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Abstract 

In this document and the accompanying documents we propose a data model 
(Simulation Data Model) describing numerical computer simulations of 
astrophysical systems. The primary goal of our proposal is to support discovery 
of simulations by describing those aspects of them that scientists might wish to 
query on, i.e. it is a model for meta-data describing simulations.  
This document does not propose a protocol for using this model. Two distinct 
IVOA protocols (SimDB and SimDAL) are in the make and both are supposed to 
use the model, either in its original form or in a form derived from the model 
proposed here, but more suited to the particular protocol. 
 
The SimDM has been developed in the IVOA Theory Interest Group with 
assistance of representatives of relevant working groups, in particular DM and 
Semantics. 
 
 

Link to IVOA Architecture 

 
The figure below shows where SimDM fits within the IVOA architecture: 
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Status of This Document 

This is an IVOA Proposed Recommendation made available for public review. It 
is appropriate to reference this document only as a recommended standard that 
is under review and which may be changed before it is accepted as a full 
recommendation. 
The first release of this document was 2011 April 28.  

A list of current IVOA Recommendations and other technical documents can be 
found at http://www.ivoa.net/Documents/ .  
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Conformance related definitions 
 
The words "MUST", "SHALL", "SHOULD", "MAY", "RECOMMENDED", and 
"OPTIONAL" (in upper or lower case) used in this document are to be interpreted 
as described in IETF standard, RFC 2119 [0]. 

The Virtual Observatory (VO) is a general term for a collection of federated 
resources that can be used to conduct astronomical research, education, and 
outreach. The International Virtual Observatory Alliance (IVOA) is a global 
collaboration of separately funded projects to develop standards and 
infrastructure that enable VO applications. The International Virtual Observatory 
(IVO) application is an application that takes advantage of IVOA standards and 
infrastructure to provide some VO service.  

http://www.ivoa.net/Documents/
http://www.ivoa.net/cgi-bin/twiki/bin/view/IVOA/CambridgeTheoryWorkshopFeb06
http://www.ivoa.net/cgi-bin/twiki/bin/view/IVOA/GarchingSNAPWorkshop200704
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1 Introduction 
 
In this document we make a proposal for an IVOA standard data model for 
describing simulations1. Indeed, apart from limited support for publishing model 
spectra in SSAP, there is as yet no IVOA standard dealing with the publication of 
simulations and their results. The primary goal of our proposal is to support 
discovery of simulations by describing those aspects of them that scientists might 
wish to query on, i.e. it is a model for meta-data describing simulations. This 
document does not propose a protocol for using this model. Two distinct IVOA 
protocols are in the make and both are supposed to use the model, either in its 
original form or in a form derived from the model proposed here, but more suited 
to the particular protocol. 
 
The direct motivation of the model comes from the Simulation Database (SimDB) 
and the former Simulation Data Access Protocol (SimDAP) efforts. Work on 
these standards started under the header Simple Numerical Access Protocol 
(SNAP) in the Theory Interest Group (TIG) since the Victoria interoperability 
meeting, 2006. It was agreed in the Trieste interop 2008 to split SNAP in two 
separate tracks, SimDB and SimDAP. More recently it was deemed useful to 
further split the work on SimDB in two tracks, one focusing on the data model 
alone, the second on its serialisation and usage in the SimDB protocol. This Note 
deals with the data model, referred to as SimDM. 
 
Work on the SimDB specification has been organised via a GoogleCode SVN 
repository in the volute project originally created by Norman Gray for the 
Semantics Working group. The history of the SimDB project can be obtained 
from http://volute.googlecode.com/svn/trunk/projects/theory/snapdm. A large part 
of that though deals with technical issues revolving around a code generator we 
designed to derive relevant resources from the basic data model. Most of that 
development has been moved to a separate GoogleCode project, VO-URP. The 
resources dealing with the SimDB developments have been gathered in the 
subdirectory in 
http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/. 
The other parts of the volute part of SimDB should be deemed deprecated. 
 
The other documents related to this proposal and being a part of the specification 
are the following. They can be found at the root URL 
http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/ [TO 
BE MOVED TO IVOA REPOSITORY]: 

                                            
1
 We will use the term simulations for the running of a simulation code as well as for their results. 

And we will often include post-processing codes and their results as well.  

http://volute.googlecode.com/svn/trunk/projects/theory/snapdm
http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/
http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/
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Table 1: list of documents as part of the SimDM specification, accessible from http://ivoa.net/XXX [TO BE COMPLETED AFTER 
APPROVAL] 

 

SimDM.html 
 

Full browsable specification of the model html/SimDM.html 

SimDM_DM.png Graphic view of the whole model (large image) uml/SimDM_DM.png 

SimDM_DM.xml MagicDraw UML diagram serialised to XMI uml/SimDM_DM.xml 

SimDM_INTERMEDIATE.xml Intermediate representation of the model: a 
(generated) XML document representing the complete 
model in more readable format than XMI 

uml/SimDM_INTERMEDIATE.xml 

intermediateModel.xsd XML schema document for intermediate 
representation‟s XML format 

uml/intermediateModel.xsd 

xsd/ XML schema documents (generated) representing 
mapping of UML to XSD 

xsd/ 
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Additionally, an implementation note explains how to use this model to describe 
various kinds of theoretical products. 
 
Section 2 described our methodology whereas the model itself is detailed in 
Section 3. A few specific issues of serialization are addressed in Section 4. The 
development of SimDM is linked to other IVOA efforts that deserve to be 
mentioned. Section 5 deals on that point. In the Appendices we deal with the 
scientific motivation at the origin of creating SimDM and the 4-years history of the 
developments (Appendix A), more details on the UML profile (Appendix B), some 
issues (Appendix C) and the use of the model in two cases (SimDB and SimDAL, 
see Appendix D). 
 

2 SimDM: application, approach and outline 

2.1 Application(s) of the model 

The data model proposed here was never meant to be created in a vacuum (see 
Appendix A for more details), but was always intended to be used in some IVOA 
standard service. What precisely this application was has not always been clear 
for the SimDM, the goal of which has gone through some changes in the course 
of the project. It started off as a SIAP-like service protocol for N-body simulations, 
SNAP2 . Then mesh simulations were included, leading to our definition that 
SNAP should support the discovery and possibly partial retrieval of simulations 
involving “evolving objects in 3D space”3. Over time the protocol separated into 
the Simulation Database, a more TAP service for querying for simulations, and 
the SimDAP protocol for retrieving actual data products4. Recently (and finally) 
also simulations of a different type, “micro-physic simulations”5, or “models”6 
have been included, and SimDAP has merged with S3 to form SimDAL: a family 
of access protocols for theory data7. 
Consequently the aim and possible applications of the data model have changed 
a little over time. The discussions in the Victoria 2010 interop have finally led to a 
convergence of these ideas and to the following agreement:  

1. The SimDM MUST support the SimDB protocol and the SimDAL service 
protocols.  

2. To do so it MUST allow scientists to describe their simulations in sufficient 
detail for others to decide whether a given simulation is of interest, and to 
query for these simulations.  

                                            
2
 http://www.ivoa.net/cgi-bin/twiki/bin/view/IVOA/CambridgeTheoryWorkshopFeb06  

3
 http://www.ivoa.net/internal/IVOA/InterOpMay2006Theory/closingplenary.ppt  

4
 http://www.ivoa.net/cgi-bin/twiki/bin/view/IVOA/InterOpMay2008Theory  

5
 Coined in Cambridge interop, 2007. 

6
 In Victoria 2010, we decided to label all as simulations. See 

http://www.ivoa.net/internal/IVOA/InterOpMay2010Theory/IVOA2010_ModelvsSim.pdf  
7
 http://www.ivoa.net/cgi-bin/twiki/bin/view/IVOA/InterOpMay2010Theory  

http://www.ivoa.net/cgi-bin/twiki/bin/view/IVOA/CambridgeTheoryWorkshopFeb06
http://www.ivoa.net/internal/IVOA/InterOpMay2006Theory/closingplenary.ppt
http://www.ivoa.net/cgi-bin/twiki/bin/view/IVOA/InterOpMay2008Theory
http://www.ivoa.net/internal/IVOA/InterOpMay2010Theory/IVOA2010_ModelvsSim.pdf
http://www.ivoa.net/cgi-bin/twiki/bin/view/IVOA/InterOpMay2010Theory
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3. It SHOULD then offer directions to services for further drilling down or 
downloading simulations or parts of these.  

4. The precise representation of the model in the individual service protocols 
(SimDB, SimDAL) is not prescribed.  

5. If individual protocols will deviate in the details from the SimDM, this will 
be for application specific reasons.  

6. The SimDM will provide the vocabulary for the concepts used in these 
possible alternative representations.  

In the preferred case, these other representations can be considered as different 
views on the core SimDM. This should be interpreted similar to the way relational 
database views provide a mechanism by which slightly different representations 
from the often more normalised data model can be provided.  

2.2  Modelling approach 

With this application area in mind we have followed a somewhat formal approach 
to our data modelling effort, suggested by e.g. [27]. In this approach the 
construction of a data model is divided in three stages. The first is the analysis 
stage, in which one investigates the “domain of the application” one tries to 
model. This stage produces a conceptual, or domain model [32] which is 
relatively abstract and high level. In its design one does not aim to create a 
model directly suited to an application. The emphasis is on identifying important 
concepts and their relationship in the “real world”. One also refrains from giving a 
fully detailed definition of all attributes and other features. Important in this stage 
is interaction with domain experts, in our case scientists. 
The aim of the second stage is the creation of a logical model [33] of the 
application domain. This should be a detailed model supporting the application. It 
should contain all information required to support the application. It should 
however still be implementation neutral, and concentrate on describing the 
precise concepts and semantic relationships between them. In general it will use 
part of the concepts from the domain model, but works them out in more, all, 
detail.  
In the third stage one derives from this logical model one or more physical 
models [34]. These are representations of the logical model in a form that can be 
used directly by the various computational components building the system. 
Examples of this are XML schemas defining valid XML documents, or relational 
schemas for the design of a database storing instances of the model. 
The analysis phase is described in the next few subsections. The logical model is 
defined in full detail in UML using the MagicDraw Community Edition modelling 
tool. MagicDraw stores the model in an XML file following the XMI serialisation 
[29] we have created a fully cross-linked HTML file documenting this model in all 
detail. These 2 files are part of this specification and can (for now8) be found on 
the GoogleCode volute site. 
 

