
1

 International

 Virtual

 Observatory

Alliance

Simulation Data Model

Version 1.00-20111019

IVOA DM WG and TIG Proposed Recommendation
2011 October 19

This version:
http://www.ivoa.net/Documents/SimDM/20111019

Latest version:
http://www.ivoa.net/Documents/SimDM/

Previous version(s):
http://www.ivoa.net/Documents/SimDM/20110909/
http://www.ivoa.net/Documents/SimDM/20110428/
http://www.ivoa.net/Documents/SimDM/20110427/

Working Group:
http://www.ivoa.net/cgi-bin/twiki/bin/view/IVOA/IvoaDataModel
http://www.ivoa.net/cgi-bin/twiki/bin/view/IVOA/IvoaTheory

Editors:
 Gerard Lemson, Hervé Wozniak

Authors:
 Gerard Lemson, Laurent Bourgès, Miguel Cerviño, Claudio Gheller, Norman Gray,
Franck LePetit, Mireille Louys, Benjamin Ooghe, Rick Wagner, Hervé Wozniak

http://www.ivoa.net/Documents/SimDM/20111019
http://www.ivoa.net/Documents/SimDM/
http://www.ivoa.net/Documents/SimDM/20110909/
http://www.ivoa.net/Documents/SimDM/20110428/
http://www.ivoa.net/Documents/SimDM/20110427/
http://www.ivoa.net/cgi-bin/twiki/bin/view/IVOA/IvoaDataModel
http://www.ivoa.net/cgi-bin/twiki/bin/view/IVOA/IvoaTheory

2

Abstract

In this document and the accompanying documents we propose a data model
(Simulation Data Model) describing numerical computer simulations of
astrophysical systems. The primary goal of our proposal is to support discovery
of simulations by describing those aspects of them that scientists might wish to
query on, i.e. it is a model for meta-data describing simulations.
This document does not propose a protocol for using this model. Two distinct
IVOA protocols (SimDB and SimDAL) are in the make and both are supposed to
use the model, either in its original form or in a form derived from the model
proposed here, but more suited to the particular protocol.

The SimDM has been developed in the IVOA Theory Interest Group with
assistance of representatives of relevant working groups, in particular DM and
Semantics.

Link to IVOA Architecture

The figure below shows where SimDM fits within the IVOA architecture:

3

Status of This Document

This is an IVOA Proposed Recommendation made available for public review. It
is appropriate to reference this document only as a recommended standard that
is under review and which may be changed before it is accepted as a full
recommendation.
The first release of this document was 2011 April 28.

A list of current IVOA Recommendations and other technical documents can be
found at http://www.ivoa.net/Documents/ .

Acknowledgements

We thank various persons for useful discussions in the course of this work: first,
the participants of the Feb 2006 theory workshop in Cambridge, UK, where this
work was started; second, the participants of the April 2007 SNAP workshop in
Garching, Germany, where the design started taking shape. The work has also
been influenced by the participants of the Technical Coordination Group of the
EuroVO-DCA project and participants of the theory workshop organised in the
context of that project in Garching, 2008. Then we want to thank particularly the
following persons for useful discussions and feedback: Jeremy Blaizot, Miguel
Cerviño, Klaus Dolag, Pierro Madau, Adi Nusser, Ray Plante, Volker Springel,
and Alex Szalay. We finally want to thank participants to the theory sessions in
all the interoperability meetings since Victoria 2006, where parts of this work
were discussed.

Conformance related definitions

The words "MUST", "SHALL", "SHOULD", "MAY", "RECOMMENDED", and
"OPTIONAL" (in upper or lower case) used in this document are to be interpreted
as described in IETF standard, RFC 2119 [0].

The Virtual Observatory (VO) is a general term for a collection of federated
resources that can be used to conduct astronomical research, education, and
outreach. The International Virtual Observatory Alliance (IVOA) is a global
collaboration of separately funded projects to develop standards and
infrastructure that enable VO applications. The International Virtual Observatory
(IVO) application is an application that takes advantage of IVOA standards and
infrastructure to provide some VO service.

http://www.ivoa.net/Documents/
http://www.ivoa.net/cgi-bin/twiki/bin/view/IVOA/CambridgeTheoryWorkshopFeb06
http://www.ivoa.net/cgi-bin/twiki/bin/view/IVOA/GarchingSNAPWorkshop200704
http://cds.u-strasbg.fr/twikiDCA/bin/view/EuroVODCA/WCAWP4Workshop

