml/models/profile/IVOA_Profile.vo-dml.xml
https://volute.googlecode.com/svn/trunk/projects/dm/vo-dml/models/profile/IVOA_Profile.vo-dml.xml

18

 </xsd:complexContent>

</xsd:complexType>

4.17.1 datatype : ElementRef
The "datatype" element identifies the target element, which MUST be a Type.

4.18 Attribute extends Role []

Rules:

 The datatype of an Attribute MUST identify a ValueType

4.18.1 name : string [1]
The name of the attribute, which must be unique within the collection of named
roles available on a type. This includes inherited roles.

4.18.2 description : string [1]
Description of the attribute.

4.18.3 multiplicity : Multiplicity[] [1]
The multiplicity (also sometimes referred to as cardinality) indicates whether an
attribute must have a value, or not, or whether it may have multiple values.

4.18.4 constraints : Constraints [0..1]
ddd

4.18.5 skosconcept : SKOSConcept [0..1]
If an Attribute defines a "skosconcept", it indicates that its values should
represents a SKOS concept [TBD add reference]. It implies the value of the
attribute in an instance should be a URI [TBD maybe just a preferredValue ...?]
identifying a concept in some SKOS vocabulary that fulfills the constraints of the
SKOSConcept definition. In this case the datatype attribute should be compatible
with a string.

4.19 Container extends Role

Reference from an objecttype to another objecttype that to

4.20 TypeExtension extends Role

TypeExtension represents the "usual" inheritance relationship familiar from object
oriented programming and modeling. In VO-DML TYpeExtension is a role, hence
has a datype element that identifies the base type through its value.

For data models it implies that properties are inherited from base type

19

4.21 Relation extends Role

A Relation is a role played by an ObjectType in the definition of either another
ObjectType or a DataType. It indicates the ObjectType that is the target
(datatype) of the relation is related in some fashion to the source type.

4.21.1 name : string [1]

4.21.2 description : string [1]

4.21.3 multiplicity : Multiplicity [1]

4.22 Reference extends Relation

4.23 Collection extends Relation

A collection represents a composition relationship between a parent and child
ObjectType.

4.24 Identification extends Relation

This class indicates a semantic relation between a concept defined in the current
model and the target concept of the relation. How to interpret the relation is
indicated by the attributes of the identification object.
[TBC]

4.25 Multiplicity

Multiplicity indicates the cardinality of roles. It is implemented as an enumerated
list with the following values:

 1
there must be 1 and only 1 value assigned.

 0..1
at most one value can be assigned, possibly none.

 0..*
any number of values can be assigned, including none.

 1..*
there must be at least 1 value assigned, possibly more.

5 Mapping to serialization formats

20

5.1 XSD

5.2 RDB

5.3 Java

5.4 VOTable

Appendix A Graphical representation
When showing example data models we will often use a graphical representation
of the model. For this we use a UML "syntax" with some extra rules applied. The
VO-URP pipeline9, and the xmi2vo-dml.xsl script work with a MagicDraw
CommunityEdition 12.1 UML Profile. This was also used in the Simulation Data
Model. The XSLT script will recognize the UML concepts from the profile and will
map these to corresponding VO-DML concepts. Here we give for each VO-DML
concept an example UML component:

A.1 Model
Not explicitly represented.

A.2 Package

A.3 ModelImport
A package-like element with stereotype <<modelimport>> and possibly some
contained type proxies. The latter MUST define a utype.

9
 See presentations in Triest 2008:

http://wiki.ivoa.net/internal/IVOA/InterOpMay2008DataModels/dmstandards.ppt and
http://wiki.ivoa.net/internal/IVOA/InterOpMay2008DataModels/IVOA-InterOp2008-UML-VO-
Transformer-1_0.pdf and GoogleCode site, http://vo-urp.googlecode.com and

http://wiki.ivoa.net/internal/IVOA/InterOpMay2008DataModels/dmstandards.ppt
http://wiki.ivoa.net/internal/IVOA/InterOpMay2008DataModels/IVOA-InterOp2008-UML-VO-Transformer-1_0.pdf
http://wiki.ivoa.net/internal/IVOA/InterOpMay2008DataModels/IVOA-InterOp2008-UML-VO-Transformer-1_0.pdf
http://vo-urp.googlecode.com/

21

A.4 ObjectType
A box which may have a stereotype such as <<modelelement>> in example, but
may go without one. May have attributes.

A.5 PrimitiveType
A box with stereotype <<primitivetype>> and a name. Nothing else.

A.6 Enumeration
A box with stereotype <<enumeration>> and a list of literals.

A.7 DataType
A box with stereotype <<datatype>> and attributes.

A.8 Attribute
See DataType or ObjectType for examples. The entries in the bottom part of the
box are attributes. They must have a name and data type separated by a ':' and

22

must have a multiplicity indicated by the expression between '[]'. They may have
a stereotype.

A.9 Reference
A reference is represented by a (green) arrow from a source ObjectType or
DataType to a target ObjectType. The end near the target has a name and
multiplicity.

A.10 Collection and Container
A collection is represented by a (blue) line with a diamond attached to a parent
ObjectType and an arrow attached to the child ObjectType. The end near the
child has the collection's name and its multiplicity.

The parent end is not given an explicit name, but is referred to as the Container
for the child type.

A.11 TypeExtension

23

A red, open arrow from class Table to class DatabaseObject indicates that the
former extends, or "inherits from" the latter, which is also the "base type" of the
former.

Appendix B TAP in VO-DML
We use a simple data model with hopefully some familiarity to the readers as
illustration to the various examples. It is a VO-DML representation of the TAP
data model. It can be more fully examined in
https://volute.googlecode.com/svn/trunk/projects/dm/vo-dml/models/tap .
The following figure shows a UML version of the model following the graphical
rules explained in Appendix A.

Appendix C How to do data modelling
Previous work

 http://www.ivoa.net/internal/IVOA/InterOpMay2004DataModel/dm-
presentation20040528.ppt

 http://www.ivoa.net/internal/IVOA/VOResource010RevNotes/ModelBasedS
chema.ppt

 http://wiki.ivoa.net/internal/IVOA/InterOpMay2008DataModels/dmstandards.
ppt



https://volute.googlecode.com/svn/trunk/projects/dm/vo-dml/models/tap
http://www.ivoa.net/internal/IVOA/InterOpMay2004DataModel/dm-presentation20040528.ppt
http://www.ivoa.net/internal/IVOA/InterOpMay2004DataModel/dm-presentation20040528.ppt
http://www.ivoa.net/internal/IVOA/VOResource010RevNotes/ModelBasedSchema.ppt
http://www.ivoa.net/internal/IVOA/VOResource010RevNotes/ModelBasedSchema.ppt
http://wiki.ivoa.net/internal/IVOA/InterOpMay2008DataModels/dmstandards.ppt
http://wiki.ivoa.net/internal/IVOA/InterOpMay2008DataModels/dmstandards.ppt