                                            
8
 Once the specification becomes a proposed recommendation the stable versions of these files 

should be placed under the IVOA wiki site. 
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2.3 Phase 1:  analysis 

The analysis phase investigates the “world the application lives in”, its “universe 
of discourse” [27] and describes it in a domain model. To get constraints on this 
universe and its contents we follow [35] in trying to gather some 20 science 
questions that the application should be able to answer. The application is here a 
system consisting of the data model together with the protocol and 
implementations. The model will be designed in such a way that it can contain 
the required information. The protocol and implementations must support efficient 
querying for this information. [35] used this approach in the design of the SDSS 
database. 
To create such a list of questions we have contacted scientists with the question 
that if they were presented with a database of simulation metadata, what 
questions they would want to ask of it to find interesting simulations. The 
following list summarises their answer: 

 What system/object is being simulated?  
 What physical processes are included?  
 How is the system being represented in the simulation (particles 

(Lagrangian), (adaptive) mesh (Eulerian)), both, other?  
 How are the physical processes implemented?  
 What numerical approximations were used (e.g. resolution, softening 

parameter)? 
 What observables are available for the system/object, possibly as function 

of time9? As it is a spatial system, at least simulation boxsize, centre-of-
mass position.  

 What observables are available for the constituents, i.e. what is the 
schema of the objects from which the simulation built e.g. particles in N-
body simulation, grid cells in an adaptive mesh simulation or particle 
groups in a cluster finder?  

 Per snapshot, per simulation object type, per variable:  
o Characterise the possible values  
o Characterise the result 

 Are post-processing results available?  
 Are services/applications available for accessing the results?  
 Which code ran the simulation?  

o Which version of the code? 

o Is software available? 

 Who ran the simulations?  
 What were values of input parameters?  
 How were initial conditions created? 
 How the results are parameterized? 
 Can I access grids of models? Can I access individual results? 

                                            
9
 Re: Rick Wagner‟s example of certain properties only being calculated after a certain stage in 

the simulation is reached.  
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 Which are the inputs ingredients (usually, which data collections are 
used?) 

 How I can run a simulation? Can I do it on-the-fly? 
 Can include my simulations in the VO in an easy way? What I should do? 
 Can i compare different simulations? Can I compare the simulation with 

my data? 
 Which simulations provide diagnostic tools? (i.e.     

distance/extinction/quasi-scale free quantities) 
 Can I combine the results of different simulations in a single file adapted 

for my needs (e.g. own code)? 

2.4 Phase 2: domain model 

The result of the analysis phase is a model in its own right, albeit rather sparse 
and schematic. For this purpose we have built on previous work by adapting the 
so called Domain model for Astronomy proposed in [11]. This model forms the 
basic structure of the domain model for SimDB, illustrated in Figure 1.  
Figure 1 is used in a narrative motivating the final structure of the full SimDM. We 
start by assuming the existence of one or more Files that a publisher thinks may 
be of interest to the community because they contain astronomical data. Instead 
of in files the data might also reside in a Database, and to be generic we 
introduce a Storage base class that abstracts the actual physical location of the 
data.  
Registering that files exist somewhere is not of great interest without providing 
information about the contents of the files. The philosophy that we follow is that 
the files are of potential interest because they contain the Results 10  of an 
(astronomical) Experiment, and accordingly their contents must be explained by 
describing the experiment that gave rise to it. Only in this way can one make 
scientific use of the files or other storage resources. 
The abstract Experiment is made concrete by adding some examples of 
experiment types that are important for the current model dealing with 
Simulations and simulation PostProcessing.  
In our model, Experiment represents the actual running of an experiment; to 
describe the design of the experiment (the so-called experimental protocol) we 
introduce the concept of (experimental) Protocol11. This separation between 
design of experiment and the execution is a normalisation that reduces 
redundancy in the model. See the accompanying appendix for a discussion of 
this concept. We mirror the concrete subclasses of Experiment by adding 

                                            
10 We do not assume that in reality the relation between the conceptual Result and the concrete 

Storage elements can be modelled by a single reference. Especially for the largely non-
standardised world of simulations a single result can be distributed over many files, but it is also 
possible for one file to contain multiple results. In the current SimDB model we do not attempt to 
model such relations explicitly. We delegate the responsibility for accessing the physical results to 
(web) services and this issue is more explicitly addressed by the SimDAP protocol. 
 
11

 Further on, the word protocol will be preceded by the adjective experimental (in parenthesis 
and italicized) to keep clear the distinction with any other IVOA protocol. 
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concrete subclasses to (experimental) Protocol such as Simulator, which 
represents simulation codes according to which Simulations are run, and 
PostProcessor corresponding to PostProcessing runs. 
The (experimental) Protocol class contains InputParameters. An Experiment 
using a particular (experimental) Protocol only needs to indicate the values for 
these parameters. In this way a single instance of the (experimental) Protocol 
can be reused by many Experiments performed according to it.  
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Figure 1: Schematic domain model encapsulating the main design constructs in SimDM. 
Elements coloured orange are represented directly in SimDM, possibly with a different 
name. Purple elements are not part of that model, but are used to explain and motivate 
other features that do appear there. 
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The (experimental) Protocol also defines the possible structure of the results of 
the experiments. In our model Results contain ResultObjects. These objects 
have a given type, represented by the ResultObjectType contained by 
(experimental) Protocol. The ResultObjectType defines the Properties that 
these objects have.  
For example the results of N-body simulations may contain particles having 
properties position, velocity, mass and possibly others. Adaptive Mesh 
Refinement (AMR) simulations produce results that are collections of mesh cells 
of various sizes, positions and contents. Similarly post-processing codes such as 
halo finders produce “halos” and “semi-analytical” galaxy formation codes 
produce galaxies.  
In general a single result can contain objects of different types. For example a 
Smooth Particle Hydrodynamics (SPH) simulation may contain dark matter 
particles, star particles and gas particles. And in general the codes allow one to 
configure which of these exactly are chosen in a given experiment.  
One aspect of the experiment that is not determined by the experimental protocol 
is why the experiment was performed. In the model we introduce the Target 
concept for this, which represents real world objects or processes that are being 
simulated. For example, with the same N-body simulator one may simulate a 
galaxy merger or the evolution of large scale structure of the universe. 
As discussed above, the actual way in which results are stored in files or 
databases is hard, if not impossible to model. Instead we assume that 
Webservices of various kinds may be used to access the results of simulations 
and other SimDB products. 
Some of these will be standardised in the SimDAL specification, but custom 
services may also be introduced. The model allows one to describe the 
experiments and their results, which should allow users to discover results of 
interest, after which the web services can be called for actually accessing these.  
 

3 Logical model overview  
The actual data model that we propose here is a logical model in the sense of 
[33] based on the domain model described in 2.4. This reflects its origin as a 
model for the Simulation Database (SimDB), an application for searching for 
interesting simulations and related concepts. An actual SimDB specification will 
be created, but the logical model has value beyond that application. In particular 
the SimDAL protocol will use it in its queryData phase (SimTAP), albeit in a form 
customised for ease of querying for simulations of a limited set of experimental 
protocols. 
SimDM is still implementation neutral, but it is fully detailed and represented in 
UML. It has a human readable HTML representation which contains the detailed 
description of all elements [5]. That document should be consulted for the details 
of the model.  
Here we introduce the main concepts and motivate the main design decisions. 
Where possible we try to add a hyperlink from a concept‟s name pointing into the 
HTML document the first time we use the name. The link will consist of a root 
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URL to the location of the HTML document, followed by a #<UTYPE> that 
identifies the description of the actual concept in the HTML document. This we 
feel is very much in the spirit of the use cases of UTYPEs. Later references to 
the concepts will in general not contain the link. Then class names will be 
capitalised. Abstract classes will be in italics. Names of packages, attributes, 
references or collections will be preceded by the class name where necessary, or 
it will be assumed to be clear from the concept what is intended.  

3.1 Packages 

UML Packages are subsets of classes and data types that are deemed to belong 
together. Whilst not essential to the model, we have used them to provide some 
level of modularity. Their main role is played in the XML schemas derived from 
the model. Each package has its own type-schema (see 4.2) which provides a 
somewhat finer level of reuse.  
The diagram in Figure 2 shows the packages we use and their dependencies. 
This hierarchy is reflected in the UTYPEs, see section 4.1. The colours assigned 
to the packages correspond to the colours of classes in the diagrams in later 
sections. The subdivision in the one parent and three child packages follows the 
resource class hierarchy described next. 
 

 
Figure 2: The packages of the SimDM and their relationships. These are related to each 
other through directed dependency links indicated by the dashed arrows. 

 

3.2 Resource 

 
The SimDM aims to describe simulations and related concepts. The current 
model does so with of the order of 40 separate object types, or classes. Most of 
these classes themselves represent parts of other classes. They group together 
properties or relationships used in the definition of their “parent”. The composition 
relation is used to represent these kinds of parent-child. 
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But among the classes in the model there are some that are not used like this. 
These classes represent concepts that can stand on their own, are not use to 
describe part of a larger concept. These we will call “root entity classes”. In the 
model they can be identified by the fact that neither they, nor any of their sub or 
base classes are part of another class, a child in a parent-child relation. 
These are the classes that represent the model‟s core concepts and their 
identification is a first important choice in the modelling effort. In the current 
model there actually two separate collections of classes that are root entities. 
The Party class represents an individual or organisation. It is used for indicating 
who/what wrote simulation codes or ran simulations. The main focus in this 
document is on the root entity classes in the Resource hierarchy, illustrated in 
Figure 3. 
 

 
Figure 3: Root entity classes for SimDM. 

 
From the top down we start with the ultimate root entity class, Resource, which 
defines components common to all the main classes. The layer below it contains 
Protocol12, Experiment, Service and Project. Protocol is the base class of the 
concrete classes Simulator and PostProcessor. Experiment is the base class of 
Simulation and PostProcessing. Service is the base class of CustomService and 
SimDALService. Project has no subclasses and is concrete. 

