	[image:]
	 International
 Virtual
 Observatory
Alliance

UTYPEs: Portable Data Model References

[bookmark: _Toc76460932][bookmark: _Toc76461115][bookmark: _Toc76461132][bookmark: _Toc76461190][bookmark: _Toc76461321][bookmark: _Toc76461523][bookmark: _Toc76461611]Version 0.5-20130422
[bookmark: _Toc76460933][bookmark: _Toc76461116][bookmark: _Toc76461133][bookmark: _Toc76461191][bookmark: _Toc76461322][bookmark: _Toc76461524][bookmark: _Toc76461612]Working Draft 2013 April 22

This version:
	0.x-20130412
Latest version:
-
Previous version(s):
	 Older mapping documents?

Editors:
	Gerard Lemson
 Omar Laurino
 Mireille Louys
	
Authors:
 UTYPE-s tiger team

[bookmark: _Toc76461117][bookmark: _Toc76461134]Abstract
Data providers and curators provide a great deal of metadata with their data files: this metadata is invaluable for users and for Virtual Observatory software developers. In order to be interoperable, the metadata must refer to common Data Models. We propose a scheme for annotating data files in a standard, consistent, interoperable fashion, so that each piece of metadata can unambiguously refer to the correct Data Model element it expresses. We also describe in detail how to represent Data Model instances in the VOTable format. The mapping is operated through opaque, portable strings: UTYPEs.

[bookmark: _Toc76461118][bookmark: _Toc76461135]Status of This Document
This is an IVOA Working Draft for review by IVOA members and other interested parties. It is a draft document and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use IVOA Working Drafts as reference materials or to cite them as other than “work in progress”.
A list of current IVOA Recommendations and other technical documents can be found at http://www.ivoa.net/Documents/.

[bookmark: _Toc76461120][bookmark: _Toc76461137]
Contents
1	Introduction	4
2	Use Cases	6
3	UTYPEs as mapping language	7
4	Format of @utype: Mapping types and roles	9
5	Examples: Mapping VO-DML ⇒VOTable	11
5.1	Sample model and instances	11
5.2	Data carriers in VOTable	14
5.3	Mapping ObjectType	14
5.4	Mapping Attribute	16
5.5	Mapping Reference	19
5.6	Mapping Collection	22
5.7	Mapping value types	25
6	Patterns for annotating VOTable: specification	27
6.1	Model	28
6.1.1	GROUP[@utype ⇒ Model] ∊ VOTABLE	28
6.1.1.1	GROUP[@utype ⇒ DataType] ∊ RESOURCE	29
6.1.1.2	GROUP[@utype ⇒ DataType &¬FIELDref] ∊ TABLE	30
6.1.1.3	GROUP[@utype ⇒ DataType & FIELDref] ∊ TABLE	30
6.1.1.4	GROUP[@utype ⇒ DataType] ∊ GROUP[¬@utype]	30
6.2	Attribute	31
6.2.1	FIELDref[@utype ⇒ Attribute [+ (PrimitiveType | Enumeration)]]	31
6.2.2	PARAM[@utype ⇒ Attribute [+ (PrimitiveType | Enumeration)]] ∊ GROUP[@utype ⇒ ⟨ObjectType | DataType⟩]	31
6.2.3	PARAMref[@utype ⇒ Attribute [+(PrimitiveType | Enumeration)]]	32
6.2.4	GROUP[@utype ⇒ Attribute(DataType)] ∊ GROUP[@utype ⇒ ⟨ObjectType | DataType⟩]	32
6.3	ObjectType	33
6.3.1	GROUP[@utype ⇒ ObjectType]	33
6.3.1.1	GROUP[@utype ⇒ ObjectType] ∊ RESOURCE	33
6.3.1.2	GROUP[@utype ⇒ ObjectType & ¬ FIELDref] ∊ TABLE	33
6.3.1.3	GROUP[@utype ⇒ ObjectType & FIELDref] ∊ TABLE	34
6.4	vo-dml:ObjectType.ID and vo-dml:Identifier	34
6.4.1	FIELDref[@utype ⇒ ID] ∊ GROUP[@utype ⇒ ⟨ObjectType⟩]	35
6.4.2	PARAM[@utype ⇒ ID] ∊ GROUP[@utype ⇒ ⟨ObjectType⟩ & ¬ FIELDref]	35
6.4.3	GROUP [@utype ⇒ ID] ∊ GROUP[@utype ⇒ ⟨ObjectType⟩]	35
6.5	Reference	35
6.5.1	GROUP[@utype ⇒ Reference & @ref] ∊ GROUP[@utype ⇒ ⟨ObjectType | DataType⟩ & ¬ FIELDref] GROUP[@utype ⇒ ⟨ObjectType⟩ & @id & ¬ FIELDref]	37
6.5.2	GROUP[@utype ⇒ Reference + ‘vo-dml:Identifier’] ∊ GROUP[@utype ⇒ ⟨ObjectType | DataType⟩ & ¬ FIELDref] GROUP[@utype ⇒ ⟨ObjectType⟩ & FIELDref & ID] ∊ TABLE	37
6.5.3	GROUP[@utype ⇒ Reference + ‘vo-dml:Identifier'] ∊ GROUP[@utype ⇒ ⟨ObjectType | DataType⟩ & FIELDref] GROUP[@utype ⇒ ⟨ObjectType⟩ & ¬FIELDref & ID]	37
6.5.4	GROUP[@utype ⇒ Reference + ‘vo-dml:Identifier’] ∊ GROUP[@utype ⇒ ⟨ObjectType | DataType⟩ & FIELDref] GROUP[@utype ⇒ ⟨ObjectType⟩ & FIELDref & ID]	37
6.6	Collection	38
6.6.1	GROUP [@utype ⇒ Collection+ObjectType] ∊ GROUP[@utype ⇒ ⟨ObjectType⟩]	38
6.6.2	GROUP [@utype ⇒ Collection & @ref] ∊ GROUP[@utype ⇒ ⟨ObjectType⟩]	39
6.6.3	GROUP[@utype ⇒ Container+ID] ∊ GROUP[@utype ⇒ ⟨ObjectType ⟩]	40
6.7	Extends, inheritance	40
6.7.1	GROUP[@utype ⇒ Extends+ID] ∊ GROUP[@utype ⇒ ⟨ObjectType ⟩]	40
7	Notable absences	40
7.1	Atomic Types: support for custom and legacy utypes	41
7.2	DataType	41
7.2.1	GROUP[@utype ⇒ DataType]	42
7.3	TABLE[@utype ⇒ ObjectType]	42
7.4	FIELD[@utype ⇒ Attribute] ∊ TABLE [@utype ⇒ ObjectType]	42
7.5	PARAM [@utype ⇒ Attribute] ∊ TABLE [@utype ⇒ ObjectType]	43
8	Serializing to other file formats	43
Appendix A.	Mapping "grammar'	43
Appendix B.	Parsing examples and pseudo-code	44
Appendix C.	Frequently Asked Questions	44
Appendix D.	Applicability of this specification to other IVOA contexts	44
GROUP in TAP_SCHEMA	44
Query-like UTYPEs in DAL protocols	45

1 [bookmark: _Toc352932720][bookmark: _Toc228433286]Introduction
Data providers put a lot of effort in organizing and maintaining metadata that precisely describes their data files. This information is invaluable for users and for software developers that provide users with user-friendly VO-enabled applications. For example, such metadata can characterize the different axes of the reference system in which the data is expressed, photometric information, or the history of a measurement, like the publication where the measurement was drawn from, the calibration type, and so forth. In order to be interoperable, this metadata must refer to some Data Model: the IVOA defines and maintains such standardized Data Models that describe astronomical data in an abstract, interoperable way.

However, most often each astronomical facility, instrument, or mission is in need to express their measurements and the metadata attributes unique to the facility, instrument, or mission.

In other terms, a Data Provider can extend a Data Model, adding to the common information about astronomical measurements the metadata that is specific for their instruments or domain.

Thus, in order to enable such interoperable, extensible, portable annotation of data files, one needs:
i) Pointers linking a specific piece of information (data or metadata) to the Data Model element it represents (UTYPEs).
ii) A language to describe Data Models and their valid pointers, so to support extensibility and efficient software development (VO-DML)
Without a consistent language for describing Data Models, pointers alone are ambiguous and redundant: as such, they have small value. On the other hand, the language must be expressive and formal enough to enable the development of reusable, extensible software components and libraries that can make the technological uptake of the VO standards seamless and scalable.

Also, one needs to map the abstract Data Model to a particular format meta-model. For instance, the VOTable format defines RESOURCEs, TABLEs, PARAMs, FIELDs, and so forth, and provides explicit attributes such as units and utypes: in order to represent instances of a Data Model, one needs to define an unambiguous mapping between these meta-model elements and the Data Model language, so to make it possible for software to be able to parse a file according to its Data Model.

While a standard for portable, interoperable Data Model representation would have been required in the past, we are specifying it only at a later stage. This means that several different interpretations of UTYPEs have been proposed and used: some explicitly require the parsing of the UTYPEs strings, others make UTYPEs very redundant, by defining many UTYPEs (as many as hundreds) for expressing the same concept (e.g. the accuracy of a measurement) in different contexts: for instance, the accuracy of the measurement on the spectral axis, the accuracy of the measurement on the time axis, the overall accuracy on the spectral axis for a dataset, an accuracy provided by a service response or the one provided by a standalone file, all have different UTYPEs, while an error bar is an error bar regardless of the quantity to which it is referred, or whence the response originally came from.

Any standard trying to reconcile these very different usages must take into account the current usages and make the transition from the current usages to the new standard as seamless as possible. For this reason, this document also shows how the current UTYPEs usages can be seamlessly integrated with the new scheme, so to minimize the transition effort.

Actually, since this standardization is required by new, more complex Data Models (such as data cubes and their projections) than the ones already defined, it will be possible to adopt this standard only to the new Data Models and Data Access Services, thus avoiding any transition efforts. We also show how Data Access Services can employ a convenient representation of the Data Models fields with query-like strings that resembles the current usage of UTYPEs in DAL services, or for future data access features.

This is a very technical and formal document that can enable the development of flexible, reusable, user-friendly libraries and applications that abstract and generalize the input/output access to VO compliant files, thus facilitating the uptake of the VO in the astronomical community, and the simplification of the process for publishing data to the VO.

This document defines the scope and usage of standardized UTYPEs as means to annotate and describe Data Model instances.

It also describes how to represent Data Model instances using the VOTable schema. This representation uses UTYPE attributes and the structure of the VOTable meta-model elements to indicate how instances of data models are stored in VOTable documents. We show many examples and give a complete listing of allowed mapping patterns. We believe this approach to be a complete and in a certain sense most explicit mapping language.

In sections 1-5 we give an introduction to the UTYPEs approach, an overview of VO-DML as a meta-model, and several examples that illustrate the mapping.
Section 6 aims to be a more rigorous listing of all valid annotations. Appendix A contains the list of all of the mapping patterns supported by this specification. Section 7 describes what patterns and usages this specification doesn’t cover; moreover, it described how legacy and custom utypes can be treated in this specification’s framework: as such, this section actually describes the transition from the current usages and this specification. The appendices have some supplementary material.

To illustrate both the problem and the solution, throughout the document we will refer to some real of exemplar Data Models. Please remember that the example Data Model have been designed to be fairly simple yet complicated enough to illustrate all the possible constructs that this specification covers. They are not to be intended as actual DMs, nor, by any means, this specification suggests their adoption by the IVOA or by users and or Data Providers. In some cases we refer to actual DMs in order to provide an idea of how this specification relates to real life cases involving actual DMs.
2 [bookmark: _Toc228433287]Use Cases
The use cases enabled by this mapping definition are limitless. This bold statement can be easily validated by considering that what we describe is analogous to the natural mapping between Data Models and XSD schemata, where instances are expressed in XML documents. XML is widely used in so many ways that it is impossible to list them all. As a matter of fact, XML can even express lists of its own use cases.

However, to give a sense of what it is possible to accomplish with this specification, we provide some explicit use cases relative to the VO domain.

Reuse of instances: this use case is very low level, but explains the very simple mechanism that enables all the other advanced, higher-level use cases, such as those described below.
An instance is defined as a UTYPE-annotated GROUP in a VOTable: for example, a GROUP with the utype “sdm:PhotometryPoint” may represent a photometry measurement in the N-Dimensional Energy-Flux-Time-Polarization-… space. If such an instance is compliant to the standard expressed in this document, then the whole GROUP can be inserted in any context and still be a compliant, meaningful instance. It might be one of the measurements in a photometry catalog, described by one or more columns in a table, or it can describe the rows in a SED built by a SED Tool. All Data Providers will annotate all Photometry Points in exactly the same way, and all applications will be able to treat it as a single entity regardless of the context. In the end, a photometry point is always the same, whether it is part of a catalog or of a SED, whether it is plotted or fitted to a model: the current standard enormously simplifies the representation, discoverability, and use of such ubiquitous objects.

VO Publisher.

VO Importer.

Plotting.

Fitting.
3 [bookmark: _Toc228433288]UTYPEs as mapping language
In the Introduction, we gave a high-level description of the problem that this specification addresses: as such, it was focused on defining the problem in non-technical terms. In this section we provide a more technical description of the problem and the solution this specification represents.

When encountering a data container, i.e. a file or database containing data, one may wish to interpret its contents according to some external, predefined data model. That is, one may want to try to identify and extract instances of the data model from amongst the information. For example in the “global as view” approach to information integration, one identifies elements (e.g. tables) defined in a global schema with views defined on the distributed databases [TBD refs].
If one is told that the data container is structured according to some standard serialization format of the data model, one is done. I.e. if the local database is an exact implementation of the global schema, one needs no special annotation mechanism to identify these instances. An example of this is an XML document conforming to an XML schema that is an exact physical representation of the data model.
But in an information integration project like the IVOA, which aims to homogenize access to many distributed heterogeneous data sets, databases and documents are in general not structured according to a standard representation of some predefined, global data model. The best one may hope for is to obtain an interpretation of the data set, defining it as a custom serialization of the result of a transformation of the global data model[footnoteRef:2]. For example, even if databases themselves are exact replications of a global data model, results of general queries will be such custom serializations. [2: Or alternatively as a transformation of a (standard) serialization of the data model.]