4

Contents

1 Introduction 5

2 SimDM: application, approach and outline 7

2.1 Application(s) of the model 7

2.2 Modelling approach 8

2.3 Phase 1: analysis 9

2.4 Phase 2: domain model 10

3 Logical model overview 13

3.1 Packages 14

3.2 Resource 14

3.3 Physics, models and algorithms 17

3.4 Parameters: definition and values 19

3.5 Target: Goal of experiment 20

3.6 Object types: real and simulated 22

3.7 Results: data sets and their statistical summary 23

3.8 Data access services 27

4 Serialisations 28

4.1 SimDM/UTYPE 28

4.2 XML 30

5 Dependencies on other IVOA efforts 31

5.1 Registry 31

5.2 Semantics: Use of SKOS Concepts 33

5.3 Data Model 34
5.3.1 UML Profile 34
5.3.2 Characterisation data model 34
5.3.3 UTYPE 35

6 References 35

6.1 Accompanying documents 35

6.2 Relevant IVOA documents 36

6.3 Other sources 37

5

1 Introduction

In this document we make a proposal for an IVOA standard data model for
describing simulations1. Indeed, apart from limited support for publishing model
spectra in SSAP, there is as yet no IVOA standard dealing with the publication of
simulations and their results. The primary goal of our proposal is to support
discovery of simulations by describing those aspects of them that scientists might
wish to query on, i.e. it is a model for meta-data describing simulations. This
document does not propose a protocol for using this model. Two distinct IVOA
protocols are in the make and both are supposed to use the model, either in its
original form or in a form derived from the model proposed here, but more suited
to the particular protocol.

The direct motivation of the model comes from the Simulation Database (SimDB)
and the former Simulation Data Access Protocol (SimDAP) efforts. Work on
these standards started under the header Simple Numerical Access Protocol
(SNAP) in the Theory Interest Group (TIG) since the Victoria interoperability
meeting, 2006. It was agreed in the Trieste interop 2008 to split SNAP in two
separate tracks, SimDB and SimDAP. More recently it was deemed useful to
further split the work on SimDB in two tracks, one focusing on the data model
alone, the second on its serialisation and usage in the SimDB protocol. This Note
deals with the data model, referred to as SimDM.

Work on the SimDB specification has been organised via a GoogleCode SVN
repository in the volute project originally created by Norman Gray for the
Semantics Working group. The history of the SimDB project can be obtained
from http://volute.googlecode.com/svn/trunk/projects/theory/snapdm. A large part
of that though deals with technical issues revolving around a code generator we
designed to derive relevant resources from the basic data model. Most of that
development has been moved to a separate GoogleCode project, VO-URP. The
resources dealing with the SimDB developments have been gathered in the
subdirectory in
http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/.
The other parts of the volute part of SimDB should be deemed deprecated.

The other documents related to this proposal and being a part of the specification
are the following. They can be found at the root URL
http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/ [TO
BE MOVED TO IVOA REPOSITORY]:

1
 We will use the term simulations for the running of a simulation code as well as for their results.

And we will often include post-processing codes and their results as well.

http://volute.googlecode.com/svn/trunk/projects/theory/snapdm
http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/
http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/

6

Table 1: list of documents as part of the SimDM specification, accessible from http://ivoa.net/XXX [TO BE COMPLETED AFTER
APPROVAL]

SimDM.html

Full browsable specification of the model html/SimDM.html

SimDM_DM.png Graphic view of the whole model (large image) uml/SimDM_DM.png

SimDM_DM.xml MagicDraw UML diagram serialised to XMI uml/SimDM_DM.xml

SimDM_INTERMEDIATE.xml Intermediate representation of the model: a
(generated) XML document representing the complete
model in more readable format than XMI

uml/SimDM_INTERMEDIATE.xml

intermediateModel.xsd XML schema document for intermediate
representation‟s XML format

uml/intermediateModel.xsd

xsd/ XML schema documents (generated) representing
mapping of UML to XSD

xsd/

7

Additionally, an implementation note explains how to use this model to describe
various kinds of theoretical products.

Section 2 described our methodology whereas the model itself is detailed in
Section 3. A few specific issues of serialization are addressed in Section 4. The
development of SimDM is linked to other IVOA efforts that deserve to be
mentioned. Section 5 deals on that point. In the Appendices we deal with the
scientific motivation at the origin of creating SimDM and the 4-years history of the
developments (Appendix A), more details on the UML profile (Appendix B), some
issues (Appendix C) and the use of the model in two cases (SimDB and SimDAL,
see Appendix D).