                                            
12

 The use of the name Protocol for the concept we introduce here has led to comments by some 
reviewers who feared confusion with the use of the same name in for example DAL protocols. In 
this document, the capitalised term Protocol will refer to the class in the model. When confusion 
with other usages might arise we may add use the phrase “(experimental) Protocol”. 

http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/html/SimDM.html#SimDM:/resource/Party
http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/html/SimDM.html#SimDM:/resource/Resource
http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/html/SimDM.html#SimDM:/resource/Resource
http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/html/SimDM.html#SimDM:/resource/protocol/Protocol
http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/html/SimDM.html#SimDM:/resource/experiment/Experiment
http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/html/SimDM.html#SimDM:/resource/dal/Service
http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/html/SimDM.html#SimDM:/resource/Project
http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/html/SimDM.html#SimDM:/resource/protocol/Simulator
http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/html/SimDM.html#SimDM:/resource/protocol/PostProcessor
http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/html/SimDM.html#SimDM:/resource/experiment/Simulation
http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/html/SimDM.html#SimDM:/resource/experiment/PostProcessing
http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/html/SimDM.html#SimDM:/resource/dal/CustomService
http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/html/SimDM.html#SimDM:/resource/dal/SimDALService
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Our choice for the root entities follows the domain model in concentrating on the 
scientific experiments as a whole. The Experiment class contains, amongst other 
components, classes representing the actual results (represented by the 
OutputDataset class) that people may wish to access. Those are not the core 
concepts in our model. This is in contrast for example to the spectrum data 
model [10] which focuses on the representation of the spectrum, and has the 
provenance and other metadata as sub-components.  
One reason is that an experiment can exist without having (yet) produced any 
results, but to have results (as defined here) one always needs an experiment. 
This is a clear example of a parent-child dependency, where the child‟s life-cycle 
depends on that of the parent. The standard way to model such relationships is 
using a composition relation and that is how we have modelled it. More about the 
way we model results below in 3.7. 
The separation between Protocol and Experiment is an important feature that we 
directly take over from the domain model. This design was already motivated in 
Section 2.4 and is related to the Measurement-Protocol pattern in [26]. That 
pattern says that when one does a measurement (of some property) it is 
important to remember the protocol by which the measurement was made ([26], 
p65). In [11] this was extended to experiments, which in general consist of large 
numbers of “measurements”, all done in similar ways. Whereas the term 
measurement seems to be more applicable to observations, it is simple to 
generalise the concept a bit and apply it to the calculation of properties during a 
simulation. Actually this is similar to the CalculatedMeasurement in [26],  
An important reason to keep this separation between Experiment and Protocol 
also in our logical model is to avoid having to redefine the parameters and other 
aspects of a simulation code each time a simulation is run.  
The Service class did not appear in the original domain model in [11], but we 
introduced it in the model in 2.4 under the name WebService. In our model it 
represents a way to provide access to results of experiments. We could have 
tried modelling the way results are stored in files etc., but deemed it too complex 
to do so. This is in contrast for example to the spectrum data model, where we 
can model the data directly and even can predefine the representation of the 
data. There an access reference to the data files can be given to download a 
result. For simulations this is in general not possible. In many cases simulation 
codes have their particular proprietary formats, often storing single results over 
multiple files. Hence we merely allow users to describe services by which one 
can access results. Here bwe only make a separation between custom services 
and services following the SimDAL service specification thata is under 
construction in the IVOA in a collaboration between the theory interest group and 
the data access layer working group. 
The Project class represents a scientific project, acknowledging that these in 
general use one or more experimental protocols to perform multiple experiments. 
This class is introduced to allow for example publishers to group simulations and 
post-processing runs that were produced with a common goal. It was inspired by 
a discussion on whether some of the SimDM/Resources could be registered as 

http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/html/SimDM.html#SimDM:/resource/experiment/OutputDataset
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Registry Resources as well13. Many of the simulations registered in a SimDB will 
not qualify for the same reasons that individual images do not qualify to be 
registered. Resources in an IVOA compatible registry are relatively coarse 
grained; correspond to archives full of images published through a SIAP service 
for example. A Project can be used to define such collections also in SimDM. 
And indeed one may wish to register such collections separately in a registry. 
In a data model one can use aggregations of the corresponding concepts to build 
such relations. In fact we have the single aggregation between Project and 
Resource, providing the user the freedom to include Service-s and even other 
Project-s. 
The root of the hierarchy of entities is formed by the Resource class. This class is 
introduced as a convenience to hold on to information common to all its sub 
classes. Its name is obviously inspired by the Registry‟s Resource [12] and it also 
holds on to curation information. It “is not a” Registry Resource though in the 
strict OO modelling sense. For example it does not inherit all features of that 
class. But this is mainly because, as mentioned above, most SimDM Resources 
will not qualify as Registry Resources.  

3.3 Physics, models and algorithms 

 
An important characteristic of simulation codes is what physical systems and 
processes can be modelled and how these are represented in the program. The 
Simulator class represents computer codes that create numerical models of the 
world. Simulators do so by representing physical processes using numerical 
algorithms that act on model representations of real world objects. In our model, 
see Figure 4, physical processes are represented by the Physics class. It is 
contained in the Simulator class, not in the more general Protocol. In effect a 
simulation protocol is distinguished from other experimental protocols in that it 
models and implements physical processes. 
Physical processes are implemented using particular Algorithms. Algorithms ore 
contained in Protocol, as also PostProcessors use them. In that case they 
implement the processing of existing results, and do not model physical 
processes. Examples of these are particular algorithms for extracting clusters 
from results of N-body simulations. 
 

                                            
13

 Thanks to Ray Plante for his contributions to this discussion. 

http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/html/SimDM.html#SimDM:/resource/protocol/Physics
http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/html/SimDM.html#SimDM:/resource/protocol/Algorithm
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Figure 4: Modelling the representation of physical processes and objects. 

 
Finally, experimental protocols need objects to represent the structure of the 
physical systems they model. For example, N-body simulations need particles 
that represent mass moving around. The model uses the OutputDataObjectType 
for this. This class allows one to define a hierarchy of data objects, from 
container objects like catalogues, data cubes or images down to the smallest 
objects such as particles or pixels 

http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/html/SimDM.html#SimDM:/resource/protocol/OutputDataObjectType
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3.4 Parameters: definition and values 

 
Figure 5: Modelling the parameters: definition under (experimental) Protocol, values under 
Experiment. 

 
Software codes generally require some level of configuration before they are 
executed. In many cases this translates into a collection of parameters that must 
be given values. The parameters are defined by the code and we model this by 
an InputParameter class that is contained by Protocol. Assigning values to these 
parameters however is the responsibility of the experimenter and is explicitly 
modelled as a ParameterSetting class contained by Experiment.  
Input parameters are defined by a attributes name, datatype, label and other 
properties familiar for example from the PARAM field in VOTable14. Most of these 
are inherited from the Field class, which will be discussed in Section 3.6 below.  
Because the details of the parameter are defined on the InputParameter class, 
the ParameterSetting needs only a pointer (the inputParameter reference) to the 
appropriate input parameter and a value. A problem for this model though is what 
data type to assign to a possible value attribute. We have no knowledge in 
advance on the data type of the input parameter for which a value is set. This is 
only known at the instance level, not at the model level. We do not know whether 

                                            
14

 We generalize the ucd attribute on VOTable‟s PARAM and FIELD to a label attribute with 
stereotype <<skosconcept>>. 

http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/html/SimDM.html#SimDM:/resource/protocol/InputParameter
http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/html/SimDM.html#SimDM:/resource/experiment/ParameterSetting
http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/html/SimDM.html#SimDM:/object/Field.name
http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/html/SimDM.html#SimDM:/object/Field.datatype
http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/html/SimDM.html#SimDM:/resource/protocol/InputParameter.label
http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/html/SimDM.html#SimDM:/object/Field
http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/html/SimDM.html#SimDM:/resource/experiment/ParameterSetting.inputParameter
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a certain parameter will be integer, or real, or maybe a string. Our current 
solution is to allow two different representations of a value, namely a 
numericValue, of type real and a stringValue of type string. 
This issue and the usability problems it causes will need to be discussed and 
handled at the IVOA protocol level15. One approach is the SimTAP approach 
detailed in the SimDAL document [22]. 
 

3.5 Target: Goal of experiment 

 
Figure 6: Modelling the goal, or target of a generic resource as objects and/or processes. 

 
Generally the first piece of information that the scientists we polled were 
interested in regarding simulations was what was simulated. I.e. what type of 
object: a galaxy merger, a galaxy cluster, the large scale structure of the 
universe? This information in general says something about the goal that the 
scientists running the simulation had.  
In certain cases the simulation code itself may completely prescribe the type of 
objects and physical processes that are modelled. As example take population 
synthesis models such as the Galaxev library16, producing spectra of galaxies.  
But many simulation codes allow many different types of objects to be modelled, 
and even allow one to vary which processes are actually modelled. Also in many 
cases the actual object that is being simulated is not an intrinsic property of the 
simulation code, but is a derived property of the actual simulation. For example 
an N-Body code in general does not contain “galaxy particles”. But one can use it 
to follow the evolution of millions of low mass particles that are in a particular 
configuration that together model a galaxy. But it can also be a globular cluster, 
or a filament in the large scale structure.  
To cover the concept of the target of an experiment or protocol, or the goal of a 
project, we add two classes, TargetObjectType and TargetProcess. A 

                                            
15

 Statistical summary has the same problem, see 3.7 
16

 Bruzual and Charlot, 2003: http://www.cida.ve/~bruzual/bc2003  

http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/html/SimDM.html#SimDM:/resource/experiment/ParameterSetting.numericValue
http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/html/SimDM.html#SimDM:/resource/experiment/ParameterSetting.stringValue
http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/html/SimDM.html#SimDM:/resource/TargetObjectType
http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/html/SimDM.html#SimDM:/resource/TargetProcess
http://www.cida.ve/~bruzual/bc2003
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TargetObjectType represents an object, or a physical system in the real world, 
such as a galaxy, a star etc. TargetProcess represents a physical process such 
as gravitational clustering or turbulence. This recognises the fact that some 
simulations are run with the goal of investigating a process, rather than producing 
a model of a physical system.  
Both these classes are subclasses of Target, which itself is again a subclass of 
ObjectType defined in the next section. Target is contained by Resource so that 
by inheritance they are available to all sub classes. We do not model the Target 
objects in full possible detail. That we leave to future astronomical ontologies. We 
restrict ourselves to a description (inherited from ObjectType) and a semantic 
label attribute which identifies the intended concept using a standardised name 
from a SKOS vocabulary (see 5.2 below).  
 

http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/html/SimDM.html#SimDM:/resource/Target
http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/html/SimDM.html#SimDM:/object/ObjectType
http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/html/SimDM.html#SimDM:/object/ObjectType.description
http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/html/SimDM.html#SimDM:/resource/Target.label
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3.6 Object types: real and simulated 

 
Figure 7: The model needs to describe the types of objects that are being simulated/used. 
We model this in quite some detail in a hierarchy of object types, with properties, grouping 
of properties and child objects corresponding to nested objects. 