To interpret such a custom serialization one generally needs extra information that can provide a mapping of the serialization to the original model. If the serialization format is known, this mapping may be given in phrases containing elements both from the serialization format and the data model. For example if our serialization contains data stored in ‘rows’ in one or more ‘tables’ that each have a unique ‘name’ and contain ‘columns’ also with a ‘name’, you might be able to say things like:
· The rows in this table named SOURCE contain instances of object type ‘Source’ as defined in data model ‘SourceDM’ (SourceDM is an example model formally defined later in this document).
· The type’s ‘name’ attribute (having datatype ‘string’, a primitive type) also acts as the identifier of the Source instances and is stored in the single column with name ID.
· The type’s ‘classification’ attribute is stored in the table column CLASSIFICATION (from the data model we know its datatype is an enumeration with certain values, e.g. ‘star’, ‘galaxy’, ‘agn’).
· The type’s ‘position’ attribute (being of structured data type ‘SkyCoordinate’ defined in model ‘SourceDM’) is stored over the two columns RA and DEC, where RA stores the SkyCoordinate’s attribute ‘longitude’, DEC stores the ‘latitude‘ attribute. Both must be interpreted using an instance of the SkyCoordinateSystem type, This instance is stored in 1) another document elsewhere, referenced by a reference to a URI, or 2) in this document, by means of an identifier.
· Instances from the collection of luminosities of the Source instances are stored in the same row as the source itself. Columns MAG_U and ERR_U give the ‘magnitude’ and ‘error’ attributes of type LuminosityMeasurement in the “u band”, an instance of the Filter type. (stored elsewhere in this document (‘a reference to this Filter instance is ...’). Columns MAG_G and ERR_G ... etc.
· Luminosity instances also have a filter relation that points to instances of the PhotometryFilter structured data type, defined in the IVOA PhotDM model, whose package is imported by the SourceDM.
In this example the underlined words refer to concepts defined in VO-DML, an example of a meta-model that can be used as a formal language for expressing data models. The use of such a modeling language lies in the fact that it provides formal, simple and implementation neutral definitions of the possible structure, the ‘type’ and ‘role’ of the elements from the actual data models that one may encounter in the serialization (SourceDM). This can be used to constrain or validate the serialization, but more importantly it allows us to formulate mapping rules between the serialization format (itself a kind of meta-model) and the meta-model, independent of the particular data models used; for example rules like:
· An object type MUST be stored in a ‘table’.
· A ‘primitive type’ MUST be stored in a ‘column’.
· A reference MUST identify an object type instance represented elsewhere, either in another ‘table’, possibly in the same table, possible in another document.
· An attribute SHOULD be stored in the same table as its containing object type.
· etc
Clearly free-form English sentences as the ones in the example are not what we’re after. If we want to be able to identify how a data model is represented in some custom serialization we need a formal, computer readable mapping language.
One part of the mapping language should be anchored in a formally defined serialization language. After all, for some tool to interpret a serialization, it MUST understand its format. A completely freeform serialization is not under consideration here. This document assumes VOTable, even though a discussion on other formats is provided in Section 8.

This document also uses VO-DML as the target language.

The final ingredient in the mapping language is a mechanism that ties the components from the two different meta-models together into "sentences". This generally requires some kind of explicit annotation, some meta-data elements that provide an identification of source to target structure. The ‘utype’ VOTable attribute can provide this link in a rather simple manner:
· The value of a utype attribute must correspond to the utype identifier of an element explicitly defined in a VO-DML document.
· The VOTable element owning the utype attribute is said to represent the identified VO-DML data model element. It identifies one or more instances of the data model element, the identification depends on the kind of element and on the context in which it appears.
· There is a set of rules that constrain which VOTable elements can be identified with which type of VO-DML element and how the context plays a role here.
We show that this solution is sufficient and that it is in some sense the simplest and most explicit approach for annotating a VOTable. It may not be the most natural or suitable approach for other meta-models such as FITS or TAP_SCHEMA. For example the current approach relies heavily using on GROUPs to identify most of the structural mapping. FITS and TAP_SCHEMA do currently not possess such a construct. We will discuss this at the end of this document.
The following section shows examples of mappings as they may occur in realistic VOTables, using example Data Models. We will discuss the different VO-DML elements and show how they might be serialized and how annotation with simple utype and other meta-data elements can help one interpret the VOTable. In the later normative sections we turn this around and explicitly list all legal annotations, their constraints and interpretation.

Throughout this document we shall refer to the VO-DML elements. A complete reference of VO-DML is provided [TBD Ref]
4 [bookmark: _Ref346532735][bookmark: _Toc352932725][bookmark: _Toc228433289]Format of @utype: Mapping types, roles, and inheritance.

In general a mapping from VOTable to VO-DML uses a @utype attribute of a VOTable element to identify the VO-DML element it represents. The approach here assumes that the @utype takes the value of the utype identifier of the VO-DML element it represents. This value may be built according to the default syntax described in Appendix A, but that is not required. These UTYPEs generally identify type definitions or property definitions.

A single attribute, or property, in a Data Model is characterized by its role in the Data Model itself and by its type. The role of the property allows a reader to attach the instance as an attribute of the right element. Its type allows the reader to cast the instance to the right class. The importance of these annotations may vary according to the programming language and/or use case, but including complete and explicit annotations for both the type and role of each property enables the maximum flexibility.

A typical usage scenario may be a VOTable naïve (see section [TBD]) client that is sensitive to certain models only, say STC. Such a tool can be written to understand annotation with STC types. Finding an element mapped to a type definition from STC it might infer for example that it represents a coordinate on the sky and use this information according to its requirements. Another example was expressed in the Use Cases section, where a fitting or plotting client can make sense of the instances in a VOTable even though they are implementing Data Models of which the tool is agnostic.
Such a tool would not necessarily understand other models where such an STC type is used as a role. If the annotation only refers to the attribute’s utype, even a naïve client can infer the actual type from the annotation directly. A more advanced client may want to read the Data Model Description File that describes the Data Model in a standardized, machine readable, fashion.

Other scenarios involve inheritance and polymorphism. Inheritance allows models to extend classes defined in other data models. Polymorphism is the common object-oriented design concept that says that the declared type of a property may not be the same as the type of an instance of that property that is actually serialized. In particular, the value of a property may be an instance of a subtype of the declared type. So in general it is not enough to know the type of the attribute (for example) to uniquely know which type of instance to expect. And it may also not be possible to infer the instance type uniquely from the contents of the element representing the attribute.
Hence a single @utype attribute with value indicating only the role may not be sufficient to infer all DM information about a VOTable element. Typed languages such as Java support a casting operation, which provides more information to the interpreter about the type it may expect a certain instance to be.

4.1 The UTYPE prefix

In order to avoid name clashes, the UTYPE string must be preceded by a prefix that functions as a namespace. The prefix is unique for each Data Model declared (see next section), and must be removed by readers if they want to look up the UTYPE in the VO-DML description file, or if they want to match it against a string. Notice that in VO-DML description files the prefix is omitted. In effect, the prefix is a way to map UTYPEs to a particular Data Model and its XML description.
4.2 The VO-DML preamble

In order to signal the reader that a document falls under this specification, a VOTable instance MUST declare all the Data Models it includes, the UTYPEs prefixes for this model, and the URL of the VO-DML XML description of the Data Model.

Any number of such declarations can be included in a document.

<GROUP utype="vo-dml:Model" name="Source">
 <PARAM utype="vo-dml:Model.url" name="url" datatype="char" arraysize="*" value="https://volute.googlecode.com/svn/trunk/projects/dm/vo-dml/models/sample/Sample.vo-dml.xml" />
 <PARAM utype="vo-dml:Model.prefix" value="src" name="prefix" datatype="char" arraysize="*" />
</GROUP>

The above example introduces the Source Data Model, assigns the prefix “src” to its UTYPEs, and refers to the VO-DML XML description of the Data Model. Notice the “vo-dml:Model” special utype that annotates the GROUP element to introduce the declaration.
4.3 The vodml:Instance.type annotation

A special usage of UTYPE identifiers is needed to disentangle type identifiers from role identifiers. As it will be shown in the following sections, structured types in VO-DML are mapped to GROUPs. The GROUP’s utype attribute is used to specify the role of the property serialized in the GROUP. The type of the instance is indicated by a PARAM node inside the GROUP, whose utype attribute is “vo-dml:Instance.type” and whose value is the UTYPE that identifies the type.

If a GROUP doesn’t represent a property (either because it represents a root element or because it represents a member of a collection), then its utype attribute must be:
· vo-dml:Instance.item if the element is part of a collection
· vo-dml:Instance.root if the element is a root
· vo-dml:Instance.role if the element is contained in an anonymous GROUP, i.e. a GROUP that doesn’t implement any standardized types. Such GROUPs would either have the utype attribute set to a value with a non-declared prefix, or not set at all.
In the following example the GROUP represents (part of) an instance of the Source class.

<GROUP utype="vo-dml:Instance.root" ID="_directsource">
 <PARAM name="type" utype="vo-dml:Instance.type" value="src:source/Source" datatype="char" arraysize="*"/>
 <PARAM utype="vo-dml:ObjectType.ID" value="12345" name="ID" datatype="int"/>
 <PARAM utype="src:source/Source.name" value="eROSITA-772832" datatype="char" name="name"/>
 <GROUP utype="src:source/Source.position">
 <PARAM utype="vo-dml:Instance.type" value="src:source/SkyCoordinate" name="datatype" datatype="char" arraysize="*"/>
 <PARAM name="ra" utype="src:source/SkyCoordinate.longitude" value="12.34" datatype="float"/>
 <PARAM name="dec" utype="src:source/SkyCoordinate.latitude" value="67.89" datatype="float"/>
 <GROUP ref="_icrs" utype="src:source/SkyCoordinate.frame" />
 </GROUP>
. . .
</GROUP>

Notice that the main GROUP has an “Instance.root” role, while the nested GROUPs have both role and type utype attributes, through the “Instance.type” element.

If a type extends another type the “Instance.type” a number of PARAMs will reflect its class hierarchy (see Section [TBD]).
5 [bookmark: _Ref348442396][bookmark: _Toc352932726][bookmark: _Toc228433290]Examples: Mapping VO-DML ⇒VOTable
In this section we list some mappings from VO-DML to VOTable. We use examples extracted from a sample model with sample instances described in the next section. These should be seen as an introduction to the complete and formal specification in section 6 on how one SHOULD use utypes in VOTable to indicate mapping to VO-DML.
5.1 [bookmark: _Toc352932727][bookmark: _Toc228433291]Sample model and instances
For examples we use a highly simplified version of a possible Source data model, illustrated by its UML representation in Figure 1. It has a VO-DML representation, which is reproduced in Error! Reference source not found..
[image:]
[bookmark: _Ref346544413][bookmark: _Toc346608159]Figure 1 Example data model used in example. It represents a simplified Source data model, containing luminosities that refer to the imported PhotDM. It also defines a simplistic version of an STC model with some types for defining coordinates on the sky, for the sake of simplicity and just for example purposes.

The model defines some types allowing one to define a Source with position on the sky and a collection of luminosities. The position is modeled as a DataType, ‘SkyCoordinate’. SkyCoordinate has a reference to a coordinate frame that is required to interpret its longitude and latitude attributes. The luminosities are really measurements of luminosities in a given filter that is indicated by a reference to a PhotometryFilter, which is imported from the PhotometryDM; hence they have a value and an error. A Quantity DataType is introduced that provides a real value and a unit.
[bookmark: _Ref318123027][bookmark: _Toc318462244]The models are by no means meant to be comprehensive and include some admittedly artificial elements such as an Equinox PrimitiveType, which is supposed to be a simple string and might carry enough semantic value of its own to use it as an annotation on PARAM elements for example.
Note that this sample model defines a Package [TBD ref to VO-DML document needed] that contains all the types. This package shows up in the values of the utype-s we use to identify the different elements. The values we use for these utype identifiers are generated from the VO-DML using the default utype described in Appendix A. I.e. they are path-like expressions that are guaranteed unique and give some impression of the location in the data model.
We also use some sample instances of the models. These are here illustrated by UML instance diagrams. The diagram in Figure 2 represents the first two lines returned from a query to the SDSS DR7 database.
[image: instance_diagram]
[bookmark: _Ref342800274][bookmark: _Toc346608161]Figure 2 Instance diagram representing SDSS objetcs as sources in the sample data model. [TBD update to latest form of model]. The first few results are represented from the default radial SDSS query at http://skyserver.sdss.org/dr7/en/tools/search/radial.asp corresponding to the SQL query:
SELECT top 10 p.objID, p.run, p.rerun, p.camcol, p.field, p.obj,
 p.type, p.ra, p.dec, p.u,p.g,p.r,p.i,p.z,
 p.Err_u, p.Err_g, p.Err_r,p.Err_i,p.Err_z
 FROM fGetNearbyObjEq(195,2.5,3) n, PhotoPrimary p
 WHERE n.objID=p.objID

5.2 [bookmark: _Toc352932728][bookmark: _Toc228433292]Data carriers in VOTable
VO-DML describes four different kinds of types: PrimitiveType (PT), Enumeration (E), DataType (DT) and ObjectType (OT). PT, E and DT are value types; OT is an object - or reference type [TBD add few sentences]. PT and E are atomic, their values consist of a single value; DT and OT are structured, they are built from multiple values, organized as attributes, and possibly of reference relations to OTs. An OT can also have collections of other OTs, and can have an identifier, an attribute of undetermined type that is implicitly defined for ObjectType-s.

To store instances (values and objects) of these types in a VOTable various options are available. Atomic values (i.e. instances of PT and E) are stored in cells in a row in a table (i.e. a TD) or in the value attribute of a PARAM (@value). To store an instance of a structured type one must store its components. To identify the structured instance in a serialization one must be able to identify the individual components and how they are to be combined. This last identification is done by the GROUP element. It is the main representation of structured types, both ObjectType and DataType. It is also used to represent relations to object types. These may be stored using foreign-key-like mechanisms or through some kind of hierarchy.

In fact in the approach described here virtually all mapping of VOTable to VO-DML is performed by GROUP elements and their components. They identify which elements are to be combined to create the object or DataType instance, what the roles are that these components play (attribute, reference), by simply using the utype attribute.

In the next few subsections we provide some examples how this mapping can be performed. It starts with the ObjectType and then discusses its components, Attribute, Reference and Collection. The mapping of the value types is discussed in the mapping of Attributes. The mapping of Reference and Collection relations is the most complex part of the whole mapping story and treated separately.
5.3 [bookmark: _Toc352932729][bookmark: _Toc228433293]Mapping ObjectType
ObjectTypes consist of Attributes, References and Collections. How these are mapped is described in more detail below. But the important part for representing structured instance like an object is that these components must be combined together to construct a complete instance. In VOTable this is done using a GROUP element.

In the representation of ObjectType instances, GROUPs can be used in two different modes that are distinguished by the way the instance’s data are ultimately stored. If all values are eventually stored exclusively in @value attributes of PARAM elements in the GROUP (or possibly outside the GROUP but accessed through PARAMrefs), the GROUP represents a complete instance directly. If even only one of the attributes is stored in a FIELD and accessed through a FIELDref, the GROUP is said to indirectly represent possibly multiple instances, one for each TR.