2 SimDM: application, approach and outline

2.1 Application(s) of the model

The data model proposed here was never meant to be created in a vacuum (see
Appendix A for more details), but was always intended to be used in some IVOA
standard service. What precisely this application was has not always been clear
for the SimDM, the goal of which has gone through some changes in the course
of the project. It started off as a SIAP-like service protocol for N-body simulations,
SNAP2 . Then mesh simulations were included, leading to our definition that
SNAP should support the discovery and possibly partial retrieval of simulations
involving “evolving objects in 3D space”3. Over time the protocol separated into
the Simulation Database, a more TAP service for querying for simulations, and
the SimDAP protocol for retrieving actual data products4. Recently (and finally)
also simulations of a different type, “micro-physic simulations”5, or “models”6
have been included, and SimDAP has merged with S3 to form SimDAL: a family
of access protocols for theory data7.
Consequently the aim and possible applications of the data model have changed
a little over time. The discussions in the Victoria 2010 interop have finally led to a
convergence of these ideas and to the following agreement:

1. The SimDM MUST support the SimDB protocol and the SimDAL service
protocols.

2. To do so it MUST allow scientists to describe their simulations in sufficient
detail for others to decide whether a given simulation is of interest, and to
query for these simulations.

2
 http://www.ivoa.net/cgi-bin/twiki/bin/view/IVOA/CambridgeTheoryWorkshopFeb06

3
 http://www.ivoa.net/internal/IVOA/InterOpMay2006Theory/closingplenary.ppt

4
 http://www.ivoa.net/cgi-bin/twiki/bin/view/IVOA/InterOpMay2008Theory

5
 Coined in Cambridge interop, 2007.

6
 In Victoria 2010, we decided to label all as simulations. See

http://www.ivoa.net/internal/IVOA/InterOpMay2010Theory/IVOA2010_ModelvsSim.pdf
7
 http://www.ivoa.net/cgi-bin/twiki/bin/view/IVOA/InterOpMay2010Theory

http://www.ivoa.net/cgi-bin/twiki/bin/view/IVOA/CambridgeTheoryWorkshopFeb06
http://www.ivoa.net/internal/IVOA/InterOpMay2006Theory/closingplenary.ppt
http://www.ivoa.net/cgi-bin/twiki/bin/view/IVOA/InterOpMay2008Theory
http://www.ivoa.net/internal/IVOA/InterOpMay2010Theory/IVOA2010_ModelvsSim.pdf
http://www.ivoa.net/cgi-bin/twiki/bin/view/IVOA/InterOpMay2010Theory

8

3. It SHOULD then offer directions to services for further drilling down or
downloading simulations or parts of these.

4. The precise representation of the model in the individual service protocols
(SimDB, SimDAL) is not prescribed.

5. If individual protocols will deviate in the details from the SimDM, this will
be for application specific reasons.

6. The SimDM will provide the vocabulary for the concepts used in these
possible alternative representations.

In the preferred case, these other representations can be considered as different
views on the core SimDM. This should be interpreted similar to the way relational
database views provide a mechanism by which slightly different representations
from the often more normalised data model can be provided.

2.2 Modelling approach

With this application area in mind we have followed a somewhat formal approach
to our data modelling effort, suggested by e.g. [27]. In this approach the
construction of a data model is divided in three stages. The first is the analysis
stage, in which one investigates the “domain of the application” one tries to
model. This stage produces a conceptual, or domain model [32] which is
relatively abstract and high level. In its design one does not aim to create a
model directly suited to an application. The emphasis is on identifying important
concepts and their relationship in the “real world”. One also refrains from giving a
fully detailed definition of all attributes and other features. Important in this stage
is interaction with domain experts, in our case scientists.
The aim of the second stage is the creation of a logical model [33] of the
application domain. This should be a detailed model supporting the application. It
should contain all information required to support the application. It should
however still be implementation neutral, and concentrate on describing the
precise concepts and semantic relationships between them. In general it will use
part of the concepts from the domain model, but works them out in more, all,
detail.
In the third stage one derives from this logical model one or more physical
models [34]. These are representations of the logical model in a form that can be
used directly by the various computational components building the system.
Examples of this are XML schemas defining valid XML documents, or relational
schemas for the design of a database storing instances of the model.
The analysis phase is described in the next few subsections. The logical model is
defined in full detail in UML using the MagicDraw Community Edition modelling
tool. MagicDraw stores the model in an XML file following the XMI serialisation
[29] we have created a fully cross-linked HTML file documenting this model in all
detail. These 2 files are part of this specification and can (for now8) be found on
the GoogleCode volute site.

8
 Once the specification becomes a proposed recommendation the stable versions of these files

should be placed under the IVOA wiki site.