 
In a few places in the model we need to represent the fact that different 
simulation codes and other experimental protocols, or different experiments, 
need to describe the types of objects they use or produce. For example, the 
Protocol must be able to describe the building blocks of the model world it 
represents. We have encountered this need in the OutputDataObjectType in 3.3 
and the Target (ObjectType and Process) in 3.5.  
The building blocks required to describe a model world are entities with 
properties and relations. In SimDM we support this with a limited version of an 
object oriented meta-model 
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The core concept is the abstract ObjectType class. An ObjectType contains a 
collection of Property-s that corresponds to the simple attributes used to describe 
an object. Property is a subclass of Field which defines its main attributes such 
as name, description and data type. Also a Protocol’s InputParameter is a Field, 
similar to the way a VOTable‟s PARAM and FIELD share a common structure. 
Another similarity with the VOTable structure is the possibility to group Property-s 
in a PropertyGroup.  
To model (hierarchical) relations between different objects an ObjectType has a 
collection of Relationship-s, which can be used to define an aggregation or 
composition of other ObjectType-s. For example one can define that a simulation 
produces snapshots consisting of particles of different types, halo catalogues, 
containing halos, which themselves consist of particles, or images consisting of 
pixels. 
 

3.7 Results: data sets and their statistical summary 

We assume users of a Simulation Database will want to gain access to results of 
simulations and related experiments. This is the same as we assume of users of 
Simple Image Access or Simple Spectral Access services. For those services the 
user knows what to expect, a FITS image in one, a spectrum serialised according 
to the spectrum data model in the other.  
Such expectations are not realistic for simulations though. The main problem is 
that we have no a priori knowledge about the contents of their results. Arguably 
somewhat simplistically one may claim that images and spectra contain pixels 
with known properties (space, wavelength, flux). Results of simulations, even 
when constrained to 3+1D simulations, can contain as their fundamental 
constituents: point particles, particles with size and structure, mesh cells of fixed 
or varying size, Voronoi cells17, structured halos, galaxies, radiation fields, galaxy 
merger trees etc. And any of these object types can come with any collection of 
properties: position, velocity, mass, temperature, chemical composition, entropy 
etc. 
 

                                            
17

 http://www.mpa-garching.mpg.de/~volker/arepo/ 

http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/html/SimDM.html#SimDM:/object/ObjectType
http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/html/SimDM.html#SimDM:/object/Property
http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/html/SimDM.html#SimDM:/object/Field
http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/html/SimDM.html#SimDM:/object/PropertyGroup
http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/html/SimDM.html#SimDM:/object/Relationship
http://www.mpa-garching.mpg.de/~volker/arepo/
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Figure 8: Domain model for results. 

 
 
 
Precisely for this reason users will want to gain knowledge about the contents of 
simulation results to decide which simulations might be of interest to them. 
Hence the model must support description of the results explicitly. 
Figure 8 illustrates how this is achieved in the domain model: Experiments 
produce Results that consist of Objects (pixel, N-Body particle etc) of a particular 
ObjectType. The ObjectType defines the structure of Object as a collection of 
Properties (position, velocity, flux etc), and an Object, being an instance of the 
ObjectType, assigns values to these properties. Which ObjectTypes and 
Properties are available is defined by the (experimental) Protocol according to 
which the Experiment is run. 
 
SimDM deviates from the domain model in that it does not include the Object and 
ValueAssignment classes. Including these would imply that positions, velocities 
etc for all particles in a simulation are added to the metadata description. For the 
purposes of SimDB, i.e. discovery of potentially interesting simulations, this 
would be overkill. It is certainly possible to include data as in the domain model, 
the spectrum data model is a case in point. But that model has a different 
purpose, namely providing a serialisation of spectra in a standard manner. Also, 
individual spectra are generally relatively small and have a well-defined structure. 
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Figure 9: Modelling Output data sets and their contents. 

 
 
How we model results and their contents in SimDM is shown in Figure 9. We 
model results as OutputDataset-s. An OutputDataset represents a collection of 
objects of a particular ObjectType produced by the Protocol during the 
Experiment, implemented using the objectType reference. In the typical case the 
referenced object will be an OutputDataObjectType defined for the given Protocol. 
But in principle it could also be for example a TargetObjectType, if a user wishes 
to describe properties of the astronomical objects that have been simulated. 

http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/html/SimDM.html#SimDM:/resource/experiment/OutputDataset
http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/html/SimDM.html#SimDM:/resource/experiment/OutputDataset.objectType
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The class hierarchy that users can define with ObjectType can be reflected in the 
definition of the OutputDataset. There the parent reference indicates the 
container object, corresponding to the container of the corresponding 
Relationship object in the ObjectType hierarachy18.  
It is in certain cases useful to have some more quantitative information about the 
results of an experiment. For example, apart from the fact that a simulation has 
N-Body particles with properties position, velocity and mass, it might be of 
interest to know that the typical mass of the particles is 1010 solar masses.  
We support this by allowing users to describe properties of the collections of 
objects in an OutputDataset using a class we call StatisticalSummary. This 
reflects our belief that statistics is the appropriate way to introduce some 
quantitative aspects of these large collections of objects. StatisticalSummary is 
contained in Product. It assigns statistical values such as a mean or a min/max 
value to Properties of the OutputDataset.objectType. Which statistic is used is 
described by the statistic attribute.  
What data type to assign to a possible value attribute is again a problem, similar 
to that discussed for the value attribute in ParameterSetting. It is here solved in a 
similar way by introducing numericalValue and stringValue attributes. Whereas 
for a general SimDB a cumbersome solution such as this is necessary, the 
SimDAL protocol will allow for a more user friendly solution through its SimTAP 
query component (see [22]). 
Extensions of this statistical summary to more detailed summaries such as 
histograms can be easily imagined, but have been left out for the model as they 
will have less relevance for discovery, which is the main use case for the model.  
One further feature is important and is represented by the boolean aPriori 
attribute. This attribute describes whether the statistic that is used in the 
summary is an a priori or an a posteriori statistic. An a posteriori statistic is 
calculated using the results after they have been obtained during the running of 
the experiment. For example an a posteriori mean will likely correspond to the 
usual expression,  


N

i

ia
N

1
, 

where the ia are the values of some property.  

In contrast a priori statistics characterise the possible values of the observables 
before the experiment is run. In certain cases a priori knowledge is available that 
restricts the possible values that certain properties may obtain in an experiment. 
An example is a lower bound set on the number of particles that a cluster must 
contain to be included in the result of a cluster extraction of an N-Body 
simulation. This can be indicated by a StatisticalSummary object with 
statistic=min and aPriori=true.  
Knowledge about the a priori statistics is important in the interpretation of the 
results. In the previous example, when interpreting the mass multiplicity function 

                                            
18

 The assumption is that we generally do not need very complex relationships so that the simple 
parent reference is sufficient to infer which relationship is intended. 

http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/html/SimDM.html#SimDM:/resource/experiment/OutputDataset.parent
http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/html/SimDM.html#SimDM:/resource/experiment/StatisticalSummary
http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/html/SimDM.html#SimDM:/object/Property
http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/html/SimDM.html#SimDM:/resource/experiment/OutputDataset.objectType
http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/html/SimDM.html#SimDM:/resource/experiment/StatisticalSummary.statistic
http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/html/SimDM.html#SimDM:/resource/experiment/StatisticalSummary.numericalValue
http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/html/SimDM.html#SimDM:/resource/experiment/StatisticalSummary.stringValue
http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/html/SimDB.html#SimDB:simdb/experiment/Product.aPriori
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of a cluster catalogue extracted from an N-Body simulation, it is clearly important 
to know what the lower limit was on the mass of clusters.  
In general a priori statistics are the result of, and may often be derived from the 
input parameters. However this derivation may not be obvious and will in general 
require intimate knowledge of the parameters of a (experimental) protocol. The a 
priori statistic may then facilitate the discovery of catalogues that should contain 
halos of a certain mass. 
 
 

3.8 Data access services 

 
Figure 10: The model for (web) services giving access to SimDB resources. 

 
The goal of the Simulation Database is to allow scientists to find simulations of 
possible interest. Once these are found the question is what can be done with 
them. Clearly knowledge of their existence will be useless if the researcher will 
not be able to somehow gain access to the results. The usual way this is done in 
the IVOA, for example in the simple image and spectral access protocols, is that 
the result of a discovery query contains an access URL that may be used to 
download the actual image or spectrum, where moreover the format of the 
returned resource, FITS, VOTable or XML document will be known beforehand. 
It was perceived from the beginning of the SNAP project even that for the type of 
simulations that were supposed to be described a simple download would be 
unfeasible simply based on the size of many of the typical N-Body or AMR 
simulations. This assumption still holds and the SimDAL protocol is designed to 
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define special purpose services for retrieving parts of such simulations for 
example. 
Also in the data model we want to indicate how the relation is between the results 
and services. This part may be used in the SimDB specification to allow users to 
register services and the Resources they give access to.  
In the model the Service class, already introduced in 3.2, represents such access 
services (see Figure 10). This class can be explicitly linked to the Resources it 
gives access to through a collection of  AccessibleResource-s. The class has 
concrete subclass SimDALService. This represents services providing access to 
the results of a limited set of Protocols through the SimDAL protocol. The 
CustomService is introduced so that users can also publish non-standard 
services. This part of the model is still rather summarily treated and may need to 
be updated depending on developments in the SimDAL specification. 
 