We will use these terms, “direct GROUP” and “indirect GROUP” as shorthand phrases for these representations all through the document. This freedom of choice where to store objects complicates the mapping of relations between objects, as many different referencing mechanisms must be taken into account. This is particularly important when discussing how to represent References in section 6.5 below.
We illustrate the two modes of mapping by showing an example how each mode may represent exactly the same object. For this we use the object type in Figure 3 and a corresponding instance in Figure 4.
[image:]
[bookmark: _Ref348110880]Figure 3 ObjectType representing a Source. [TBD Update]

[image:]
[bookmark: _Ref348067523]Figure 4 Instance of Source ObjectType. [TBD Update]

Indirect serialization to a TABLE:
Source instance from Figure 4 is stored in the first TR below. The TABLE is annotated using a GROUP with utype attribute set to “Instance.root”, which is a special role for root elements. The actual type is stored in the value of a PARAM with an Instance.type utype. Some atomic attributes are stored in FIELDs annotated by FIELDref-s, some in PARAMs; the child GROUP with its attributes annotated by FIELDref represents a structured attribute. Also, the SkyCoordinate.frame property is an example of GROUP reference. (for discussion see section 5.5):
<TABLE>
<GROUP utype="vo-dml:Instance.root" ID="_source">
 <PARAM name="type" utype="vo-dml:Instance.type" value="src:source/Source" datatype="char" arraysize="*"/>
 <FIELDref ref="_designation" utype="vo-dml:ObjectType.ID" />
 <FIELDref ref="_designation" utype="src:source/Source.name" />
 <GROUP utype="src:source/Source.position">
 <PARAM utype="vo-dml:Instance.type" value="src:source/SkyCoordinate" name="datatype" datatype="char" arraysize="*"/>
 <FIELDref ref="_ra" utype="src:source/SkyCoordinate.longitude" />
 <FIELDref ref="_dec" utype="src:source/SkyCoordinate.latitude" />
 <GROUP ref="_icrs" utype="src:source/SkyCoordinate.frame" />
 </GROUP>
</GROUP>
<FIELD name="designation" ID="_designation" .../>
<FIELD name="ra" ID="_ra" unit="deg" .../>
<FIELD name="dec" ID="_dec" unit="deg" .../>
<TR><TD>08120809-0206132</TD><TD>123.033734</TD><TD>-2.103671</TD></TR>
...
</TABLE>

Note the special representation of the identifier of the Source object. This attribute is not defined explicitly in the model; hence no utype exists for it there. We can interpret each ObjectType as ultimately being a subclass of some ObjectType class (just as in Java all classes ultimately extend java.lang.Object, generally implicitly). In VO-DML we can represent this by allowing an ObjectType to have a component of as yet unspecified type, which represents the ID attribute (implicitly) defined on this base class. We use a special utype for this attribute: vo-dml:ObjectType.ID, obtained from the VO-DML model discussed in the VO-DML reference document.

Direct serialization to a GROUP:
Here the instance is directly represented by a GROUP containing only PARAMs for the atomic attributes, and a GROUP with PARAMs for the structured attribute (and again a reference, see section 5.5).
<GROUP utype="vo-dml:Instance.root" >
 <PARAM name=”type” utype=”vo-dml:Instance.type” value=”src:source/Source” datatype=”char” arraysize=”*”/>
 <PARAM utype=”vo-dml:ObjectType.ID" value=”08120809-0206132” .../>
 <PARAM utype=”src:source/Source.name" value=”08120809-0206132” .../>
 <PARAM utype=”src:source/Source.classifiication” value=”galaxy” .../>
 <GROUP utype="src:source/Source.position">
 <PARAM name=”type” utype=”vo-dml:Instance.type” value=”src:source/SkyCoordinate” datatype=”char” arraysize=”*”/>
 <PARAM utype="src:source/SkyCoordinate.longitude" value=”123.033734” .../>
 <PARAM utype=”src:source/SkyCoordinate.latitude" value=”-2.103671” .../>
 <GROUP ref="_icrs" utype=" src:source/SkyCoordinate.frame"/>
 </GROUP>
</GROUP>
Details on the mapping of the components are discussed next.
5.4 [bookmark: _Ref348347678][bookmark: _Toc352932730][bookmark: _Toc228433294]Mapping Attribute
An attribute is the role a value type plays in the definition of a structured type. They may represent atomic or may represent structured (Data)types themselves. These are represented differently.
[image:] [image:]
Figure 5 The ObjectType Source and the DataType SkyCoordinate both define attributes. Attributes can represent a PrimitiveType (‘name’ and ‘description’ in Source, ‘longitude’ and ‘latitude’ in SkyCoordinate), an Enumeration (‘classification’ in Source), or a structured DataType (‘position’ in Source).

PrimitiveType attribute as FIELDref, Enumeration as PARAM:
In the indirect representation of the ObjectType below a FIELDref indicates that an attribute is stored in field with ID=”_designation”. It does so using the utype of the attribute: SAMPL:source/Source.name, identifiying the name attribute of the Source type. Note that in our example we use a utype syntax derived from the VO-DML model itself. From this string one can here infer directly that some role with name ‘name’ defined on a type named Source is represented. But that is all one might infer. In principle this could have been a string like ‘src:123456789’. In both cases one would need to inspect the formal data model to find out precisely what kind of model element this utype represents.
Another attribute, ‘classification’, is represented by a PARAM through its utype value
src:source/Source.classification and assigns it the value ‘galaxy’. The attribute has as datatype an Enumeration, SourceClassification and indeed the PARAM defines a VALUES element with various OPTIONs (note that that is almost useless for a PARAM that represents a single value directly anyway). Its set of Literals indeed contains a value ‘galaxy’. In general however, especially for existing “legacy” databases, one cannot expect that enumerated values will exactly correspond to those in a model. Some type of mapping might be required, however OPTION does not support this in VOTable (i.e. has no @utype attribute). The fact that this attribute is stored in a PARAM in the GROUP indicates also that all Source instances stored in the TABLE are classified as galaxies. A more realistic case would require the use of a FIELDref to assign a TD value to each instance (row) in the table.

<TABLE>
<GROUP utype="vo-dml:Instance.root" >
 <PARAM name=”type” utype=”vo-dml:Instance.type” value=”src:source/Source” datatype=”char” arraysize=”*”/>
 <FIELDref ref="_designation" utype=" vo-dml:ObjectType.ID"/>
 <FIELDref ref="_designation" utype="src:source/Source.name"/>
 <PARAM name=”type” utype=”src:source/Source.classification” value=”galaxy”>
 <VALUES><OPTION value=”galaxy”/><OPTION value=”star”/>...</VALUES></PARAM>
 <GROUP utype="src:source/Source.position">
 <PARAM name=”type” utype=”vo-dml:Instance.type” value=”src:source/SkyCoordinate” datatype=”char” arraysize=”*”/>
 <FIELDref ref="_ra" utype="src:source/SkyCoordinate.longitude"/>
 <FIELDref ref="_dec" utype="src:source/SkyCoordinate.latitude"/>
 <GROUP ref="_icrs" utype="src:source/SkyCoordinate.frame"/>
 </GROUP>
</GROUP>
<FIELD name="designation" ID="_designation" .../>
<FIELD name="ra" ID="_ra" unit="deg" .../>
<FIELD name="dec" ID="_dec" unit="deg" .../>
<TR><TD>08120809-0206132</TD><TD>123.033734</TD><TD>-2.103671</TD></TR>
...
</TABLE>

DataType attribute as GROUP:
As DataType-s are structured, their natural representation in a VOTable is as a GROUP, whether used directly or indirectly. Hence if an attribute is defined in a VO-DML data model as representing a DataType, it is most naturally represented by a GROUP embedded in the GROUP of the structured type owning the attribute.

The example below shows in red a GROUP representing the attribute ‘position’ (identified by utype src:source/Source.position) that has as data type a SkyCoordinate, which itself consists of a ‘longitude’ and ‘latitude’ attribute (we defer discussing the reference to the next section). Note their structure indicates only their relation to their defining type, src:source/SkyCoordinate (though this, as discussed above, is unimportant for the current approach which, apart from the prefix, assigns no importance to the syntax of the utype identifiers in VO-DML models).
<TABLE>
<GROUP utype="vo-dml:Instance.root" >
 <PARAM name=”type” utype=”vo-dml:Instance.type” value=”src:source/Source” datatype=”char” arraysize=”*”/>
 <FIELDref ref="_designation" utype=" vo-dml:ObjectType.ID"/>
 <FIELDref ref="_designation" utype="src:source/Source.name"/>
 <PARAM name=”type” utype=”src:source/Source.classification” value=”galaxy”>
 <VALUES><OPTION value=”galaxy”/><OPTION value=”star”/>...</VALUES></PARAM>
 <GROUP utype="src:source/Source.position">
 <PARAM name=”type” utype=”vo-dml:Instance.type” value=”src:source/SkyCoordinate” datatype=”char” arraysize=”*”/>
 <FIELDref ref="_ra" utype="src:source/SkyCoordinate.longitude"/>
 <FIELDref ref="_dec" utype="src:source/SkyCoordinate.latitude"/>
 <GROUP ref="_icrs" utype="src:source/SkyCoordinate.frame"/>
 </GROUP>
</GROUP>
<FIELD name="designation" ID="_designation" .../>
<FIELD name="ra" ID="_ra" unit="deg" .../>
<FIELD name="dec" ID="_dec" unit="deg" .../>
<TR><TD>08120809-0206132</TD><TD>123.033734</TD><TD>-2.103671</TD></TR>
...
</TABLE>
<FIELD name="dec" ID="_dec" unit="deg" .../>
<TR><TD>08120809-0206132</TD><TD>123.033734</TD><TD>-2.103671</TD></TR>
...
</TABLE>

In this example the utype of the child GROUP only indicates its role in the definition of its parent GROUP, namely the attribute src:source/Source.position. It does not indicate the type, which is instead indicated by the PARAM with name “type”.

5.5 [bookmark: _Ref348067590][bookmark: _Toc352932731][bookmark: _Toc228433295]Mapping Reference
[image:]
[image:]
Referencing as ”GROUPref” to direct GROUP:
The example below uses a GROUP+@ref to represent the reference from a position object stored in a TABLE to a SkyCoordinateFrame stored in a direct GROUP. Hence all rows in the table use the same frame and the reference needs no structure.
<GROUP utype="vo-dml:Instance.root" ID="_icrs">
 <PARAM name=”type” utype=”vo-dml:Instance.type” value=”src:source/SkyCoordinateFrame” datatype=”char” arraysize=”*”/>
 <PARAM utype="src:source/SkyCoordinateFrame.name" value="ICRS" .../>
 <PARAM utype="src:source/SkyCoordinateFrame.equinox" value="J2000.0" .../>
</GROUP>

<TABLE>
<GROUP utype="src:source/Instance.root" id="_source">
 <PARAM name=”type” utype=”vo-dml:Instance.type” value=”src:source/Source” datatype=”char” arraysize=”*”/>
 <FIELDref ref="_designation" utype="vo-dml:ObjectType.ID"/>
 <FIELDref ref="_designation" utype="src:source/Source.name"/>
 <GROUP utype="src:source/Source.position">
 <PARAM name=”type” utype=”vo-dml:Instance.type” value=”src:source/SkyCoordinate” datatype=”char” arraysize=”*”/>
 <FIELDref ref="_ra" utype="src:source/SkyCoordinate.longitude"/>
 <FIELDref ref="_dec" utype="src:source/SkyCoordinate.latitude"/>
 <GROUP ref="_icrs" utype="src:source/SkyCoordinate.frame"/>
 </GROUP>
</GROUP>
<FIELD id="_ designation " name="parentId" datatype="char"/>
<FIELD id="_ra" name="ra" datatype="float"/>
<FIELD id="_dec" name="dec" datatype="float"/>
...
<DATA><TABLEDATA>
<TR><TD>08120809-0206132</TD><TD>123.034</TD><TD>-2.1037</TD>...</TR>
...
</TABLEDATA></DATA>
</TABLE>

5.6 [bookmark: _Toc352932732][bookmark: _Toc228433296]Mapping Collection
A collection is a composition relation between a parent ObjectType and a child, or part, ObjectType. The fact that objects can be stored in different ways implies many different ways in which the relation may need to be expressed. In XML serializations of a data model (such as used in VO-URP and the Simulation Data Model) one may choose to have the contained objects serialized inside the serialization of the parent. It is possible to do so in VOTable as well using child GROUP-s representing a complete child object embedded in the GROUP representing the parent object. This is natural for this relationship because a collection element is really to be considered as a part of the parent object.
This may be used to represent flattening of the parent-child relation. One or more child objects may be stored together with the parent object in the same row in a TABLE. Such a case is actually very common, for example when interpreting tables in typical source catalogues. These generally contain information of a source together with one or more magnitudes. The latter can be seen as elements form a collection of photometry points contained by the sources.
Hence a GROUP inside another GROUP MAY represent a collection. It can do so in different modes that are illustrated by the following examples and described in more detail in section 6.6.

[image:][image:]

Container and contained objects in same row in same TABLE:
A very typical case is the following example, which shows a Source object serialized in the same row as its luminosities. The Source data model models luminosity measurements as a collection, which is flexible and allows measurements from different source to be combined in a natural manner. But for a given catalogue such as SDSS or 2MASS, it is known a priori how many magnitudes will be supplied and which bands they will correspond to. Hence for a given catalogue the natural representation is to simply add these as attributes to their model. Interestingly enough, the approach proposed here is able to support this mapping without any problem, even making a natural link to the actual photometry filter used for the measurements.

<TABLE>
<GROUP utype="vo-dml:Instance.root" id="_source">
 <PARAM name=”type” utype=”vo-dml:Instance.type” value=”src:source/Source” datatype=”char” arraysize=”*”/>
 <FIELDref ref="_designation" utype="vo-dml:ObjectType.ID"/>
 <FIELDref ref="_designation" utype="src:source/Source.name"/>
 <PARAM name=”type” utype=”src:source/Source.classifiication” value=”galaxy”/>
 <GROUP utype="src:source/Source.position">
 <PARAM name=”type” utype=”vo-dml:Instance.type” value=”src:source/SkyCoordinate” datatype=”char” arraysize=”*”/>
 <FIELDref ref="_ra" utype="src:SkyCoordinate.longitude"/>
 <FIELDref ref="_dec" utype=”src:SkyCoordinate.latitude"/>
 <GROUP ref="_icrs" utype="src:SkyCoordinate.frame"/>
 </GROUP>
 <GROUP utype="src:source/Source.luminosity">
 <PARAM name=”type” utype=”vo-dml:Instance.type” value=”src:source/LuminosityMeasurement” datatype=”char” arraysize=”*”/>
 <FIELDref ref="__gmag" utype="src:source/LuminosityMeasurement.value"/>
 <PARAM utype="src:source/LuminosityMeasurement.type" value="magnitude" .../>
 <FIELDref ref="_egMag" utype="src:source/LuminosityMeasurement.error"/>
 <GROUP ref="_gfilter" utype="src:source/LuminosityMeasurement.filter"/>
 </GROUP>
 </GROUP>
 <GROUP utype="src:source/Source.luminosity+SAMPL:source/LuminosityMeasurement">
 <PARAM name=”type” utype=”vo-dml:Instance.type” value=”src:source/LuminosityMeasurement” datatype=”char” arraysize=”*”/>
 <FIELDref ref="__rmag" utype="src:source/LuminosityMeasurement.value"/>
 <PARAM utype="src:source/LuminosityMeasurement.type" value="magnitude" .../>
 <FIELDref ref="_erMag" utype="src:source/LuminosityMeasurement.error"/>
 <GROUP ref="_rfilter" utype="src:source/LuminosityMeasurement.filter"/>
 </GROUP>
 </GROUP>
</GROUP>
<FIELD name="designation" ID="_designation" .../>
<FIELD name="ra" ID="_ra" unit="deg" .../>
<FIELD name="dec" ID="_dec" unit="deg" .../>
<FIELD id="_gmag" name="gmag" datatype="float"/>
<FIELD id="_egMag" name="egMag" datatype="float"/>
<FIELD id="_rmag" name="rmag" datatype="float"/>
<FIELD id="_erMag" name="erMag" datatype="float"/>
<TR>
<TD>08120809-0206132</TD><TD>123.033734</TD><TD>-2.103671</TD><TD>23.2</TD><TD>.04</TD>
 <TD>23.0</TD><TD>.03</TD>
</TR>
...
</TABLE>

Container and collection all as direct instances in GROUPs:
When not using tables at all in a mapping, the individual elements form a collection can be directly represented inside the parent GROUP. To indicate this explicitly the utype attributes MUST be concatenations of the role (the collection) and the type.
<GROUP utype="vo-dml:Instance.root" id="_source">
 <PARAM name=”type” utype=”vo-dml:Instance.type” value=”src:source/Source” datatype=”char” arraysize=”*”/>
 <PARAM utype=”src:source/Source.name" value=”08120809-0206132” .../>
 <PARAM utype=”src:source/Source.classifiication” value=”galaxy” .../>
 <GROUP utype="src:source/Source.position">
 <PARAM name=”type” utype=”vo-dml:Instance.type” value=”src:source/SkyCoordinate” datatype=”char” arraysize=”*”/>
 <PARAM utype="src:SkyCoordinate.longitude" value=”123.033734” .../>
 <PARAM utype="src:SkyCoordinate.latitude" value=”-2.103671” .../>
 <GROUP ref="_icrs" utype="bSTC:SkyCoordinate.frame"/>
 </GROUP>
 <GROUP utype="src:source/Source.luminosity+SAMPL:source/LuminosityMeasurement">
 <PARAM name=”type” utype=”vo-dml:Instance.type” value=”src:source/LuminosityMeasurement” datatype=”char” arraysize=”*”/>
 <PARAM utype="src:source/LuminosityMeasurement.value" value=”23.2” .../>
 <PARAM utype="src:source/LuminosityMeasurement.type" value="magnitude" .../>
 <PARAM utype="src:source/LuminosityMeasurement.error" value=”0.04” .../>
 <GROUP ref="_gfilter" utype="src:source/LuminosityMeasurement.filter"/>
 </GROUP>
 <GROUP utype="src:source/Source.luminosity">
 <PARAM name=”type” utype=”vo-dml:Instance.type” value=”src:source/LuminosityMeasurement” datatype=”char” arraysize=”*”/>
 <PARAM utype="src:source/LuminosityMeasurement.value" value=”23.0” .../>
 <PARAM utype="src:source/LuminosityMeasurement.type" value="magnitude" .../>
 <PARAM utype="src:source/LuminosityMeasurement.error" value=”0.03” .../>
 <GROUP ref="_rfilter" utype="src:source/LuminosityMeasurement.filter"/>
 </GROUP>
</GROUP>

5.7 [bookmark: _Toc352932733][bookmark: _Toc228433297]Mapping value types
The examples above started from the assumption that the basis of a serialization was an ObjectType. Value types only show up as attributes. There may be some use cases however where one wishes to indicate only that a certain column or set of column represent some known value type. One reason may be that a standard, global data model does not exist that defines ObjectType-s matching the one in one’s serialization, but that one can identify some sub-components that could be mapped to a DataType for example.
In fact the SourceDM used here is an example. It is a model for Source-s. The IVOA does currently not have an accepted model for this concept, though attempts in this direction have been made[footnoteRef:3]. This implies many tables of interest in the VO can currently not formally declare they store instances of a Source. However they could declare they have columns that together correspond to a coordinate on the sky in the STC model. This could lead to a VOTable fragment as the following, which is a version of an example in 5.4, but with altered utypes, and removal of the GROUP representing the Source. [3: See http://wiki.ivoa.net/twiki/bin/view/IVOA/IVAODMCatalogsWP.]

<TABLE>
<GROUP utype="vo-dml:Instance.root">
 <PARAM name=”type” utype=”vo-dml:Instance.type” value=”src:source/SkyCoordinate” datatype=”char” arraysize=”*”/>
 <FIELDref ref="_ra" utype="src:source/SkyCoordinate.longitude"/>
 <FIELDref ref="_dec" utype="src:source/SkyCoordinate.latitude"/>
 <GROUP ref="_icrs" utype="src:source/SkyCoordinate.frame"/>
</GROUP>
<FIELD name="designation" ID="_designation" .../>
<FIELD name="ra" ID="_ra" unit="deg" .../>
<FIELD name="dec" ID="_dec" unit="deg" .../>
<TR><TD>08120809-0206132</TD><TD>123.033734</TD><TD>-2.103671</TD></TR>
...
</TABLE>
Tools that understand STC may be able to do something with this annotation, even though they cannot know what role the coordinate plays.
Another example arises from a possible access protocol specification. Say Simple Cone Search (SCS) would declare that the result of a request MUST be a VOTable with a GROUP representing the actual request consisting of a position and a search radius. It could insist the position must be serialized using a GROUP representing an STC coordinate following our data modeling serialization prescription. E.g. as in the following example:
<GROUP utype="src:source/SkyCoordinateFrame" ID="_icrs">
 <PARAM utype="src:source/SkyCoordinateFrame.name" value="ICRS" .../>
 <PARAM utype="src:source/SkyCoordinateFrame.equinox" value="J2000.0" .../>
</GROUP>
...
<GROUP name="SCS">
 <INFO value="The SCS request "/>
 <PARAM name="SR" datatype="float" utype="ivoa_1.0:stdtypes/real"/>
 <GROUP name="center" utype="vo-dml:Instance.role">
 <PARAM name=”type” utype=”vo-dml:Instance.type” value=”src:source/SkyCoordinate” datatype=”char” arraysize=”*”/>
 <INFO value="The center coordinate of the simple cone search"/>
 <PARAM name="ra" utype="src:source/SkyCoordinate.longitude" value="123.00000" datatype="float"/>
 <PARAM name="dec" utype="src:source/SkyCoordinate.latitude" value="-2.10000" datatype="float"/>
 <GROUP ref="_icrs" utype="src:source/SkyCoordinate.frame"/>
 </GROUP>
</GROUP>
...
Note, this example even assigns a utype for the search radius SR, identifying it as the PrimitiveType “ivoa_1.0:stdtypes/real”. This shows that also PrimitiveType-s and Enumerations could be used directly, i.e. outside of a role they play.
One could argue that alternatively a standard protocol like SCS might define a little standard data model to represent its full request and use it in the serialization of result. In that case also the parent group, currently named “SCS’’, could have been declared to represent say an “scs:Request”, as follows:
 <GROUP utype="src:source/SkyCoordinateFrame" ID="_icrs">
 <PARAM utype="src:source/SkyCoordinateFrame.name" value="ICRS" .../>
 <PARAM utype="src:source/SkyCoordinateFrame.equinox" value="J2000.0" .../>
</GROUP>
...
<GROUP name="SCS" utype=”vo-dml:Instance.root”>
 <PARAM name=”type” utype=”vo-dml:Instance.type” value=”scs:Request” datatype=”char” arraysize=”*”/>
 <INFO value="The SCS request"/>
 <PARAM name="SR" datatype="float" utype="scs:Request.SR "/>
 <GROUP name="center" utype="scs:Request.center">
 <PARAM name=”type” utype=”vo-dml:Instance.type” value=”src:source/SkyCoordinate” datatype=”char” arraysize=”*”/>
 <INFO value="The center coordinate of the simple cone search"/>
 <PARAM name="ra" utype="src:source/SkyCoordinate.longitude" value="123.00000" datatype="float"/>
 <PARAM name="dec" utype="src:source/SkyCoordinate.latitude" value="-2.10000" datatype="float"/>
 <GROUP ref="_icrs" utype="src:source/SkyCoordinate.frame"/>
 </GROUP>
</GROUP>
...
[TBD I assume we do not have to spell out the SCS data model?]

6 [bookmark: _Ref347489726][bookmark: _Ref348111246][bookmark: _Toc352932734][bookmark: _Ref346811766][bookmark: _Toc228433298]ORM Mapping examples
6.1 Mapping Reference
ORM-like referencing from TABLE to TABLE:
A table with PhotometryFilter instances is referenced from a table with LuminosityMeasurement instances. The reference is represented by a GROUP that uses its @ref attribute to identify the GROUP representing the target filters. The reference GROUP contains a FIELDref.
Notice that the ID of the PhotometryFilter is constructed from 2 columns, representing (through their @utype) each a field of the Identifier, one identifying a catalogue, one a band. Hence the referencing object must use also two fields. As there is no explicit double linking possible in VOTable (FIELDref cannot use @ref both for indicating the local FIELD and the remotely referenced one), we propose the rule that to reference an Identifier one must replicate its structure. See 7.4 for more details.

Also, notice that the PhotometryFilter instance as a type referred by a phot: utype, since this class is imported from an external Data Model.

<TABLE>
<GROUP utype="vo-dml:Instance.root" id=”_filters”>
 <PARAM name=”type” utype=”vo-dml:Instance.type” value=”phot:PhotometryFilter” datatype=”char” arraysize=”*”/>
 <GROUP utype=”vo-dml:ObjectType.ID”>
 <PARAM name=”type” utype=”vo-dml:Instance.type” value=”vo-dml:Identifier” datatype=”char” arraysize=”*”/>
 <FIELDref ref=”_cat” utype="vo-dml:Identifier.field"/>
 <FIELDref ref=”_bans” utype="vo-dml:Identifier.field" />
 </GROUP>
 <FIELDref ref=”_name” utype="phot:PhotometryFilter.name"/>
</GROUP>
<FIELD name=”catalogue” id=”_cat” .../>
<FIELD name=”band” id=”_band” .../>
<FIELD name=”name” id=”_name” .../>
..
<DATA><TABLEDATA>
<TR><TD>SDSS</TD><TD>g</TD><TD>SDSS g-band</TD></TR>
<TR><TD>SDSS</TD><TD>u</TD><TD>SDSS u-band</TD></TR>
<TR><TD>2MASS</TD><TD>J</TD><TD>2MASS J-band</TD></TR>
</TABLDATA></DATA>
</TABLE>
<TABLE>
<GROUP utype="vo-dml:Instance.root" id="SDSS_mags">
 <PARAM name=”type” utype=”vo-dml:Instance.type” value=”src:source/LuminosityMeasurement” datatype=”char” arraysize=”*”/>
 <GROUP utype="src:source/LuminosityMeasurement.CONTAINER+vo-dml:Identifier">
 <PARAM name=”type” utype=”vo-dml:Instance.type” value=”src:source/SkyCoordinateFrame” datatype=”char” arraysize=”*”/>
 <FIELDref ref="_container" />
 </GROUP>
 <FIELDref ref="__mag" utype="SAMPL:source/LuminosityMeasurement.value"/>
 <PARAM name="type" utype="SAMPL:source/LuminosityMeasurement.type" value="magnitude"/>
 <FIELDref ref="__mag" utype="SAMPL:source/LuminosityMeasurement.error"/>
 <GROUP ref="_filters"
 utype="SAMPL:source/LuminosityMeasurement.filter+vo-dml:Identifier">
 <FIELDref ref=”_fcat” utype="vo-dml:Identifier.field" />
 <FIELDref ref=”_fband” utype="vo-dml:Identifier.field" />
 </GROUP>
</GROUP>
<FIELD id="_container" name="parentId" datatype="char"/>
<FIELD id="_mag" name="mag" datatype="float"/>
<FIELD id="_eMag" name="eMag" datatype="float"/>
<FIELD id="_fcat" name="catalogue" datatype="char"/>
<FIELD id="_fband" name="band" datatype="char"/>
<DATA><TABLEDATA>
<TR><TD>08120809-0206132</TD><TD>23.2</TD><TD>.04</TD><TD>SDSS</TD><TD>g</TD></TR>
<TR><TD>08120809-0206132</TD><TD>25.2</TD><TD>.1</TD><TD>2MASS</TD><TD>J</TD></TR>
...
</TABLEDATA></DATA>
</TABLE>

Referrer and target in same TR:
Following example shows a LuminosityMeasurement stored in a TR together with information about its PhotometryFilter. This might be the result of a query like:
SELECT M.value,M.error,F.id,F.name
 FROM LUMINOISOTY_MEASUREMENT M
 , PHOTOMETRY_FILTER F
 WHERE F.ID=M.FILTER_ID

It joins the filter to the measurement and stores some of its fields.
<TABLE>
<GROUP utype="SAMPL:source/PhotometryFilter" id=”_filters”>
 <GROUP utype=”vo-dml:ObjectType.ID”
 <FIELDref ref=”_cat”/>
 <FIELDref ref=”_bans”/>
 </GROUP>
 <FIELDref ref=”_name” utype="SAMPL:source/PhotometryFilter.name"/>
</GROUP>
<FIELD name=”catalogue” id=”_cat” .../>
<FIELD name=”band” id=”_band” .../>
<FIELD name=”name” id=”_name” .../>
..
<DATA><TABLEDATA>
<TR><TD>SDSS</TD><TD>g</TD><TD>SDSS g-band</TD></TR>
<TR><TD>SDSS</TD><TD>u</TD><TD>SDSS u-band</TD></TR>
<TR><TD>2MASS</TD><TD>J</TD><TD>2MASS J-band</TD></TR>
</TABLDATA></DATA>
</TABLE>
<TABLE>
<GROUP utype="SAMPL:source/LuminosityMeasurement" id="SDSS_mags">
 <GROUP utype="SAMPL:source/LuminosityMeasurement.CONTAINER+vo-dml:Identifier ">
 <FIELDref ref="_container" />
 </GROUP>
 <FIELDref ref="__mag" utype="SAMPL:source/LuminosityMeasurement.value"/>
 <PARAM name="type" utype="SAMPL:source/LuminosityMeasurement.type" value="magnitude"/>
 <FIELDref ref="__mag" utype="SAMPL:source/LuminosityMeasurement.error"/>
 <GROUP ref="_filter" utype="SAMPL:source/LuminosityMeasurement.filter/>
</GROUP>
<GROUP utype="SAMPL:source/PhotometryFilter" id=”_filter”>
 <FIELDref ref=”_filter.id” utype=”vo-dml:ObjectType.ID”/>
 <FIELDref ref=”_filter.name” utype=”SAMPL:source/PhotometryFilter.name”/>
</GROUP>
<FIELD id="_container" name="parentId" datatype="char"/>
<FIELD id="_mag" name="mag" datatype="float"/>
<FIELD id="_eMag" name="eMag" datatype="float"/>
<FIELD id="_filter.id" name="filter_id" datatype="char"/>
<FIELD id="_filter.name" name="filter_name" datatype="char"/>
<DATA><TABLEDATA>
<TR><TD>08120809-0206132</TD><TD>23.2</TD><TD>.04</TD><TD>SDSS:g</TD><TD>SDSS g-band</TD></TR>
...
</TABLEDATA></DATA>
Note that both LuminosityMeasurement and PhotometryFlter are explicitly (and indirectly) represented by GROUPs that identify their type. The reference between the two is represented by a “GROUPref” construct without contents, i.e. no vo-dml: Identifier is used.
Referencing unspecified GROUP from within TABLE through vo-dml:Identifier:
It may be that objects of the same type are represented by different GROUPs in the same VOTable. It may then also be that from within a TABLE one may wish to reference one of these, but different rows may have references to different instances. The following example shows this.
<GROUP utype="SAMPL:source/PhotometryFilter">
 <PARAM utype="vo-dml:ObjectType.ID" value="sdss:g" .../>
 <PARAM type="SAMPL:source/PhotometryFilter.name" value="SDSS g band" .../>
</GROUP>
<GROUP utype="SAMPL:source/PhotometryFilter">
 <PARAM utype="vo-dml:ObjectType.ID" value="sdss:u" .../>
 <PARAM type="SAMPL:source/PhotometryFilter.name" value="SDSS u band" .../>
</GROUP>
..
<TABLE>
<GROUP utype="SAMPL:source/LuminosityMeasurement" id="SDSS_mags">
 <GROUP utype="SAMPL:source/LuminosityMeasurement.CONTAINER+vo-dml:Identifier">
 <FIELDref ref="_container" utype="vo-dml:Identifier.field"/>
 </GROUP>
 <FIELDref ref="__mag" utype="SAMPL:source/LuminosityMeasurement.value"/>
 <PARAM name="type" utype="SAMPL:source/LuminosityMeasurement.type" value="magnitude"/>
 <FIELDref ref="__mag" utype="SAMPL:source/LuminosityMeasurement.error"/>
 <GROUP utype="SAMPL:source/LuminosityMeasurement.filter+vo-dml:Identifier">
 <FIELDref ref="_filter" utype="vo-dml:Identifier.field"/>
 </GROUP>
</GROUP>
<FIELD id="_container" name="parentId" datatype="char"/>
<FIELD id="_mag" name="mag" datatype="float"/>
<FIELD id="_eMag" name="eMag" datatype="float"/>
<FIELD id="_filter" name="filter" datatype="char"/>
<DATA><TABLEDATA>
<TR><TD>08120809-0206132</TD><TD>23.2</TD><TD>.04</TD><TD>sdss:g</TD></TR>
<TR><TD>08120809-0206132</TD><TD>22.5</TD><TD>.05</TD><TD>sdss:u</TD></TR>
...
</TABLEDATA></DATA>
</TABLE>
The mapping in this example is indirect, for the GROUP representing the target is not explicitly identified by the reference. This reference is here nevertheless represented by a GROUP with a FIELDref. The GROUP represents a copy the vo-dml:Identifier instance used as value of the remote object's vo-dml:ObjectType.ID; the FIELDref the single vo-dml:Identifier.field. Different rows reference different GROUPs, hence a “GROUPref” construct is not applicable here. To find the target the client will have to search the document for a GROUP representing the right type and with an ID with a single field of the right value. If the value of a TD could be a @ref, we could use XMLs ID/IDREF mechanism which in some tools facilitates the lookup. But see section [TBD] for ideas how to best analyze a VOTable with data model structure, in particular how to deal with referencing. [TBD do we want such a section? It might borrow from some more VO-URP implementation ideas.]