4 Serialisations 
According to policies of the data modelling working group, first decided in 
Cambridge, 2003, a data model should be presented using a UML diagram, a 
corresponding XML schema and a list of UTYPEs. We have created these both 
using rules that derive the products directly from the XMI serialisation of the UML 
data model.  

4.1 SimDM/UTYPE 

The original goal of the data model presented here was to define the structure of 
a relational database supporting the Simulation Database service specification. A 
first draft of a note proposing that spec can be found in [21]. SimDB will use TAP 
[9] to define the IVOA protocol for querying this database using ADQL. The 
results of such queries will be tabular and serialised as VOTables. Such a 
VOTable will contain a filtered subset of the information in the database, but in 
general in a different form compared to the structure of the data model. To 
indicate the meaning of data elements in such a VOTable, the IVOA has invented 
the concept of UTYPEs. 
A UTYPE is a “pointer into a data model” 19 . The VOTable XML schema 
implements this concept as attributes on various elements, e.g. FIELD and 
TABLE and many other elements. The value of such a UTYPE attribute should 
identify an element in a data model that is represented by the element itself. For 
example a table might point to a class definition in a data model, and a column 
(FIELD) to an attribute. 
It has become common practice to provide for an IVOA data model a list of 
UTYPEs. The Spectrum data model (see [10]) was the first to add explicit 
UTYPE-s for each of the attributes in its model and the Characterisation data 
model [15]has followed that example. We follow these examples by assigning 
UTYPE-s explicitly to all elements in the model.  

                                            
19

 See 5.3.3 for our position on the discussion that is still going on regarding UTYPEs. 

http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/html/SimDM.html#SimDM:/resource/dal/Service
http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/html/SimDM.html#SimDM:/resource/dal/AccessibleResource
http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/html/SimDM.html#SimDM:/resource/dal/SimDALService
http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/html/SimDM.html#SimDM:/resource/dal/CustomService
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Our goal was not to have to make this a separate effort, but if possible to 
generate the list of UTYPEs directly from the model. Our goal was to assign 
UTYPEs to all identifiable elements in our model and these should be unique.  
To this end we define a set of production rules phrased using the special names 
in our UML profile. We have made a guess as to what the format for UTYPEs will 
be. In the previous data models a UTYPE existed of a word consisting of dot-
separated “atoms”, similar to UCDs, but without the “;”. We use a slightly different 
format to make the distinction between different syntactic elements from the 
profile somewhat clearer and also to guarantee uniqueness of each UTYPE 
within the data model context. Once (if?) a format is settled on within the IVOA 
we will easily be able to adjust our definitions.  
The important point we want to make is that it is possible to define simple rules 
that can automatically produce unique UTYPE-like words for all elements of a 
data model, i.e. the only discussion that may be required is on the rules for doing 
so IF a fixed format is preferred (see Norman Gray‟s ideas20 on why this might 
not be necessary).  
The following BNF-like expressions define the particular rules we have used for 
deriving the UTYPEs from the UML model: 
 
utype   := [model-utype | package-utype | class-utype | 

    attribute-utype | collection-utype | 

    reference-utype | container-utype  

model-utype  :=  <model-name> 

package-utype := model-utype “:/” package-hierarchy 

package-hierarchy :=  <package-name> [“/” <package-name>]* 

class-utype  := package-utype “/” <class-name> 

attribute-utype := class-utype “.” attribute 

attribute  := [primitive-attr | struct-attr] 

primitive-attr := <attribute-name> 

struct-attr  := <attribute-name> “.” attribute 
collection-utype := class-utype “.” <collection-name> 

reference-utype := class-utype “.” <reference-name> 

container-utype := class-utype “.” “CONTAINER” 

identifier-utype := class-utype “.” “ID” 

 
For the SimDM these rules produce a list of UTYPEs for the model. For each 
model element we provide the UTYPE in the HTML documentation in [5] and we 
provide a complete list at the end of that document21. Note also that a URL of the 
type  

<URL-to-HTML-doc>#<utype>  

will link one directly to the documentation for the corresponding data model 
element. This is in conformance with a suggestion made by Norman Gray20. 
 

                                            
20

 http://nxg.me.uk/note/2009/utype-proposals/  
21

 
http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/html/SimDM.html#ut
ypes   

http://nxg.me.uk/note/2009/utype-proposals/
http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/html/SimDM.html#utypes
http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/html/SimDM.html#utypes
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When representing components of the data model in a VOTable (for example), 
these UTYPEs SHOULD be used, in particular when the VOTable contains 
results of ADQL queries to a SimDB/TAP implementation (see SimDB Services)..   
Alternative views and representations of the SimDM, for example in SimDAP, 
SHOULD use these UTYPEs to refer to elements in the model.  
 

4.2 XML  

A specification for an IVOA data model should (must?22) contain an XML schema 
that defines how to serialise data model instances as XML documents. Similar to 
the case of UTYPEs we did not want to make the design of these schemas a 
separate effort; instead we want to derive the schema from the model. To do so 
we have defined rules for relating XML Schema constructs to our UML model. 
These rules are a completion of those described in [36]. It is based also on a 
view of what such schemas should look like, restricting the possible set of 
constructs to be used in schemas representing data models. These design rules 
have earlier been discussed with and accepted by the Registry and VOTable 
working groups. 
We give here only a short description of these rules. First of all we define two 
different types of schemas. First we define “type schemas”, XSD documents 
containing only type definitions. For each object type(class) and value type we 
generate a corresponding complexType or simpleType. Attributes map to 
elements of a corresponding data type (simple or complex), collections to 
elements of a type corresponding to the class. References are harder to 
represent and will be discussed below. 
We next generate a “document schema” containing root elements. The elements 
in the document schema define the valid XML documents one can write and we 
choose only “root-entity classes” for their type. That is, only classes at the root of 
collection trees can be represented as a document. Fragments of these are not 
allowed. For example, only a complete Simulator or Simulation can be 
represented in a document, not only a single result, or parameter setting.  
Note that this is a choice made for the Simulation Database service specification. 
The document schema depends on the type schemas through XML schema 
import declarations. This separation allows flexible usage of the type schemas, 
for example other services might make a different choice from the types to serve 
as valid root elements. 
The root schema for the SimDM/XSD representation can be found here23. The 
type schemas and a predefined base schema can be found in the same directory 
and subdirectories of it. We refer to the SimDB Services document for more 
details on the XML schema serialisation and their use in the SimDB service 
protocol. 

                                            
22

 See “Rules” on http://www.ivoa.net/cgi-bin/twiki/bin/view/IVOA/HowToParticipate This 
“decision” was made in the Cambridge 2003 interoperability meeting together with the 
requirement that data models must be specified in UML.  
23

 
http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/xsd/SimDM_root.xsd  

http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/xsd/SimDB_root.xsd
http://www.ivoa.net/cgi-bin/twiki/bin/view/IVOA/HowToParticipate
http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/xsd/SimDM_root.xsd
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Only the mapping of references deserves special attention. Our choice of 
mapping from UML to XSD elements and our definition of root elements imply 
that many references must be able to link between different XML documents. For 
example the (experimental) protocol reference24 in an XML document describing 
an Experiment must be able to identify a (experimental) Protocol that is defined 
in a different XML document. To do this identification we assume we must rely on 
an agent that can interpret a serialisation of a reference and use it to look up a 
corresponding document. Therefore we map references to elements of a 
particular complexType that we define in a base schema25. That same schema 
defines a type to be used for representing identifiers of objects and the reference 
serialisation must be able to reproduce such an identifier.  
Further technical details of this mapping will be described in the appropriate 
service definition document. 
 

5 Dependencies on other IVOA efforts 
 
IVOA documents are assumed to specify dependencies on other IVOA efforts. 
We have from the beginning realised that the SimDB effort touches upon various 
other specifications and general efforts of other working groups [21]. Here we 
discuss these relations as far as they pertain to the Simulation data model. 

5.1 Registry 

The correspondence between the full Simulation Database specification and the 
IVOA Registry will be discussed in the SimDB Service note [21]. Here we will 
address the relation between the SimDM and the Registry Data Model as defined 
in [13]. 
 

                                            
24

 UTYPE: SimDM:/resource/experiment/Experiment.protocol or 
http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/html/SimDM.html#Si
mDM:/resource/experiment/Experiment.protocol  
25

 http://vo-urp.googlecode.com/svn/trunk/xsd/base.xsd  

http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/html/SimDM.html#SimDM:/resource/experiment/Experiment.protocol
http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/html/SimDM.html#SimDM:/resource/experiment/Experiment.protocol
http://vo-urp.googlecode.com/svn/trunk/xsd/base.xsd


32 

 
Figure 11: UML rendering of the Resource complexType from [13]. 

 
In Figure 11 we present a UML rendering of the Resource complexType as 
inferred from the Resource Registry VOResource XML Schema [13]. Comparing 
that model to SimDM/Resource we can see that these two models for Resource 
are related, but not identical. In data modelling terms, it is not true that a 
SimDM/Resource is a Registry/Resource (or vice versa). Curation is modelled 
differently and arguably with less detail in SimDM, but the main difference is in 
the Content. SimDM provides a very detailed and specialised model for the 
Content of Simulations and related resources, by modelling provenance, 
motivation and results characterisation. This higher level of detail gives rise to a 
higher level of granularity in the types of resources stored in a SimDB, which in 
general will be to fine grained for registration in a Registry. This is similar to the 
case of a single image, which is not a Registry/Resource, whereas a SIAP-
compatible service, providing access to many images, is.  
A SimDB service itself will have to be registered, i.e. a SimDB service is a 
Registry/Resource. In discussion with Ray Plante (IVOA Interoperability meeting 
May 2007, Beijing) on this issue it was proposed that some part of the contents 
could also be registered in a Registry directly, i.e. we should be able to identify 
Registry/Resource-s in SimDB. Considerations to decide on how to make this 
identification would be for example that all data products resulting from a well-
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defined (and published) scientific project could qualify. To represent such a 
possibility for now we have introduced another subclass of SimDM/Resource: 
SimDM/Project. This is not much more than an annotated aggregation of other 
SimDM/Resources, with some additional attributes describing the motivation etc. 
The metadata of a SimDM/Project is not the same as that of a Registry/Resource, 
however we propose that we should be able to define a transformation (possibly 
implemented again in XSLT) to transform a SimDM/Project and produce a 
Registry/XML representation.  
 