6.2 Mapping Collection

Container and contained objects in separate TABLE linked by “GROUPrefs“:
The basic Object-Relational mapping has containers stored in one table, the objects in the collection in another. The child objects need a foreign key/pointer to the container object. In the example below we have the collection represented on the container using a "GROUPref" to the collection. The utype identifies only the collection, the @ref identifies the GROUP where the collection element(s) can be found. In this case that GROUP annotates a TABLE and has as @utype the type of the collection. It also contains a GROUP representing a pointer to the container object. Its utype is a concatenation of the CONTAINER utype and of the predefined vo-dml:Identifier to indicate it represents the ID of the container object.
...
<TABLE>
<GROUP utype="vo-dml:Instance.root" id="_source">
 <PARAM name=”type” utype=”vo-dml:Instance.type” value=”src:source/Source” datatype=”char” arraysize=”*”/>
 <FIELDref ref="_designation" utype="vo-dml:ObjectType.ID"/>
 <FIELDref ref="_designation" utype="src:source/Source.name"/>
 <PARAM name=”type” utype=”SAMPL:source/Source.classifiication” value=”galaxy”/>
 <GROUP utype="SAMPL:source/Source.position">
 <PARAM name=”type” utype=”vo-dml:Instance.type” value=”src:source/SkyCoordinate” datatype=”char” arraysize=”*”/>
 <FIELDref ref="_ra" utype="src:source/SkyCoordinate.longitude"/>
 <FIELDref ref="_dec" utype="src:source/SkyCoordinate.latitude"/>
 <GROUP ref="_icrs" utype="src:source/SkyCoordinate.frame"/>
 </GROUP>
 <GROUP utype="src:source/Source.luminosity" ref=”SDSS_mags”/>
</GROUP>
<FIELD name="designation" ID="_designation" .../>
<FIELD name="ra" ID="_ra" unit="deg" .../>
<FIELD name="dec" ID="_dec" unit="deg" .../>
<TR><TD>08120809-0206132</TD><TD>123.033734</TD><TD>-2.103671</TD></TR>
...
</TABLE>
...
<TABLE>
<GROUP utype="src:source/LuminosityMeasurement" id="SDSS_mags">
 <GROUP utype="src:source/LuminosityMeasurement.CONTAINER">
 <FIELDref ref="_container" utype=”vo-dml:Identifier”/>
 </GROUP>
 <FIELDref ref="_mag" utype="src:source/LuminosityMeasurement.value"/>
 <PARAM name="type" utype="src:source/LuminosityMeasurement.type" value="magnitude"/>
 <FIELDref ref="_eMag" utype="src:source/LuminosityMeasurement.error"/>
 <GROUP ref="_filter" utype="src:source/LuminosityMeasurement.filter">
				<PARAM name=”type” utype=”vo-dml:Instance.type” value=”phot:PhotometryFilter” datatype=”char” arraysize=”*”/>
 <FIELDref ref="_filter" utype=”vo-dml:Identifier”/>
 </GROUP>

[TBD without +]
</GROUP>
<FIELD id="_container" name="parentId" datatype="char"/>
<FIELD id="_mag" name="mag" datatype="float"/>
<FIELD id="_eMag" name="eMag" datatype="float"/>
<FIELD id="_filter" name="filter" datatype="char"/>
<DATA><TABLEDATA>
<TR><TD>08120809-0206132</TD><TD>23.2</TD><TD>.04</TD><TD>sdss:g</TD></TR>
<TR><TD>08120809-0206132</TD><TD>23.0</TD><TD>.03</TD><TD>sdss:r</TD></TR>
</TABLEDATA></DATA>
</TABLE>

7 Patterns for annotating VOTable: specification
In this section we list all legal mappings where a VOTable element uses its @utype to identify one or two VO-DML elements; we describe how such an annotation should be interpreted and what restrictions there are on the association. In its subsections it explicitly lists possible annotations of a VOTable with a utype value that one may encounter following this spec.
The organization of the following sections is based on the different VO-DML concepts that can be represented. Each of these subsections contains sub-subsections which represent the different possible ways the concept may be encountered in a VOTable and discuss rules and constraints on those annotations. We start with Model, and then we discuss value types (PrimitiveType, Enumeration and DataType) and Attributes. Then ObjectType and the relationships, Collection, Reference and Inheritance (extends). We leave out Package as we have not yet found a convincing use case why one might want to point at one from a VOTable (though we did not really look for a reason either).
The title of each subsection describing a legal mapping is structured according to a "grammar'. It starts with a VOTable element on the left, the utype assignment and possible other constraints in square brackets []. A possible context is indicated by an ∊ with to its right a container formatted like the element of the left. Finally, an '' indicates a relation to another element; this will generally be defined in the same VOTable, but might be serialized elsewhere.
For example the section with title “GROUP[@utype ⇒ ObjectType]” discusses the rules on linking a GROUP to an ObjectType; similarly “GROUP[@utype ⇒ ObjectType] ∊ RESOURCE” discusses the same case restricted to GROUPs defined directly on a RESOURCE, i.e. not on a TABLE or another GROUP. Where relevant, subsections will be used for different cases or contexts within which to interpret the annotation. Appendix A contains an attempt at formalizing this grammar so one may argue about valid instances of it in a more explicit manner. This is TBD and likely too scary. Instead each section should spell state the meaning of the title explicitly.
Some comments on how we refer to VOTable and VO-DML elements
· When referring to VOTable elements we will use the notation by which these elements will occur in VOTable documents, i.e. in general “all caps”, E.g. GROUP, FIELD, (though FIELDref).
· When referring to rows in a TABLE element in a VOTable, we will use TR, when referring to individual cells, TD. Even though such elements only appear in the TABLEDATA serialization of a TABLE. When referring to a column in the TABLE we will use FIELD, also if we do not intend the actual FIELD element annotating the column.
· When referring to an XML attribute on a VOTable element we will prefix it with an ‘@’, e.g. @utype, @ref.
· References to VO-DML elements will be capitalized, using their VO-DML/XSD type definitions. E.g. ObjectType, Attribute.
· Some mapping solutions require a reference to a GROUP elsewhere in the VOTable. We refer to such a construct as a “GROUPref. In the examples we use a concrete implementation of this concept which (currently) does not exists in VOTable (and is likely not desired). The solution assumed in this document is to use a GROUP with a @ref attribute which we will assumes always identifies another GROUP in the same document. This target GROUP must have an @id attribute. In cases where this is important we will indicate that this combination is to be interpreted as a “GROUPref”, including the quotes.
The following list defines some shorthand phrases (underlined) which we use in the descriptions below:
· Generally when using the phrase type we mean a "kind of" type as defined in VO-DML. These are PrimitiveType, Enumeration, DataType and ObjectType.
· With atomic type we will mean a PrimitiveType or an Enumeration as defined in VO-DML.
· A structured type will refer to an ObjectType or DataType as defined in VO-DML.
· With a property available on or defined on a (structured) type we will mean an Attribute or Reference, or (in the case of ObjectTypes) a Collection defined on that type itself, or inherited from one of its base class ancestors.
· A VO-DML type plays a role in the definition of another (structured) type if the former is the declared data type of a property available on the latter.
· When writing that a VOTable element represents a certain VO-DML type, we mean that the VOTable element is mapped either directly to the type, or that it identifies a role played by the type in another type’s definition.
· A descendant of a VOTable element is contained in that element, or in a descendant of that element. This is a standard recursive definition and can go up the hierarchy as well: an ancestor of an element is the direct container of that element, or an ancestor of that container.
Short list of all patterns:
· ObjectType direct to GROUP
· ObjectType indirect to GROUP in TABLE
· DataType direct to GROUP
· DataType indicrect to GROUP in TABLE
· Atomic attribute to FIELDref
· Atomic attribute to PARAM in GROUP
· Atomic attribute to PARAMref
· Structured attribute to GROUP in GROUP
· Reference to GROUP in GROUP
· As "GROUPref"
· As vo-dml:Identifier (~foreign key)
· Collection element to GROUP in GROUP
· Collection to GROUPref in GROUP (indicates remote table/element)
7.1 [bookmark: _Toc352932735][bookmark: _Toc228433299]Model
7.1.1 [bookmark: _Toc352932736][bookmark: _Toc228433300]GROUP[@utype ⇒ Model] ∊ VOTABLE
A GROUP element with @utype attribute identifying a Model and placed directly under the root VOTABLE element indicates that the corresponding VO-DML model is used in @utype associations.
Restrictions
· GROUP element must exist directly under VOTABLE and have @utype=”vo-dml:Model”
· Must have child PARAM element with @utype=”vo-dml:Model.url” and @value the url of the VO-DML document representing the model. @name is irrelevant, @datatype=”char” and arraysize=”*”.
· SHOULD have child PARAM element with @utype=”vo-dml:Model.prefix” and @value the prefix used in the current VOTable document for utypes coming from that model. @name is irrelevant, @datatype=”char” and arraysize=”*”.
TBD How do we deal with prefix? Can it be different from utype prefix in VO-DML document? Do utypes in VO-DML document have a prefix?
Example
<VOTABLE>
<GROUP utype="vo-dml:Model" name="Sample">
 <PARAM utype="vo-dml:Model.url" name=”url” datatype=”char” arraysize=”*” value="http://volute.googlecode.com/svn/trunk/projects/dm/vo-dml/models/sample/Sample.vo-dml.xml"/>
 <PARAM utype="vo-dmlLModel.prefix" name=”prefix” datatype=”char” arraysize=”*” value="SAMPL"/>
</GROUP>
<GROUP utype="vo-dml:Model" name="IVOA_Profile">
<PARAM utype="vo-dml:Model.url" name=”url” datatype=”char” arraysize=”*” value="http://volute.googlecode.com/svn/trunk/projects/dm/vo-dml/models/profile/IVOA_Profile.vo-dml.xml"/>
<PARAM utype="vo-dml:Model.prefix" value="ivoa_1.0" name=”prefix” datatype=”char” arraysize=”*” />
</GROUP>
...

7.1.1.1 [bookmark: _Ref346814991][bookmark: _Toc228433301]GROUP[@utype ⇒ DataType] ∊ RESOURCE
A GROUP in a RESOURCE cannot have FIELDrefs, only PARAMs, PARAMrefs and GROUPs. The GROUP represents therefore a single instance of the DataType directly as defined in 7.1, with the PARAM-s etc. providing the values of the components of the DataType.
The possible role this instance plays in the VOTable document must have been defined outside of any mapping to a data model. After all, in contrast to instances of ObjectTypes, the existence of instances of value types need not be explicitly stated (see the description of value types in section TBD). An example could be a VOTable containing the result of a simple cone search. A RESOURCE in that document might contain a GROUP representing the position of the cone, which may be mapped through its @utype to a DataType “stc:SkyCoordinate” (if such a type existed, our sample model contains a type like it).

Example
<RESOURCE>
...
<GROUP utype="bSTC:SkyCoordinate">
 <INFO value="The center coordinate of the simple cone search"/>
 <PARAM name="ra" utype="bSTC:SkyCoordinate.longitude" value="123.00000"/>
 <PARAM name="dec" utype="bSTC:SkyCoordinate.latitude" dec=-2.10000/>
 <PARAMref ref="_icrs" utype="bSTC:SkyCoordinate.frame"/>
</GROUP>
...

7.1.1.2 [bookmark: _Toc228433302]GROUP[@utype ⇒ DataType &¬FIELDref] ∊ TABLE
A GROUP defined on a TABLE, annotated with a DataType, but without FIELDref-s in the GROUP or any of its descendant GROUPs, represents a DataType instance directly, just as was the case for the GROUP in a Resource in the previous subsection. In this case we can then interpret the GROUP “merely” as a structured PARAM following the VOTable spec [REF] “A PARAM may be viewed as a FIELD which keeps a constant value over all the rows of a table”. I.e. a GROUP without FIELDref is a structured set of columns all with the same value in each row. As the GROUP is mapped directly to a DataType rather than to a role, the use of such a GROUP in the context of the TABLE is not defined by a mapping, but possibly by a protocol as described in section 6.1.1.1.
7.1.1.3 [bookmark: _Toc228433303]GROUP[@utype ⇒ DataType & FIELDref] ∊ TABLE
If the GROUP is a descendant of a TABLE, is annotated with a DataType and contains at least one FIELDref element, either directly or in a descendant GROUP, the GROUP represents an instance of the DataType for each TR. The interpretation of the possible role it plays in terms of
Example
<TABLE>
...
 <GROUP utype="bSTC:SkyCoordinate">
 <FIELDref ref="_ra" utype="bSTC:SkyCoordinate.longitude"/>
 <FIELDref ref="_dec" utype="bSTC:SkyCoordinate.latitude"/>
 <GROUP ref="_icrs" utype="bSTC:SkyCoordinate.frame"/>
 </GROUP>
...
<FIELD name="ra" ID="_ra" unit="deg">
<DESCRIPTION>right ascension (J2000 decimal deg)</DESCRIPTION>
</FIELD>
<FIELD name="dec" ID="_dec" unit="deg">
<DESCRIPTION>declination (J2000 decimal deg)</DESCRIPTION>
</FIELD>
...

7.1.1.4 [bookmark: _Toc228433304]GROUP[@utype ⇒ DataType] ∊ GROUP[¬@utype]
A GROUP may be defined inside another GROUP and be mapped to a DataType. There are some restrictions. NONE of its ancestor GROUPs MAY be mapped to a data model element. This would conflict with rules of mapping such an ancestor GROUP that state that children of such GROUPs MUST be mapped to properties of the structured type represented by the containing GROUP (see the restrictions defined in 7.2.1).
Whether the GROUP represents the DataType instance directly or indirectly is independent of this embedding in a parent GROUP, only of the existence of a FIELDref in it or its descendants.
Example A GROUP representing parameters of a Simple Cone Search
<GROUP name="SCS">
...
<GROUP name="center" utype="bSTC:SkyCoordinate">
 <INFO value="The center coordinate of the simple cone search"/>
 <PARAM name="ra" utype="bSTC:SkyCoordinate.longitude" value="123.00000"/>
 <PARAM name="dec" utype="bSTC:SkyCoordinate.latitude" dec=-2.10000/>
 <GROUP ref="_icrs" utype="bSTC:SkyCoordinate.frame"/>
</GROUP>
</GROUP>

7.2 [bookmark: _Ref348083282][bookmark: _Toc352932744][bookmark: _Toc228433305]Attribute
An attribute is the role a value type plays in the definition of a structured type. The mapping of the attribute is therefore almost identical to that of its type itself; similar elements can be used and the utype attribute may contain the utype of the actual type (must do so to support polymorphism). To annotate an element as attribute one MUST use also the utype of the attribute itself. Furthermore the element representing the attribute MUST be contained in a GROUP that represents the containing structured type.
How all of this is achieved in practice is described in the following subsections.
7.2.1 [bookmark: _Ref346813196][bookmark: _Toc352932745][bookmark: _Toc228433306]FIELDref[@utype ⇒ Attribute [+ (PrimitiveType | Enumeration)]]
[NOTE the decision of telecom 2013-04-09 to not use concatenation of utypes, but a child PARAM to indicate specialized type casting implies that FIELDref-s, PARAMref-s and PARAM-s can not be explicitly casted.]
A FIELDref contained in a GROUP with a VO-DML annotation, MUST through its @utype declare that the FIELD it refers to stores an Attribute. [DEPRECATED It MAY (MUST?) add the utype identifying the actual type (a PrimitiveType or an Enumeration) that the FIELD represents separated by a ‘+’ from the utype of the Attribute.]
Restrictions
· The Attribute MUST be available to the structured type represented by the containing GROUP.
· The Attribute MUST have an atomic type.
· The datatype of the referenced FIELD must be compatible with the declared datatype of the Attribute, as well as the actual detatype indicated by the relevant part of the utype combination.
·
Example
See example in TBD.

7.2.2 [bookmark: _Ref346813211][bookmark: _Toc352932746][bookmark: _Toc228433307]PARAM[@utype ⇒ Attribute [+ (PrimitiveType | Enumeration)]]
∊ GROUP[@utype ⇒ ⟨ObjectType | DataType⟩]
When defined inside of a GROUP that represents a structured type, a PARAM MAY represent an Attribute defined on the type. Which Attribute it represents it declares through its @utype. It MAY (MUST?) add the utype identifying the actual type (a PrimitiveType or an Enumeration) that the FIELD represents separated by a ‘+’ from the utype of the Attribute.
Restrictions
· The Attribute must have an atomic data type.
· The PARAM’s @datatype SHOULD be a compatible, valid serialization type for the type of the Attribute. (For reasons of translational semantics: It must be possible to create an instance of the atomic type from the value stored in the PARAM’s @value).
· …
Example
See example in TBD.

7.2.3 [bookmark: _Ref346813218][bookmark: _Toc352932747][bookmark: _Toc228433308]PARAMref[@utype ⇒ Attribute [+(PrimitiveType | Enumeration)]]
Inside a GROUP a PARAMref identifies a PARAM defined inside the same RESOURCE or TABLE where the GROUP is defined. Using its @utype the PARAMref can annotate the PARAM as holding the value of an Attribute.
Restrictions
· The Attribute must be available to the structured type represented by the containing GROUP.
· Attribute’s data type must be atomic.
· The PARAM must obey the restrictions defined for the annotation of a PARAM by the Attribute’s type, if a PrimitiveType see Error! Reference source not found., if an Enumeration see Error! Reference source not found..
Example
TBD

7.2.4 [bookmark: _Ref346813229][bookmark: _Toc352932748][bookmark: _Toc228433309]GROUP[@utype ⇒ Attribute(DataType)]
∊ GROUP[@utype ⇒ ⟨ObjectType | DataType⟩]
A GROUP that is defined inside parent GROUP representing a structured type can be mapped to an Attribute with a (structured) DataType. The annotation will be a concatenation of the utype of the Attribute and of the actual DataType it represents.
Restrictions
· The Attribute represented by the child GROUP must be available on the structured type represented by the parent GROUP.
· …
Example
<GROUP utype="SAMPL:source/Source">
 ...
 <GROUP utype="SAMPL:source/Source.position+bSTC:SkyCoordinate">
 <FIELDref ref="_ra" utype="bSTC:SkyCoordinate.longitude"/>
 <FIELDref ref="_dec" utype="bSTC:SkyCoordinate.latitude"/>
 <GROUP ref="_icrs" utype="bSTC:SkyCoordinate.frame"/>
 </GROUP>
...
</GROUP>

7.3 [bookmark: _Ref346524994][bookmark: _Toc352932749][bookmark: _Toc228433310]ObjectType
7.3.1 [bookmark: _Toc352932750][bookmark: _Toc228433311]GROUP[@utype ⇒ ObjectType]
A GROUP’s @utype may identify an ObjectType. Depending on the context, i.e. the location of the GROUP within other VOTable elements, such a mapping indicates the existence of one or more instances of the ObjectType. These may be directly represented by the GROUP, i.e. the GROUP is the instance, or the GROUP may indicate their existence when it is used to annotate a TABLE. These two cases are treated in the subsections below.
Much of the definition here mirrors that of the mapping of GROUP to DataType. The main difference is that having a GROUP annotated directly mapped an ObjectType, rather than to a role the ObjectType plays (say as reference or collection) is always meaningful. For the existence of instances of ObjectTypes cannot be inferred from the definition of the type.
Restrictions
· The components of a GROUP mapped to an ObjectType MUST be mapped to properties defined on that ObjectType. The following options are available:
· FIELDref ∊ GROUP ⇒ Attribute ∊ ObjectType with atomic datatype (see)
· FIELDref ∊ GROUP ⇒ ID ∊ ObjectType with atomic datatype (see
· PARAM ∊ GROUP ⇒ Attribute ∊ ObjectType with atomic datatype (see)
· PARAM ∊ GROUP ⇒ ID ∊ ObjectType with atomic datatype (see)
· PARAMref ∊ GROUP ⇒ Attribute ∊ ObjectType with atomic datatype (see)
· PARAMref ∊ GROUP ⇒ ID ∊ ObjectType with atomic datatype (see)
· GROUP ∊ GROUP ⇒ Attribute ∊ ObjectType with structured datatype (see)
· GROUP ∊ GROUP ⇒ ID ∊ ObjectType with atomic datatype (see)
· GROUP ∊ GROUP ⇒ Collection ∊ ObjectType (see)
· GROUP ∊ GROUP ⇒ Reference ∊ ObjectType (see)
· GROUP ∊ GROUP ⇒ Container ∊ ObjectType (see)
· GROUP ∊ GROUP ⇒ Extends ∊ ObjectType

7.3.1.1 [bookmark: _Toc228433312]GROUP[@utype ⇒ ObjectType] ∊ RESOURCE
GROUP as instance on RESOURCE
GROUP cannot have FIELDref-s, not can any of possible child GROUPs. Hence GROUP indicates an instance of the indicated ObjectType.
Example
<RESOURCE>
<GROUP utype="bSTC:SkyCoordinateFrame" ID="_icrs">
 <PARAM name="name" datatype="char" utype="bSTC:SkyCoordinateFrame.name" value="ICRS"/>
 <PARAM name="equnox" datatype="char" utype="bSTC:SkyCoordinateFrame.equinox+bSTC:Equinox" value="J2000.0"/>
</GROUP>
...
</RESOURCE>

7.3.1.2 [bookmark: _Toc228433313]GROUP[@utype ⇒ ObjectType & ¬ FIELDref] ∊ TABLE
GROUP as instance on TABLE
¬ FIELDref means that the GROUP has not FIELDref-s directly under it, not in any GROUP representing an Attribute or Reference. Having no FIELDref, the GROUP represents an instance of the indicated ObjectType. Some of its child GROUPs may have a FIELDref, but only if they annotate an ObjectType.
It is allowed for a GROUP representing a Collection to have a FIELDref. In that case the GROUP represents an instance with ALL the TRs representing objects from the collection. There MUST NOT be more than 1 GROUP representing a Collection in this manner.
7.3.1.3 [bookmark: _Toc228433314]GROUP[@utype ⇒ ObjectType & FIELDref] ∊ TABLE
GROUP as annotation
A GROUP defined as child of a TABLE and having at least 1 FIELDref annotates the TRs in the TABLE, indicating that each row in the table represents at least part of an instance of the indicated ObjectType.
A child GROUP MAY contain a FIELDref, but only if that child GROUP is annotated to represent a collection defined on its GROUP. This represents one way of mapping a parent-child composition relation. The TABLE rows represent instances of the child ObjectType represented by the child GROUP. The parent GROUP represents the single instance of the container ObjectType.
Example
<TABLE>
<GROUP utype="SAMPL:source/Source">
 <FIELDref ref="_designation" utype="vo-dml:ObjectType.ID"/>
 <GROUP utype="SAMPL:source/Source.position+bSTC:SkyCoordinate">
 <FIELDref ref="_ra" utype="bSTC:SkyCoordinate.longitude"/>
 <FIELDref ref="_dec" utype="bSTC:SkyCoordinate.latitude"/>
 <GROUP ref="_icrs" utype="bSTC:SkyCoordinate.frame"/>
 </GROUP>
...
</GROUP>
<FIELD name="designation" ID="_designation" utype="ivoa_1.0:stdtypes/string">
<DESCRIPTION>source designation formed from sexigesimal coordinates</DESCRIPTION>
</FIELD>
<FIELD name="ra" ID="_ra" unit="deg">
<DESCRIPTION>right ascension (J2000 decimal deg)</DESCRIPTION>
</FIELD>
<FIELD name="dec" ID="_dec" unit="deg">
<DESCRIPTION>declination (J2000 decimal deg)</DESCRIPTION>
</FIELD>
...

7.4 [bookmark: _Ref348254341][bookmark: _Ref348333578][bookmark: _Toc352932751][bookmark: _Toc228433315]vo-dml:ObjectType.ID and vo-dml:Identifier
It is assumed that objects (i.e. instances of an ObjectType) have an implicitly defined attribute that identifies instances uniquely; we will refer to this attribute as the ID. This attribute may be required for a serialization of an object, but is not modeled explicitly in VO-DML models. The reason is that it often depends on the particular physical representation of model instances how the ID is represented. For example a relational database might use one or more INTEGER or BIGINT columns in the table storing the instance, whereas an XML document might have an ID attribute, or a URI. In fact different serializations of the same object may use different ways to represent the ID.
Hence an instance of an ID can generally be serialized to one or more columns in a TABLE, or to one or more PARAMs in a GROUP or even some combination of the two. The ID may therefore be represented by a single FIELDref or PARAM or PARAMref in the annotating GROUP, or possibly a child GROUP representing an ID with structure. Whatever the choice, an annotation must be provided that indicates the role of the element in the definition of the object serialization.
We may want to use the same logic as we apply for all such annotations, i.e. a utype MUST point to an explicitly defined model. To be able to do so we have created a special data model called VO-DML. This model is located in https://volute.googlecode.com/svn/trunk/projects/dm/vo-dml/models/vo-dml/VO-DML.vo-dml.xml[footnoteRef:4], has prefix "vo-dml" and is discussed further in Error! Reference source not found.. [4: This model still depends for its PrimitiveType on the IVOA_Profile model in https://volute.googlecode.com/svn/trunk/projects/dm/vo-dml/models/profile/IVOA_Profile.vo-dml.xml. We might decide to merge the two into a VO-DML Profile or so. That model would have to be part of a spec and be separately maintained.]

We propose that the utype "vo-dml:ObjectType.ID" is used to annotate an attribute on an ObjectType that holds on to the ID. It's type is defined as "vo-dml:Identifier". This is a type that contains an array of strings named "field". Since it is a datatype, in the current proposal an ID attribute should be mapped to a GROUP. The special role that the VO-DML model plays in this proposal might be used to make simplifying annotations. For example the majority of all cases will be where a single field is used to hold the identifier. Hence a GROUP, as is otherwise mandated for DataType mappings, might seem cumbersome. Below we assume any FIELDref, PARAM(ref) or child GROUP might be annotated to be an ID. But there must be only one such annotated child element. This is TBD.
7.4.1 [bookmark: _Toc352932752][bookmark: _Toc228433316]FIELDref[@utype ⇒ ID] ∊ GROUP[@utype ⇒ ⟨ObjectType⟩]
The GROUP representing the ObjectType has an ID consisting of a single FIELD. Each row in the TABLE has an instance identified by that FIELD.
7.4.2 [bookmark: _Toc352932753][bookmark: _Toc228433317]PARAM[@utype ⇒ ID] ∊ GROUP[@utype ⇒ ⟨ObjectType⟩ & ¬ FIELDref]
A GROUP representing an ObjectType has a single PARAM to identify it. Parent GROUP SHOULD NOT be contained in TABLE, or have no FIELDref. Otherwise it would indicate multiple rows all with same ID, which would be odd. To be worked out (might this be used as a way to indicate replication of a parent object type in a table containing a complete collection? I'd say this should be modeled differently, using a CONTAINER annotation.) TBD
7.4.3 [bookmark: _Toc352932754][bookmark: _Toc228433318]GROUP [@utype ⇒ ID] ∊ GROUP[@utype ⇒ ⟨ObjectType⟩]
GROUP represents a struct as ID. Containing objects can only be FIELDref, PARAMref and or PARAM. Order and data type of these is important as references must replicate structure.
7.5 [bookmark: _Ref346811864][bookmark: _Ref346813640][bookmark: _Toc352932755][bookmark: _Toc228433319]Reference
A Reference is a relation between a structured type (the “referrer”, an ObjectType or DataType) and an ObjectType, the “target object”, or “referenced object”. The reference is a property of the referrer and the target object can be referenced by many referrers. The GROUP representing the referrer should hold on to an element representing the reference. The minimum requirement on this element MUST allow one to identify the target object.
In general one cannot assume that the target object can be found in the same element that contains the referrer. For example a standard Object Relational mapping will store both referrer and target objects in tables that will generally be different (unless referrer and target happen to have the same type). The referrer table will have a “foreign key” consisting of one or more columns that correspond to primary key columns in the target table. This kind of representation could be used in VOTable as well[footnoteRef:5]; both referrer and target objects may be stored in TABLEs. This context requires that the mapping of the target objects includes an explicit mapping for their identifier. And the reference element must have a structure replicating the structure of that identifier. [5: See old note by Louys and Bonnarel, http://www.ivoa.net/Documents/Notes/DMVOTSer/ModelVOTSer-20040522.pdf]