5.2 Semantics: Use of SKOS Concepts 

In the SimDM, observables, object types, properties, parameters that play a role 
in a given simulation have to be defined explicitly, for the world of simulations is 
too large to define all possibilities explicitly in the model itself. This in contrast for 
example to the spectrum data model [10] where we know that a flux is 
determined for a wavelength interval, or a model for images where a flux is 
determined for a spatial pixel. In principle the publisher of a SimDM/Resource 
has all freedom to name and describe these entities. For other users to 
understand the meaning of them, we have where appropriate, added an attribute 
corresponding to a semantic label. This is similar to the situation in VOTable, 
where FIELD-s can be given a UCD (or UTYPE) that allows users to understand 
the meaning of a column in the table.  
In SimDM we need to generalise this concept as UCDs are not sufficient for our 
purpose. For example target object types are not covered by the list of UCDs and 
the same for other elements in our model. The Semantics WG has specified that 
such vocabularies should follow the SKOS specification [24]. They have also 
defined a number of such semantic vocabularies in the SKOS format, for 
example of astronomical objects. We try to anticipate their results by introducing 
a special type of attribute in our UML profile that corresponds to a concept in a 
given ontology.  
Technically, in the UML profile we have defined a stereotype <<skosconcept>> 
that can be assigned to an attribute in the UML model. Attributes with this 
stereotype must define a value for the tag "broadestSKOSConcept".  
The intent of this is as follows (thanks to Norman Gray for providing the original 
text with this formal definition): 
<<skosconcept>> attributes take a skos:Concept as their value. In each case, 
the value is given as a single skos:Concept: such attributes may take any 
skos:Concept which is a narrower concept than this single typing concept. To be 
precise, for a typing concept T, any concept c is a valid value for this property, if 
either: 
 
    c skos:broaderTransitive T  
 
or if there exists a concept X such that 
 
    c skos:broaderTransitive X. X skos:broadMatch T 
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This just means that, if c is in the same vocabulary as T, then it's connected by a 
chain of any number of skos:broader, and if it's in a different vocabulary, then 
there is some X which is in the same vocabulary as c, with a cross-vocabulary 
link between X and T. 
 
In several cases -- particularly those vocabularies which have been created for 
SimDM -- there will be a single top concept which everything is narrower than.  In 
other vocabularies -- such as the AstroObject in the thesaurus version of the 
ontology of object types -- the natural typing concept is not a top concept, or is 
not the only top concept.  This definition also does indicate that it's legitimate for 
concept c to come from a different vocabulary from T: the fact that c has been 
declared to be narrower than T, either implicitly or explicitly, is to be taken to be 
the expression of the vocabulary designer's intention that this be a legitimate 
value for this property. 

5.3 Data Model 

5.3.1 UML Profile 

The data model proposed in this document is fully defined in all detail through a 
UML model. UML is a large language and we have consciously restricted 
ourselves to a subset of the possible modelling elements. We have also added a 
few modelling elements using the extension mechanisms UML provides through 
stereotypes, tags and predefined data types. This combination of restriction and 
extensions is referred to as a UML Profile. The details of our profile are described 
in a separate document Erreur ! Source du renvoi introuvable., added as an 
Appendix to the current WD. 
One reason to put so much emphasis on the UML model is that it allows us to 
derive various products of this specification automatically. To this end we use the 
modelling frame work under development in the VO-URP project26, which is a 
spin-off of the SimDB effort. Using XSLT scripts developed in VO-URP we can 
generate HTML documentation (including UTYPE lists) [5], XML schema 
definitions [6] etc directly from the XMI representation of the UML model.  

5.3.2 Characterisation data model 

As described in section 3.7, the model allows one to characterise the results of 
experiments statistically using the StatisticalSummary class. This part of the 
model addresses similar problems for simulations as does the Characterisation 
Data Model for observations. We have not followed that model in detail, but have 
tried to incorporate its main ideas, giving a new interpretation to some of these27. 
We believe the best way to reconcile the two approaches is to see both as 
specialisations of a more abstract model defining statistical characterisations of 

                                            
26

 http://code.google.com/p/vo-urp/ 
27

 This follows ideas presented in China 2007, see 
http://www.ivoa.net/internal/IVOA/InterOpMay2007DataModel/CharacterisationInTheDomain.ppt    

http://www.ivoa.net/internal/IVOA/InterOpMay2007DataModel/CharacterisationInTheDomain.ppt
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data products. A proposal for such a “domain model for characterisation was 
given in [31].  
 

5.3.3 UTYPE 

Section 4.1 describes how we generate UTYPEs for the different elements in our 
data model. The rules we use to do so have been subsumed in a draft for a Note 
on UTYPE-s by [16]. One problem we have with that Note is that the concepts 
used in the grammar, and that are direct reflections of syntactic modelling 
elements in our UML profile, have not been defined. For models defined with 
different UML syntax the grammar does not help. 
Some have argued against any semantic meaning to a UTYPE string. It should 
not be necessary to parse it to find out what its meaning is. Instead one should 
be able to follow it, but could/should be opaque. It should simply be assigned to 
the modelling elements. In that case the only requirement would be that a unique 
list of strings is created and that 
Our assumption has been that a UTYPE should allow one to uniquely identify a 
concept in a data model. We do not assume that our particular form to do so 
need to be taken over. But, as we describe in 4.1, if one wants to simply derive a 
list of unique strings to be associated to concepts that play a role in data models 
designed with our UML profile, these rules may help. Clearly if the syntax were to 
change we can accept that. 
The effort on understanding what UTYPEs really are, how they are to be used, or 
defined is in our opinion not completed. But we feel that our approach is 
compatible with any possible interpretation, and sufficiently flexible to proposed 
changes in precise syntax, were they required. 
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Appendix A History 
Numerical computer simulations form an increasingly important component of 
astrophysical research. Such simulations are used to model astrophysical 
processes whose complexity precludes an analytical treatment. The subject of 
these simulations includes every possible astrophysical phenomenon, from the 
structure of stellar atmospheres, the formation of solar systems, the structure of 
galaxies and the description of their constituents, to the formation of the largest 
structures in the universe. 
 
The simulations often result in predictions that can be compared to observations, 
but in general are much richer, including “observables” that can only be derived 
by indirect means from observations. These results can be very large, rivalling 
and often exceeding in size the largest observational catalogues. But they can 
also be relatively small, consisting of individual spectra of say a white dwarf, 
though often in collections resulting from parameter studies. 
 
The design and execution of these simulations has become a specialised field of 
astrophysics, and is these days often performed in large collaborations. And 
while it is still true that their results are studied by these groups only, more and 
more of these theoretical data are being published online (see for instance the 
Appendix B of [25]). 
 
Apart from limited support for publishing theoretical spectra in SSAP, there is as 
yet no IVOA standard dealing with the publication of simulations and their results. 
In earlier documents we have described the issues for defining such standards 
compared to the arguably simpler case of observational data sets (see for 
example [20] and [25]). 
 
The proposal for a standard way of publishing simulations was formulated during 
a workshop in Cambridge, February 2006. The original idea was to create an 
analogue of the simple image access protocol (SIAP, [17]) for N-Body 
simulations: SNAP, the Simple Numerical Access Protocol. During the following 
interoperability meeting in Victoria, May 2006, the scope was expanded to 
include other types of simulation algorithms, and rephrased to something like 
“simulations that reproduce 3+1dimensional space time”. It was felt furthermore 
that not only simulations themselves should be included, but also certain types of 
post-processing such as cluster finders, as long as their results are still aimed at 
producing a description of 3D space at one or more points in time. Over time 
requests have come in to generalise this scope even more, basically to enable 
any type of astrophysical simulation to be handled. 
An important change that was decided in Victoria 2006 was that instead of the 
SIA protocol, the newer simple spectral access protocol (SSAP, [18]) should be 
followed as an example. This protocol‟s main difference with respect to SIAP was 
the explicit data model that was created for spectra and was used as motivation 
for the queryData metadata and the getData data format. Hence SNAP from the 
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beginning had a double focus on a data model plus related query protocol on the 
one hand, and a data access and delivery specification on the other hand. 
Shortly before the Trieste interop in the spring of 2008, it was decided to split 
SNAP up along these lines in two separate specifications: a specification for a 
Simulation Database (SimDB) which would support searching for interesting 
simulations and services providing access to them, and a Simulation Data 
Access Protocol (SimDAP) providing a specification for accessing simulation 
results. 
 
SimDB on its own is still a rather complex specification. It has overlap with the 
efforts and results of many working groups, Data Model (DM), Registry, Data 
Access Layer (DAL), Semantics as well as being an integral part of the Theory 
Interest Group (TIG). This issue has been discussed in the Baltimore and 
Strasbourg interops, as it causes a potential problem for the standardisation 
process: an interest group cannot promote a document to a standard, but which 
a working group (WG) could do so. It was decided in Baltimore to postpone that 
decision by creating a focus group led by the TIG and with participation form the 
various WGs.  
 
The current document is the result of a split in original Note that was written for 
SimDB. Such a split was proposed to simplify the standardisation process and 
after some refactoring was performed mid-2009. This current document is the 
first of these and deals exclusively with the data model (SimDM) and 
consequently has a natural place in the DM WG. The second document deals 
with the use of the data model for defining the model for a relational database 
and its related TAP query implementation as well as a service interface for 
uploading simulation descriptions to this database. It is not yet clear whether it 
can find a place in a single WG. 
 