This is the case where both referrer and target are indirectly represented by GROUP. Either or both may also be directly represented by a GROUP, which may offer different ways to represent the reference. An even more perverse possibility is that the target object is serialized in a different database or document altogether. For example one may wish to refer to a coordinate system formally defined in a document somewhere else, possibly officially registered in an IVOA registry. This object may be identifiable through some IVO identifier, and maybe our serialization can make use of this and not have to contain its own serialization of this reference data.
All in all we need to deal with the cases described in the following sections.
1. Both referrer and target directly represented by a GROUP.
2. Referrer directly in GROUP, refers to object indirectly represented by GROUP annotating TABLE.
Referrer GROUP must be able to identify a row in the TABLE. The TABLE in which to look for the object MUST be annotated by a GROUP representing a type compatible with the type of the Reference. For it to be possible to identify the TR in the TABLE that stores the actual target object, the GROUP annotating the TABLE must define an ID. This may be through a single FIELDref, or possibly through a GROUP with multiple FIELDref-s in case the ID is structured. The referring GROUP MUST map the reference to a GROUP have a copy of this ID with values set. For each FIELDref there must be a PARAM referring (through its @ref) to the same FIELD as the ID’s FIELDref and with @value set to the value in the TR. Since there is only a single referrer object here, it SHOULD be possible to indicate in which TABLE the target object resides, indeed which GROUP represents it. This again should be done using a “GROUPref”.
3. Object in TR refers to object in GROUP.
The object in the TR can in general only use TDs to refer to an object elsewhere. Hence an object in a GROUP will have to define an ID with its PARAMs. If there is a single referenced object, the
4. Object in TR refers to object in TR
5. Object in GROUP to external object not in document.
6. Object in TR to external object not in document.
In the titles of the sections below the target representation is located on the right of an
7.5.1 [bookmark: _Toc352932756][bookmark: _Toc228433320]GROUP[@utype ⇒ Reference & @ref]
∊ GROUP[@utype ⇒ ⟨ObjectType | DataType⟩ & ¬ FIELDref]
 GROUP[@utype ⇒ ⟨ObjectType⟩ & @id & ¬ FIELDref]
The title indicates that a GROUP inside of a GROUP representing a structured type directly (¬FIELDref) represents a reference to another GROUP that also represents an object directly, either as a type or as a role (must be a collection element).
We have to assume that each referenced object has an identifier and each referrer must somehow have a copy of that identifier. As the definition of identifiers is not exactly prescribed, neither can we prescribe the form that the reference will take.
Restrictions
· GROUP identified by @ref MUST represent an ObjectType compatible with the data type of the Reference, i.e. either the same type of some of its subtypes.
Example
<GROUP utype="SAMPL:source/PhotometryFilter" ID="_2massJ">
 <PARAM name="name" datatype="char" utype="SAMPL:source/PhotometryFilter.name" value="2mass:J"/>
</GROUP>
...
 <GROUP utype="SAMPL:source/Source.luminosity;SAMPL:source/LuminosityMeasurement">
 <FIELDref ref="_magJ" utype="SAMPL:source/LuminosityMeasurement.value"/>
 <FIELDref ref="_errJ" utype="SAMPL:source/LuminosityMeasurement.error"/>
 <GROUP ref="_2massJ" utype="SAMPL:source/LuminosityMeasurement.filter"/>
 </GROUP>
...
7.5.2 [bookmark: _Toc352932757][bookmark: _Toc228433321]GROUP[@utype ⇒ Reference + ‘vo-dml:Identifier’]
∊ GROUP[@utype ⇒ ⟨ObjectType | DataType⟩ & ¬ FIELDref]
 GROUP[@utype ⇒ ⟨ObjectType⟩ & FIELDref & ID] ∊ TABLE
The title indicates an ObjectType or DataType instance directly represented by a GROUP (¬FIELDref) that contains a GROUP whose @utype is a concatenation of a utype identifying a Reference with the utype identifying the VO-DML ID concept, ‘vo-dml:ObjectType.ID’ (see 6.4). This indicates the GROUP represents a reference that identifies its target object using a copy of the identifier of that object. This is equivalent to the way foreign keys are used in the relational model to make links between rows in tables.
7.5.3 [bookmark: _Toc352932758][bookmark: _Toc228433322] GROUP[@utype ⇒ Reference + ‘vo-dml:Identifier']
∊ GROUP[@utype ⇒ ⟨ObjectType | DataType⟩ & FIELDref]
 GROUP[@utype ⇒ ⟨ObjectType⟩ & ¬FIELDref & ID]
TBD

7.5.4 [bookmark: _Toc352932759][bookmark: _Toc228433323]GROUP[@utype ⇒ Reference + ‘vo-dml:Identifier’]
∊ GROUP[@utype ⇒ ⟨ObjectType | DataType⟩ & FIELDref]
 GROUP[@utype ⇒ ⟨ObjectType⟩ & FIELDref & ID]
TBD

7.6 [bookmark: _Ref348356661][bookmark: _Toc352932760][bookmark: _Toc228433324]Collection
A collection is a composition relation between a parent ObjectType and a child, or part, ObjectType. For the same reasons as discussed for reference mapping, the fact that objects can be stored in different ways implies many different ways in which the relation may need to be expressed.
In XML serializations of a data model (such as used in VO-URP and the Simulation Data Model) one may choose to have the contained objects serialized inside the serialization of the parent. It is possible to do so in VOTable as well using child GROUP-s representing a complete child object embedded in the GROUP representing the parent object. This is natural for this relationship because a collection element is really to be considered as a part of the parent object.
This may be used to represent flattening of the parent-child relation. One or more child objects may be stored together with the parent object in the same row in a TABLE. Such a case is actually very common, for example when interpreting tables in typical source catalogues. These generally contain information of a source together with one or more magnitudes. The latter can be seen as elements form a collection of photometry points contained by the sources.
Hence a GROUP inside another GROUP MAY represent a collection. It can do so in different modes that are described in the following subsections.
Restriction
· The parent GROUP must represent an ObjectType that can contain the Collection.

See also the treatment of the Container reference in section 6.6.3.

7.6.1 [bookmark: _Toc352932761][bookmark: _Toc228433325]GROUP [@utype ⇒ Collection+ObjectType]
∊ GROUP[@utype ⇒ ⟨ObjectType⟩]
Contained group represents an object of the indicated ObjectType that is an element of the indicated Collection. The GROUP MUST be contained inside of a GROUP that represents an ObjectType and is a valid Container of the Collection.
In this case the child GROUP represents a single object form the collection, not the collection as a whole. This can occur when annotating what is often called a flattened representation. One or more (must be a fixed number!) of elements of a collection are added to the container object and represented in the same TR in a TABLE.
Restriction
· The @utype MUST be a concatenation of the identifying utypes of both the Collection and the actual ObjectType.
· …
Example
<TABLE>
<GROUP utype="SAMPL:source/Source">
 <FIELDref ref="_designation" utype="SAMPL:source/Source.name"/>
 <GROUP utype="SAMPL:source/Source.position;bSTC:SkyCoordinate">
 <FIELDref ref="_ra" utype="bSTC:SkyCoordinate.longitude"/>
 <FIELDref ref="_dec" utype="bSTC:SkyCoordinate.latitude"/>
 <GROUP ref="_icrs" utype="bSTC:SkyCoordinate.frame"/>
 </GROUP>
 <GROUP utype="SAMPL:source/Source.luminosity;SAMPL:source/LuminosityMeasurement">
 <FIELDref ref="_magJ" utype="SAMPL:source/LuminosityMeasurement.value"/>
 <FIELDref ref="_errJ" utype="SAMPL:source/LuminosityMeasurement.error"/>
 <GROUP ref="2massJ" utype="SAMPL:source/LuminosityMeasurement.filter"/>
 </GROUP>
 <GROUP utype="SAMPL:source/Source.luminosity;SAMPL:source/LuminosityMeasurement">
 <FIELDref ref="_magK" utype="SAMPL:source/LuminosityMeasurement.value"/>
 <FIELDref ref="_errK" utype="SAMPL:source/LuminosityMeasurement.error"/>
 <GROUP ref="2massK" utype="SAMPL:source/LuminosityMeasurement.filter"/>
 </GROUP>
 <GROUP utype="SAMPL:source/Source.luminosity;SAMPL:source/LuminosityMeasurement">
 <FIELDref ref="_magH" utype="SAMPL:source/LuminosityMeasurement.value"/>
 <FIELDref ref="_errH" utype="SAMPL:source/LuminosityMeasurement.error"/>
 <GROUP ref="2massH" utype="SAMPL:source/LuminosityMeasurement.filter"/>
 </GROUP>
</GROUP>
<FIELD name="designation" ID="_designation" utype="ivoa_1.0:stdtypes/string">
<DESCRIPTION>source designation formed from sexigesimal coordinates</DESCRIPTION>
</FIELD>
<FIELD name="ra" ID="_ra" unit="deg">
<DESCRIPTION>right ascension (J2000 decimal deg)</DESCRIPTION>
</FIELD>
<FIELD name="dec" ID="_dec" unit="deg">
<DESCRIPTION>declination (J2000 decimal deg)</DESCRIPTION>
</FIELD>

7.6.2 [bookmark: _Toc352932762][bookmark: _Toc228433326]GROUP [@utype ⇒ Collection & @ref]
∊ GROUP[@utype ⇒ ⟨ObjectType⟩]
If a child GROUP identifies a Collection, but not also an ObjectType, and it has a @ref identifying a GROUP elsewhere in the document, this should be interpreted as an indication that the referenced GROUP elsewhere in the document represents all or part of the identified Collection. This may be indirectly through a TABLE, in which case it might represent multiple objects [TBD need Container pointer?], or it may be a single element identified by this “GROUPref”.
During a “standard” object-relational mapping procedure, parent objects and the elements in a collection are generally mapped to different tables, with the child table having a pointer (foreign key in relational database) to the parent object. This can be handled by VOTable, which also provides the possibility for the parent object to be stored in a single GROUP (see).
In either case the child GROUP does not represent an element, but is a true pointer to a GROUP that annotates the TABLE that stores the collection objects. Actually, it may need to have multiple pointers, in case the collection is divided over multiple TABLEs. Each individual pointer to a GROUP must act as a kind of GROUPref. Since such an element does not exist we propose the following solution.
· The child GROUP representing the collection MUST have as @utype the utype of the Collection, not concatenated with another utype.
· The child GROUP MUST contain one PARAM for each TABLE storing (part of) the collection. This PARAM MUST have a @ref identifying the @id of the GROUP wrapping the TABLE.
· That referenced GROUP MUST represent a type compatible with the declared type of the collection.
· IF the parent object is stored in a TR (i.e. the parent GROUP wraps a TABLE), the child table MUST have a Container reference (see 6.6.3) to identify the parent instance.
· TBD how about parent in GROUP?

7.6.3 [bookmark: _Ref346785704][bookmark: _Toc352932763][bookmark: _Toc228433327]GROUP[@utype ⇒ Container+ID]
∊ GROUP[@utype ⇒ ⟨ObjectType ⟩]
Container is a special reference to remote object. But can only occur in ObjectType and container cannot be embedded. From the Container utype the possible type of the Container can be inferred.
7.7 [bookmark: _Toc352932764][bookmark: _Toc228433328]Extends, inheritance
Object-relational mapping generally requires one to choose some approach to mapping inheritance hierarchies. One standard approach is to store a class distributed over multiple tables, linked using foreign keys. Each table stores the attributes etc. defined on one class in the hierarchy. To build a complete instance of the subclass requires one to join its contents to the contents of a table storing attributes etc. defined on its base class and so on. In VOTable one may encounter a similar mapping. The serialization (and annotation) of such a case requires a mapping of the “extends” relationship between subclass and base class.
An alternative mapping is to have one table per hierarchy, which then will store instances of different types. When using this in OR-mapping often a special column is used that identifies the type stored in a certain row. Note that such a column is also often added to the table representing the root base class of the inheritance mapping above.
Finally (?) one may have separate tables for each concrete class in the hierarchy, containing columns for all the attributes etc. from its base classes.
All of these different possibilities to store objects form a common inheritance tree furthermore complicates the treatment of polymorphism in references. If a reference is defined whose data type is a type that has subclasses, to find the target instances may require looking through more than one target table.
TBD i.e. it's quite a mess.
7.7.1 [bookmark: _Toc352932765][bookmark: _Toc228433329]GROUP[@utype ⇒ Extends+ID]
∊ GROUP[@utype ⇒ ⟨ObjectType ⟩]
...
TBC

8 [bookmark: _Ref348442521][bookmark: _Toc352932766][bookmark: _Toc228433330]Notable absences
The VOTable schema allows for redundancy in meta-data assignment. For example it allows assigning a ucd or utype to FIELDref-s, but also to the FIELD it references. How is one to interpret or use this? Our approach is at least for the use of utype attribute, to try to avoid this redundancy.
The design laid out in the previous subsections focuses utype assignments on the GROUP element and it components. The main reason is that in all but the most simplistic use cases we will not be able to void the use of GROUPs, and that at the same time they provide all functionality (and more) that TABLE and FIELD could provide. Choosing this approach implies client coders do not need to take the possibly conflicting assignments into account, they only need consider GROUPs.
Here we list a few possible assignments that we try to avoid, though they might seem valid.
TBD what more can we remove from section 6? FIELD annotation? All notation directly to PrimitiveType or Enumeration?

8.1 [bookmark: _Ref346813662][bookmark: _Toc352932742][bookmark: _Toc228433331]Atomic Types: support for custom and legacy utypes
[NOTE in telecom 2013-04-09 we decided that FIELDs and standalone PARAMs would not fall under the spec. I.e. the use of utype attributes on those elements is allowed, but not standardized by this spec. Same for TABLE, RESOURCE, INFO. These can be used for example by protocols if these wish to define a standard VOTable-based result format, but we suggest that new protocols should use the standard form as well.]