A parallel effort has been the proposal for a simpler access standard for small 
scale simulation, the Simple Self-describing Service protocol (S3, [14]). This was 
a result of an investigation started in the Cambridge 2007 interoperability meeting 
whether “micro-physics” simulations as they are sometimes called require special 
attention. For some time this was covered by SSA, at least as far as theory 
spectra were concerned. S3 is actually a direct reworking of an older Theoretical 
Spectral Access Protocol [19].  
 
There were questions in the TIG whether S3 might be incorporated in SimDB 
and/or SimDAP. In the interoperability meeting in Victoria 2010 the decision was 
made that indeed this should be possible. The SimDM was shown to be able to 
incorporate the metadata for S3-like services, and indeed proposes extensions of 
that. It was decided that the S3 protocol should be merged with the SimDAP 
protocol, which from then on will be known by the name Simulation Data Access 
Layer (SimDAL). The implementation note addresses this question from a formal 
point of view, namely by defining how S3-like services can be described by the 
data model. 
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Appendix B UML Profile29 
 
The Simulation Data Model uses UML as the language for its specification. This 
is in accordance with decisions of the IVOA data model working group. One 
advantage of UML is that it is implementation neutral. It is a graphical language, 
consisting of “boxes and lines” that is very suitable for whiteboard discussions 
but allows one to model the concepts and relations in a static data model. It is 
also rich enough to allow one to describe all important data elements and 
relations. 
  
In fact, UML is almost too rich. It is easy to become overwhelmed by the large 
number of possible syntactic elements to choose from for modelling a particular 
structure. Luckily UML allows one to formally define a subset of its language 
where one restricts oneself to a subset of the syntactic elements. Such a subset 
is called a UML Profile. Apart from creating a more restricted language, a Profile 
also allows on to assign new meanings to existing elements by defining 
stereotypes with associated properties (tag definitions). It is also possible to 
predefine classes and data types (see below) that can be reused by the data 
modeller. 
 
In our modelling effort we have defined an initial implementation of a UML profile 
as created by MagicDraw. The profile30 is contained in the UML file containing 
the SimDM data model. Here we give a list of the main elements that we use and 
give a short motivation for their inclusion in the language. It is our opinion that the 
DM working group should be ultimately responsible for a profile such as this, as it 
gives the possibility of defining a domain specific language for all IVOA data 
modelling efforts, thus giving some uniformity to those disparate efforts.  

B.1 Element 

All elements mentioned below are specialisations of UML Element.  
Stereotypes 

 <<modelelement>>: This stereotype can be assigned to any UML Element 
and is used to define the utype tag on.   
Tags: 

o utype [string]:  this holds the actual UTYPE that points to the other 
modelling element that is represented here. 
 

B.2 Model 

                                            
29

 This Appendix could eventually be replaced by a Note on UML profiles if the DM WG is 
interested in organising such an effort. As this does currently not exist we have kept it in here to 
make the specification as self-contained as possible. 
30

 Available under http://vo-urp.googlecode.com/svn/trunk/uml/IVOA%20UML%20Profile%20v-
3.xml  

http://vo-urp.googlecode.com/svn/trunk/uml/IVOA%20UML%20Profile%20v-3.xml
http://vo-urp.googlecode.com/svn/trunk/uml/IVOA%20UML%20Profile%20v-3.xml
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This is the root of the complete model, contains all packages, classes etc. Also 
contains any imported profile. 
 
Stereotypes 

 <<model>> 
If the designer wants to annotate the model with the tags in this stereotype 
(s)he must explicitly associate this stereotype to the Model. 
Tags: 

o author : Indicates the author(s) of the model. 
o title : provides a long title to the model. The name of the model is 

assumed to be short. 
o subject: 0..* list of subjects in the sense of the Registry‟s subject 

attribute.  
 

B.3 Package 

 

 
Figure 12: This figure shows a package "simdb" that contains two other packages. Of 
these the experiment package depends on the protocol packages, which is indicated by 
the dashed arrow. See Figure 2 for the somewhat more complex package structure used in 
SimDM. 

A package groups related elements such as class definitions and possibly sub 
packages. Packages can depend on each other (indicated by the dashed line), 
which means that elements in one package can use elements in the target 
package in their definition. This relation is transitive. A package is similar to an 
XML namespace and in fact we map UML packages to XML namespaces in the 
XML schema mapping for the model described in 4.2. 

B.4 Class 
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Figure 13: A Class is a rectangular box, with the name of the class in boldface. 

 
Classes are the fundamental building blocks of a data model. A Class represents 
a full-fledged concept and is built up from properties and relations to other 
Classes. An important feature of Classes as opposed to DataTypes (see below) 
is that instances of Classes, i.e. objects, have their own, explicit identity31. That is 
we want to assign an explicit identifier to each concept so that  
 
Properties:  

 isAbstract 
Indicated by italicised name of the object. Implies that no instances can be 
made of the class, only of concrete (=non abstract) sub classes.  

 
 

B.5 ValueType  

A ValueType represents a simple concept that is used to describe/define more 
complex concepts such as Classes. ValueType-s are, in contrast to Classes not 
separately identified. They are identified by their value. For example an integer is 
a value type; all instances of the integer value 3 represent the same integer. 
In this profile ValueType-s are only represented using specialised examples. 
Attributes (see below) must have a ValueType as their datatype. 

B.6 PrimitiveType 

PrimitiveTypes are the simplest examples of ValueTypes. They are represented 
by a single value only. A set of PrimitiveTypes is predefined in the IVOA profile 
(see Figure 14). 

                                            
31

 This is admittedly a somewhat theoretical object-oriented concept, 
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Figure 14: The PrimitiveTypes that are predefined in the IVOA profile. 

 

B.7 DataType  

 

 
Figure 15: Example of a structured datatype:Pos3D represents a position in 3D space and 
is defined using x, y and z attributes. The DataType symbol is distinguished form the 
Class by the <<dataType>> stereotype. 

 
A DataType is a ValueType that has more structure than a single value. This 
structure is modelled using Attributes, just as on ObjectTypes. 
 

B.8 Enumeration 
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Figure 16: An enumeration is indicated by a box with the name of the the enumeration and 
the list of literals. 

An Enumeration is a ValueType that is defined by a list of valid values. These are 
the only values that instances of this data type can assume. 
 
 

B.9 Attribute 

 

 
Figure 17: An attribute is indicated by a line with a name, a datatype, an indication of the 
multiplicity and possibly a stereotype. 

 
An Attribute is a Property of a type (object type as well as structured data type). 
An attribute‟s data type is always a Value type, not an object type. For object 
type properties one should use References 
 
Properties 

 data type 

 multiplicity/cardinality: indicates the cardinality of the attribute (assumed to be 
0..1, or 1. This is a relational bias based on normal form and the assumption 
that most databases do not allow storage of arrays in single columns.) 

  
Stereotypes 

 <<attribute>> 
To assign further properties such as the tags this stereotype attribute must 
be explicitly assigned. 
Tag definitions 

o length [integer]: Constraint indicating that an attribute must have a 
specific fixed length. Is relevant only for attributes of type string. 

uml/DataModel_Profile.doc#_References
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o maxLength [integer]: Constraint indicating that an attribute may at 
most have the indicated length. Is relevant only for attributes of type 
string. Is used in mappings to TAP to indicate the length of the 
corresponding column. Thist would seem to be very much an 
application specific feature and therefore belong to logical 
modelling. But this profile can be used for that purpose, hence it is 
included. 

o uniqueGlobally: Constraint indicating that only one instance of the 
type of the Class owning this attribute can have a given value. 
Globally should be read to mean globally in a given instance of the 
model, i.e. a database for example that stores instances of the 
model. 

o uniqueInCollection [boolean]: If true, indicates that the value of the 
attribute can not be shared by the same attribute of any other 
instance of the Class owning this attribute that is in the same 
collection, i.e. has the same container object. In SimDB/DM an 
example is given by the name attribute of the InputParameter class. 
For a given Protocol  

 <<ontologyterm>>  
There are many instances in the data model where we need to describe 
elements of the SimDB/Resource-s explicitly, because we do not have 
implicit information based on the context. Examples are the various 
properties of object types, the target objects and processes etc. Apart from a 
name and a description we then frequently add an attribute which is 
supposed to "label" the element according to an assumed standard list of 
terms.  
We model this using the <<ontologyterm>> stereotype. Attributes with this 
stereotype are assumed to take their values form such a predefined 
"ontology" 32 .  
Tag definitions: 

o ontologyURI                   
A URL locating a standard (RDF|SKOS|OWL|???) document 
containing a list of terms from which the value for this attribute may 
be obtained. It is our opinion that the Semantics working group 
should be responsible for the definition of relevant ontologies (or 
semantic vocabularies, or thesauri, or ...) required for a given 
application domain, though the contents should be decided in 
cooperation with domain experts.  

 
 

B.10 Inheritance 

                                            
32

 Possibly this should be a vocabulary, that at least is intended, and the stereotype might have to 
be called <<skosterm.., with tag definition named skosVocabulary. 
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Figure 18: Inheritance is indicated by a line with an open arrow from a subclass to its base 
class. 

 
Indicates the typical “is a” relation between the sub-class and its base-class (the 
one pointed at). In this profile we do not support multiple inheritance.  
 

B.11 Collection  

 
Figure 19: The line with the closed circle on one end and an arrow on the other indicates a 
composition relation, or collection, between the parent (on the side of the circle) and the 
child, on the other side. 

 
This relation indicates a composition relation between one, parent object and 0 or 
more child objects. The life cycles of the child objects are governed by that of the 
parent.  
In UML a composition relation is represented by a binary association end. 
 

B.12 Reference  
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Figure 20: A Reference is represented by a line connecting a class with another, 
referenced, class with an arrow on the referenced class. Note, the <<reference>> sterotype 
indication is not required. 

 
This is a relation that indicates a kind of usage, or dependency of one object on 
another. It is in general shared, i.e. many objects may reference a single other 
object. Accordingly the referenced object is independent of the "referee". In our 
profile the cardinality can not be > 1.  
For implementing the Reference in UML we use a shared, navigable binary 
association end. 
 
 

B.13 Subsets 

 
Figure 21: The subsets property can only be assigned to a relation between two objects 
that are both subclasses of Classes that have an equivalent relation. It is indicated by the 
{subsets ...} annotation to the relevant association end. 