8.2 [bookmark: _Toc228433332]DataType
A DataType instance (also a value) is structured; it consists of values assigned to each of its attributes and possibly references. To represent the complete instance of a DataType the various attributes (and references) must be grouped together; in VOTable this is done using a GROUP element. GROUPs in fact can play two different roles, depending on where the instance’s data is really stored. If all values are eventually stored exclusively in PARAMs in the GROUP, or possible outside the GROUP but accessed through PARAMrefs, the GROUP directly represents a complete instance. If even only one of the attributes is stored in a FIELD and accessed through a FIELDref, the GROUP indirectly represents possibly multiple instances, one for each TR. This is also true in any child GROUP contains a FIELDref and so on. We will use these terms, direct and indirect representation all through the document. And note that this same classification holds for ObjectTypes discussed in 6.3, though with a twist related to possible child GROUPs representing Collections.
The attribute values of a DataType are stored according to the prescription for storing instances of their data type. For attributes with declared data type a PrimitiveType or Enumeration section Error! Reference source not found. provides details. If the attribute’s data type is itself a DataType the prescription in the current section should be used recursively. DataType-s can also have Reference-s to ObjectType-s, but a discussion of how to store References is deferred to section 6.5, after the discussion of storing ObjectType instances, which is provided in section 6.3.
Polymorphism
When assigning values to attributes and references an important issue arises due to polymorphism. Though an attribute is assigned a certain data type in the data model, instances of the attribute MAY have a different data type, namely one that is (ultimately) a subclass of the declared type. This is especially important for attributes with a structured DataType. Subclasses of PrimitiveTypes and Enumerations remain atomic, but subclasses of DataTypes may add attributes and references to the ones inherited from the base class. For this reason we advocate that the utype attribute of a component representing an Attribute SHOULD (MUST?) be a concatenation of the utypes of the Attribute and the type. See the discussion on the syntax of the utype attribute in section 4.
8.2.1 [bookmark: _Ref346815279][bookmark: _Toc352932743][bookmark: _Toc228433333]GROUP[@utype ⇒ DataType]
A GROUP’s @utype may identify a DataType directly. Depending on the contents and context, i.e. the location of the GROUP within other VOTable elements, such a mapping indicates the existence of one or more instances of the DataType (i.e. values really, as a DataType is a value type). Different cases are discussed in subsets. In all cases the following restrictions hold:
Restrictions
· The components of a GROUP mapped to a DataType MUST be mapped to properties defined on that DataType. The following options are available:
· FIELDref[@utype ⇒ Attribute [+ (PrimitiveType | Enumeration)]]
∊ GROUP[@utype ⇒ (DataType | ObjectType)] (see 6.2.1)
· PARAM [@utype ⇒ Attribute + [(PrimitiveType | Enumeration)]]
∊ GROUP[@utype ⇒ (DataType | ObjectType)] (see 6.2.2)
· PARAMref [@utype ⇒ Attribute + [(PrimitiveType | Enumeration)]]
∊ GROUP[@utype ⇒ (DataType | ObjectType)] (see 6.2.3)
· GROUP [@utype ⇒ Attribute [+ DataType]]
∊ GROUP[@utype ⇒ (DataType | ObjectType)] (see 6.2.4)
· GROUP [@utype ⇒ Reference [+ ObjectType]]
∊ GROUP[@utype ⇒ (DataType | ObjectType)] (see 6.5)
· If the GROUP is contained in a parent GROUP, the parent MUST NOT use its @utype attribute. This is consequence of previous rule really.
· ...

8.3 [bookmark: _Toc352932767][bookmark: _Toc228433334]TABLE[@utype ⇒ ObjectType]
There might be some cases where a TABLE could be said to represent a structured type completely, and where the TABLE’s @utype attribute could make that identification. However in probably most cases only part of the TABLE will correspond to the type, or multiple types will be stored inside a single row (see for example). In all of these cases one can (and MUST) use one or more GROUP elements contained by the TABLE to make the precise assignment. The extra cost of also doing so for TABLE-s where in principle the assignment could be made directly is minor. Client code only has to deal with GROUP-s, not also inspect the TABLE.
8.4 [bookmark: _Toc352932768][bookmark: _Toc228433335]FIELD[@utype ⇒ Attribute] ∊ TABLE [@utype ⇒ ObjectType]
This assignment would only make sense inside of bigger context, which would have to be the TABLE here. But as we propose not to use TABLE to represent a DM element directly, consequently FIELD cannot be an attribute. We use FIELDref for that.
8.5 [bookmark: _Toc352932769][bookmark: _Toc228433336]PARAM [@utype ⇒ Attribute] ∊ TABLE [@utype ⇒ ObjectType]
For the same reason that makes us avoid the assignment of Attribute to FIELD, we avoid assigning an attribute to a PARAM that is contained in a TABLE. The context (TABLE) is not used to indicate the type containing the Attribute. For this element a PARAMref inside a GROUP is to be used.
9 [bookmark: _Toc228433337][bookmark: _Ref228433622]Serializing to other file formats

[bookmark: _Ref348071309][bookmark: _Ref348418390][bookmark: _Toc352932783][bookmark: _Toc228433338][bookmark: _Ref228680982]A possible grammar for UTYPEs

Throughout this document we have used the VO-DML meta-model, mapping it to the VOTable meta-model through the use of the UTYPEs strings. Even though UTYPEs are opaque strings and might well be arbitrary alphanumeric sequences, having such a grammar allows UTYPEs to be unique strings while also enabling them to be human readable. Any such grammar must necessary refer to a meta-model from which it is derived. So, it makes much sense to define a grammar for UTYPEs in terms of the VO-DML meta-model.
In other terms, UTYPE strings ARE NOT REQUIRED to follow any grammar, but we present this grammar as and example, but also to explain how the UTYPEs used in this document’s examples were defined.

The vo-dml.xsd schema defines for each referenceable element an identifier named 'utype': the value of each instance of this must be unique in the data model document and this is the only requirement on its value. To guarantee this uniqueness one may use some syntax rules to derive the utype value from the location of its parent in the document. The uniqueness assumes certain constraints on valid data models such as uniqueness of names of types in a package, or of roles in a type. The syntax we use is derived from the one proposed in the Simulation Data Model (section 4.1), later taken over by a first draft of the UTYPE document, and reproduced here:
utype := [model-utype | package-utype | type-utype | attribute-utype | collection-utype
| reference-utype | container-utype | identifier-utype | extends-utype
model-utype := <model-name>
package-utype := model-utype “:” package-hierarchy
package-hierarchy := <package-name> [“/” <package-name>]*
type-utype := package-utype “/” <type-name>
attribute-utype := type-utype “.” attribute
attribute := [primitive-attr | struct-attr]
primitive-attr := <attribute-name>
struct-attr := <attribute-name> “.” attribute % not explicitly represented in VO-DML/XML doc %
collection-utype := type-utype “.” <collection-name>
reference-utype := type-utype “.” <reference-name>
container-utype := type-utype “.” “CONTAINER”
identifier-utype := type-utype “.” “ID”
extends-utype := type-utype “.” “EXTENDS”
[TBD this started as a copy from the SimDM doc; changes in red; need to check whether it still conforms to our desired practice.]
List of all valid mapping patterns

The following grammar defines the structure of mapping expressions used in this appendix to synthetically list all the valid mapping patterns:

vot-mapping := element-mapping | relation-mapping
element-mapping := vot-element ['[' '@utype' '⇒' utype-value [constraints] ']' [context]]
relation-mapping := element-mapping '' element-mapping
vot-element := annotated-vot-elemtn | basic-vot-element
basic-vot-element := 'GROUP' | 'FIELDref' | 'PARAM' |'TABLE' | 'FIELD' | '@ref' |'@utype'
utype-value := vo-dml-concept | vo-dml-role '+' vo-dml-type
vo-dml-concept := vo-dml-type | vo-dml-role | vo-dml-types | vo-dml-type-rep | 'Model'
vo-dml-type := 'PrimitiveType' | 'Enumeration' | 'DataType' |' ObjectType' | 'ID'
vo-dml-role := 'Attribute' | 'Reference' | 'Collection' | 'Container' | 'Extends'
vo-dml-type := '(' vo-dml-type ['|' vo-dml-type]* ')'
vo-dml-type-rep := '⟨' vo-dml-type ['|' vo-dml-type]* '⟩'
constraints := and-or constraint [constraints]
and-or := '&' | '|'
constraint := vot-element | '¬' vot-element
context := '∊' element-mapping [context]*

[bookmark: _Toc352932784][bookmark: _Toc228433339]Parsing examples and pseudo-code
[TBD by GL]
[bookmark: _Toc228433340]UTYPEs syntax
Frequently Asked Questions
[TBD by OL]
[bookmark: _Toc228433341]Applicability of this specification to other IVOA contexts
[bookmark: _Toc228433342]GROUP in TAP_SCHEMA
Following is a possible extension to TAP_SCHEMA that would add GROUP-like annotation to a table. To query for a complete GROUP hierarchy for a table requires resolution of the GROUP-s nesting. In absence of common-table –expressions, the parent_table foreign key should allow one easily to collect all groups for a table and build the nesting in code.
CREATE TABLE tap_schema.group (
 id varchar(128) not null –- unique id of this group
, parent_table varchar(128) not null –- foreign key to table ultimately owning this GROUP
, parent_group varchar(128) -- if not null, id of GROUP owning this group
, utype varchar(128) -– if parent_group is not null, the role the group plays in the parent,
-- possibly concatenated with a utype for the actual type represented by the GROUP.
-- HOWEVER that could be normalized by having a type_utype and a role_utype column instead
)

CREATE TABLE tap_schema.group_field (
 groupId varchar(128) not null – ID of GROUP conainign this field-ref
, columnId varchar(128) not null –- column associated to the group, if null, this row is a PARAM
, utype varchar(128) –- the utype of the role the field plays in group.
-- Possibly concatenated with type? Or normalized (see above)
, value varchar(8000) -- if this row represents a PARAM, this is its value
)

[NB, this schema implicitly supports stand-alone GROUP-s by not requiring a columnId, but all GROUP-s must be associated to some TABLE. I.e. standalone instances cannot be freely floating. This could happen if parent_table is allowed to be NULL.]

[bookmark: _Toc228433343]Query-like UTYPEs in DAL protocols

24
image3.png
AstroObject

[<<skasconcept=>-iabel: string [0.1]

Source

mame : sting [1]

[-escripion strng [0.1]

-postion: SkyCoordinste 1]
-postonEror - SkyError [0.1]
|-classification : SourceClassificaton [1]

0 minosty

[LuminosityMeasurement

[Fvalue real 1]
error: real (0.1
|-escripion : siring [0.1]
type : LuminostyType [1]

source
<catarype=>
uantity pr——.
ek realt] [<smodelctemert=> || scoordinatoframe.
it string 0.1 SigCoordinate
Bl “aa L Slnaneistmar
Hangtuce - reai 1] FdocumertUR - sy 1]
[t vea [1] e e sirng 011
~<enumeratior> SR 011
SourceClassification
st
sl [<catarype=>
lacn SkyError
enct
ko
<catarypes> ~<datarype=s
GircleError AlignedElipse
Frecius real 1] Forgerrer vealli
~<enumeratior> [etEror real 1]
LuminosityType
megritue
Ky
<<cataType=>
(GenericElipse
Fmcior veall]
Fminor - real 1]
[pa real(n)

un
documentationURL
utype = "phot’,

prefix

hot}

titer

<<modeimport=>
<<modelelmert>>

PhotDM

<<modelelmert>>
Photometryfilter

utype = "phot PhotometyFiler)

tips:/voluts googlecods com/svnftrunkiprojects/dmivo-dmifmodels/photdm/PhotDM.vo-dmixmr'
ps:/voluts googlecods. com/svnfttunkiprojects/dmivo-dmifmodels/photdm/PhotoM.htmi

image4.png
<<modelelement>>

SkyCoordinateFrame#123 : SkyCoordinateFrame.

. . name = "ICRS"
SAMPL:source/Source#7737 : Source

system = "J2000"
name = "08120803-0206132"

luminosity = SAMPL:source/LuminosityMeasurement#774
classffication = galaxy

<<modelelement>>

First few lines from default radial SDSS query at
position : SkyCoordinate.
atitude = "123.033734" hitp://skyserver sdss orgfdr7/enttoolsisearchiradial asp
longitude = "-2.103671"

SELECT tap 10 p.objiD, p.run, prerun, p.cameal, p field, p.obj,
piype, p.ra, p.dec, pup.gprpip,
pEr_u, pErr_g, pEr_rp Er_ipEr_z
FROM fGetNearbyOhiEq(195,2.5.3) n, PhotoPrimary p
WHERE n.objD=p.objD

SAMPL:source/LuminosityMeasurement#774 : LuminosityMeasurement

fiiter = phot PhotomoetryFilter#773982
0025"
"14.161"
magnitude

<<modelelement>>

phot:PhotomoetryFilter#773982 : PhotometryFilter

location : Quantity
value = "12390 58"
unit = "Angstrom"

SAMPL:source/Source#456 : Source
classffication = galaxy

name = "08120809-0206132"

luminosity = SAMPL:source/LuminosityMeasurement#2,
SAMPL:source/LuminosityMeasurement#553

<<modelelement>>

position : SkyCoordinate
latitude = "123.033734"
longitude = "-2.103671 "

SAMPL:source/LuminosityMeasurement#2 : LuminosityMeasurement

fiiter = phot:PhotometryFiltersd

<<modelelement>>

Value = 232" photiPhotometryFiltert : PhotometryFilter
error ="0.04" .
e location : Quantity

value = "4770"

unit = "

SAMPL:source/LuminosityMeasurement#553 : LuminosityMeasurement

fiiter = phot:PhotometryFiter#32

type = magnitude
value = "23.0"
error = "0.03"

<<modelelement>>
phot:PhotometryFilter#32 : PhotometryFilter

location : Quantity
value = "623.1"
unit = "nm"

SAMPL:source/Source#5523 : Source.
classification = star

name = "587726032792191560"

luminosity = SAMPL:source/Lum,inosityMeasurement#684843,
SAMPL:source/LuminosityMeasurement#472

<<modelelement>>
position : SkyCoordinate

latitude = "195.49777861"

longitude = "2.50480047"

SAMPL:source/LuminosityMeasurement#472 : LuminosityMeasurement

fiiter = phot:PhotometryFiter#32

SAMPL:source/Lum.inosityMeasurement#684843 : LuminosityMeasurement

fiiter = phot:PhotometryFiltersd

image5.png
Source

mame : string [1]

-escripion :strng [0.1]

-postion: SkyCaorcinste [1]
|-classification : SourceClassificaton [1]

image6.png
SAMPLs 5 7137 18

name = "08120803-0206132"
luminosity = SAMPL:source/LuminosityMeasurement#774
classffication = galaxy

position : SkyCoordinate

latitude = "123.033734"
longitude = "-2.103671"
coordinateFrame = SAMPL:source/SkyCoordinateFrame#123

image7.png
<<dtaType=>
SkyCoordinate

Fongtuce - real (1]
[t - real [1]

image8.png
iter

Photometryfilter

[LuminosityMeasurement

[Fvalue real 1]
error: real (0.1
|-escripion : siring [0.1]
type : LuminostyType [1]

| T

Hocation : Quarity (1]

[referencelRL anyLRI[0.1]

image9.png
SAMPL:source/LuminosityMeasurement#2 : LuminosityMeasurement
filte

SAMPL:source/PhotometryFilter#4 : PhotometryFilter
SAMPL:source/PhotometryFitersd
value = "23.2" name = "sdss:g"
error = '0.04"
type = magnitude

location : Quantity

value = '477.0"
unit = "nm"

image10.png
Source

mame : string [1]

-escripion :strng [0.1]

-postion: SkyCaorcinste [1]
|-classification - SourceClassificaton [1]

0+ fuminosty

[LuminosityMeasurement

[Fvalue real 1]
error: real (0.1
|-escripion : siring [0.1]
type : LuminostyType [1]

image11.png
SAMPL:source/Source#456 : Source

classffication = galaxy
name = "08120809-0206132"

luminosity = SAMPL:source/LuminosityMeasurement#2,
SAMPL:source/LuminosityMeasurement#553

position : SkyCoordinate

coordinateFrame = SAMPL:source/SkyCoordinateFrame#123

123.033734"
-2.103671"

‘SAMPL:source/LuminosityMeasurement#? : LuminosityMeasurement
filter = SAMPL:source/PhotometryFilter#4
value = "23.2"
error = '0.04"

type = magnitude

SAMPL:source/LuminosityMeasurement#553 : LuminosityMeasurement

filter = SAMPL:source/PhotometryFlter#32
type = magnitude

value = "23.0"

image1.jpeg

image2.wmf