The “subsets” property, when associated to a Reference or Collection (in UML to 
the corresponding association end), indicates that a relation overrides the 
definition of a relation of the same name defined on a base class. It does so by 
specifying that the class at the end point of the relation should be a subclass of 
the class at the endpoint of the original, sub-setted relation.  
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Appendix C Issues 
We identify and discuss here several issues with the SimDM that need to be 
discussed further.  

C.1 Normalisation 

 
The current version of the SimDB/DM is rather more normalised [9] than most of 
the other data models in the IVOA. We explain this concept based on a particular 
choice we made during the modelling process, and then we discuss the 
consequences of particular choices. 

 
Figure 22: Non-normalised model for experiments and parameters. 

 
At an earlier stage, the model was less normalised in the design of the input 
parameters of an experiment, as is illustrated in Figure 22. There was no 
separate protocol class, only an attribute protocolName on the Experiment class 
indicated the protocol by which the experiment was run. Also, the input 
parameters on the experiment were completely contained in a collection of 
Parameter-s. The Parameter class contained all the details, including name of 
the parameter, description, ucd etc. It also contained the value of the parameter 
in the experiment.  
 

 
Figure 23: Normalised modelling of experiments, protocols and their parameters. 

 
Currently the model treats parameter definitions and settings as in Figure 23. In 
this normalised design, the Protocol is given a class of its own, and it contains 
the input parameter collection. The InputParameter class does not contain a 
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value, only the definition of the parameter: name, datatype, ucd, description. The 
values assigned to parameters in a given experiment are captured with the 
ParameterSetting class, contained in a collection off Experiment.  
The motivation for this change of model was that a SimDB instance will in 
general contain many simulations (experiments) run with the same simulator 
code (protocol). In the old model, each experiment has to define the collection of 
input parameters with all details. In the new design this only has to be defined 
once, on the appropriate protocol. This clearly is less redundant, which is one 
important design goal of a normalised modelling approach. At the same time it 
provides an explicit identity to input parameters, which allows us to ask explicit 
questions about all parameter settings for a given, identified parameter. In the old 
model this is only indirectly possible, using equality of the name of input 
parameters for all experiments having the same protocolName. Now we can ask 
for all experiments with the same protocol reference, and look for parameter 
settings with the same input parameter reference. This is arguably a more 
"correct" model of reality.  
 
There are therefore advantages to normalisation, but there are also 
disadvantages. We need to realise these and make choices that optimise the 
usability of the data model. One of the main disadvantages is that references, 
which naturally have to be introduced when normalising a model, are more 
difficult to deal with than most of the other modelling elements, particularly in 
some physical representations (see below). When defining a new experiment, 
one will have to find the input parameter that one needs to set, and instead of 
simply giving name/value, one needs to represent the reference to the parameter. 
For this one may have to extract the protocol as stored in the SimDB and find the 
appropriate identifiers of the input parameters. In this sense an Experiment 
definition becomes less self-contained. It depends on the details of the registered 
Protocol. This protocol is registered separately and necessarily at an earlier point 
in time.  
This puts strong requirements on SimDB implementations to maintain referential 
integrity, something which will be even harder to achieve if we were to allow 
cross-SimDB referencing. In one advanced usage scenario the UC San Diego 
version of SimDB registers the Enzo33 simulator, whilst the Italian SimDB allows 
registration of simulations that used it and reference the remote protocol34.  
Similarly a query language needs to be able to handle with this level of 
indirection. For example in a relational database one needs to write joins 
between ParameterSetting and InputParameter. For expert SQL users this is not 
a problem, but is something to get used to. For simpler query languages, those 
not allowing joins, like TAP/Param, asking meaningful queries becomes very 
difficult. One way around this problem could be to add some view definitions to 
the model. In relational databases, views are predefined, named SQL queries 
that can be treated as if they were tables when querying the database. It is quite 
straightforward to define some SQL queries that as it were denormalise the 

                                            
33

 http://lca.ucsd.edu/portal/software/enzo  
34

 We actually do not support this scenario in the current version of SimDB. 

http://lca.ucsd.edu/portal/software/enzo
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model and put the input parameter definition back under the experiment together 
with the value. This way one may protect users of the database from the high 
level of normalisation.  
 

C.2 Quantities and Units 

 
At various locations in the SimDM data model numerical values can be defined, 
for example in parameter settings or the characterisation of properties of 
representation object type collections. Often these numerical values will need to 
have a unit. The IVOA has two ways of dealing with units. Either units are fixed 
explicitly for properties/parameters in protocol or data model, sometimes 
depending on the small list of possible UCDs. Alternatively units are epxlicitly 
stated, for example in VOTable. At the moment we suppport the second mode, 
especially because, as is true for VOTable, we do not know what kind of property 

is being used. To this end we introduce a value type in the model, Quantity, 
which contains a value and a unit, and which is the data type of various value 
attributes, for example in NumericalParameterSetting or Characterisation. In the 
XML schema this is translated to a complexType with 2 elements, in the 
relational database schema to two columns, one with the value, one with the unit.  
It is in the use of the relational schema that we anticipate problems with this 
approach, especially in the query protocol to SimDB. Consider the typical science 
question: return all N-body simulations with particle mass roughly 1010Msun. In 
SimDB this would be need to be translated in an ADQL query which contains the 
unit column explicitly. Allowing users‟ freedom of registering SimDB resources 
using any units they desire can lead to resource containing, for the same 
observable "N-body particle mass", values with a whole range of units. To 
provide reasonable support to users requires the SimDB implementation to be 
able to do the automated transformation. But in the We propose in SimDB to use 
ADQL/TAP as the query interface. If units are stored explicitly users can phrase 
queries using these,  
An alternative approach is to mandate stating values for properties with a given 
UCD (or other semantic label) always with the same units. This would solve the 
query problem but poses others. For one it may be very (too?) unnatural for 
users to be forced to use meters for cosmological simulations, or megaparsec for 
simulations in the solar system. Related to this is the probably contentious 
discussion of what units to assign to what UCD. One might choose SI or cgs 
units, but these are not always very useful or natural.  

C.3 Linking services, experiments and other resources. 

When studying the SimDM and comparing it to the explanation in 2.4, one will 
notice that there is no concept of storage for the results in the proposed model. 
The reason is that whereas we can define the concept of a Result as collections 
of Objects quite satisfactory, we have shied away of trying to model the precise 
way these results are actually stored in files or a database. There are simply too 
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many possible and actual ways in which results can be stored in a file system. In 
general, a result, or snapshot in our model, cannot be modelled with a simple 
reference to a file or table in which it is stored. Large results may be split up over 
many files, stored as structs, or in arrays. We have therefore decided not to open 
this can of worms (or reopen it, see the Quantity data model 
http://www.ivoa.net/internal/IVOA/IvoaDataModel/qty23.pdf).  

Instead we assume the existence of web services that allow users access to the 
results of SimDB experiments. Some of these services may implement a 
standard protocol as defined by SimDAP, or they may be custom services. The 
precise way to relate experiments to services and what can be inferred about 
how to call them is the task of the SimDAP protocol.  

In the model actually web services are related to resources in general. This can 
be used to represent services that gives access to a set of experimental results 
from some project, or that can for example visualise any result of  experiments 
performed according to a fixed protocol, for example generic Gadget-format 
visualisers. 

 

http://www.ivoa.net/internal/IVOA/IvoaDataModel/qty23.pdf
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Appendix D Use of SimDB data model 
Here we present our views on how the data model presented in this and 
accompanying documents could/should be used. We first discuss the usage in 
the SimDB service protocol for which it was originally intended. We then discuss 
the possible usage in SimDAP that was assumed to use the model in some form 
as well, though the link has been weakened after the SNAP proposal was 
separated in SimDB and SimDAP. We then propose how also the S3 proposal 
[14] could use the model, thus tying that specification closer to the other 
developments in the theory interest group. Finally we discuss how one might 
identify Registry Resource-s in the model, and how one might extract these, in 
effect creating a specialised Registry implementation on top of the Simulation 
Database. 

D.1 SimDB 

 
As will be discussed in the SimDB Services Note [in preparation], the current 
proposal is that a Simulation Database uses the SimDB data model exactly as 
described here, in all its details. With one proviso though. The data model 
presented here is in UML form, which is not usable in protocols, databases etc. 
Hence one or more physical representations must be created. The XML Schema 
representation was shortly discussed in section 4.2 and will be more detailed in 
the SimDB note. But the main emphasis in the SimDB protocol is on a 
TAP/ADQL interface, which requires a relational database and hence a relational 
model. In the SimDB note we therefore provide a relational mapping of the data 
model together with its representation in metadata formats prescribed by the TAP 
specification. 
This means that, in the current proposal, the data model only needs a 
transformation to a physical representation, without any loss of information. 
However as we have discussed in section C.1, the highly normalised nature of 
the model complicates its usage, whatever the representation. There we 
proposed a solution using “denormalised representations” of the model. These 
representations could be created in UML and used exactly as the current model 
as the basis for UTYPEs, XML schema, TAP metadata etc. 
We believe that in principle it is up to applications35 how to use the data model, 
but we feel that it would be good if some more or less formal transformation were 
given that could express the application model into the SimDB model, vice versa 
transform the SimDB model into the application specific representation.  

D.2 SimDAL/SimTAP 

 
The Simulation Data Access Layer (SimDAL) “… defines a protocol for retrieving 
data coming from numerical simulations.” When SNAP was split into two 

                                            
35

 This includes Protocols such as SimDAP and S3, but also SimDB itself. And it includes anyone 
who wishes to give an custom web (service) interface to their SimDB installation. 
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separate efforts, SimDAP was supposed to be the data access component, 
complementing the discovery functionality from SimDB. The main tasks of 
SimDAP were how to handle accessing the possibly very large data sets 
resulting form 3+1D simulations. In the subsequent generalisation to other types 
of simulations and models, SimDAP was transformed to SimDAL.  
This should be a “regular” DAL-type protocol, with a queryData component. That 
component is supposed to be basically a TAP service on a data model derived 
from SimDM. The details how this transformation is accomplished are described 
in the SimDAL document [22] 
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