9

2.3 Phase 1: analysis

The analysis phase investigates the “world the application lives in”, its “universe
of discourse” [27] and describes it in a domain model. To get constraints on this
universe and its contents we follow [35] in trying to gather some 20 science
questions that the application should be able to answer. The application is here a
system consisting of the data model together with the protocol and
implementations. The model will be designed in such a way that it can contain
the required information. The protocol and implementations must support efficient
querying for this information. [35] used this approach in the design of the SDSS
database.
To create such a list of questions we have contacted scientists with the question
that if they were presented with a database of simulation metadata, what
questions they would want to ask of it to find interesting simulations. The
following list summarises their answer:

 What system/object is being simulated?
 What physical processes are included?
 How is the system being represented in the simulation (particles

(Lagrangian), (adaptive) mesh (Eulerian)), both, other?
 How are the physical processes implemented?
 What numerical approximations were used (e.g. resolution, softening

parameter)?
 What observables are available for the system/object, possibly as function

of time9? As it is a spatial system, at least simulation boxsize, centre-of-
mass position.

 What observables are available for the constituents, i.e. what is the
schema of the objects from which the simulation built e.g. particles in N-
body simulation, grid cells in an adaptive mesh simulation or particle
groups in a cluster finder?

 Per snapshot, per simulation object type, per variable:
o Characterise the possible values
o Characterise the result

 Are post-processing results available?
 Are services/applications available for accessing the results?
 Which code ran the simulation?

o Which version of the code?

o Is software available?

 Who ran the simulations?
 What were values of input parameters?
 How were initial conditions created?
 How the results are parameterized?
 Can I access grids of models? Can I access individual results?

9
 Re: Rick Wagner‟s example of certain properties only being calculated after a certain stage in

the simulation is reached.

10

 Which are the inputs ingredients (usually, which data collections are
used?)

 How I can run a simulation? Can I do it on-the-fly?
 Can include my simulations in the VO in an easy way? What I should do?
 Can i compare different simulations? Can I compare the simulation with

my data?
 Which simulations provide diagnostic tools? (i.e.

distance/extinction/quasi-scale free quantities)
 Can I combine the results of different simulations in a single file adapted

for my needs (e.g. own code)?

2.4 Phase 2: domain model

The result of the analysis phase is a model in its own right, albeit rather sparse
and schematic. For this purpose we have built on previous work by adapting the
so called Domain model for Astronomy proposed in [11]. This model forms the
basic structure of the domain model for SimDB, illustrated in Figure 1.
Figure 1 is used in a narrative motivating the final structure of the full SimDM. We
start by assuming the existence of one or more Files that a publisher thinks may
be of interest to the community because they contain astronomical data. Instead
of in files the data might also reside in a Database, and to be generic we
introduce a Storage base class that abstracts the actual physical location of the
data.
Registering that files exist somewhere is not of great interest without providing
information about the contents of the files. The philosophy that we follow is that
the files are of potential interest because they contain the Results 10 of an
(astronomical) Experiment, and accordingly their contents must be explained by
describing the experiment that gave rise to it. Only in this way can one make
scientific use of the files or other storage resources.
The abstract Experiment is made concrete by adding some examples of
experiment types that are important for the current model dealing with
Simulations and simulation PostProcessing.
In our model, Experiment represents the actual running of an experiment; to
describe the design of the experiment (the so-called experimental protocol) we
introduce the concept of (experimental) Protocol11. This separation between
design of experiment and the execution is a normalisation that reduces
redundancy in the model. See the accompanying appendix for a discussion of
this concept. We mirror the concrete subclasses of Experiment by adding

10 We do not assume that in reality the relation between the conceptual Result and the concrete

Storage elements can be modelled by a single reference. Especially for the largely non-
standardised world of simulations a single result can be distributed over many files, but it is also
possible for one file to contain multiple results. In the current SimDB model we do not attempt to
model such relations explicitly. We delegate the responsibility for accessing the physical results to
(web) services and this issue is more explicitly addressed by the SimDAP protocol.

11

 Further on, the word protocol will be preceded by the adjective experimental (in parenthesis
and italicized) to keep clear the distinction with any other IVOA protocol.

11

concrete subclasses to (experimental) Protocol such as Simulator, which
represents simulation codes according to which Simulations are run, and
PostProcessor corresponding to PostProcessing runs.
The (experimental) Protocol class contains InputParameters. An Experiment
using a particular (experimental) Protocol only needs to indicate the values for
these parameters. In this way a single instance of the (experimental) Protocol
can be reused by many Experiments performed according to it.

12

Figure 1: Schematic domain model encapsulating the main design constructs in SimDM.
Elements coloured orange are represented directly in SimDM, possibly with a different
name. Purple elements are not part of that model, but are used to explain and motivate
other features that do appear there.

13

The (experimental) Protocol also defines the possible structure of the results of
the experiments. In our model Results contain ResultObjects. These objects
have a given type, represented by the ResultObjectType contained by
(experimental) Protocol. The ResultObjectType defines the Properties that
these objects have.
For example the results of N-body simulations may contain particles having
properties position, velocity, mass and possibly others. Adaptive Mesh
Refinement (AMR) simulations produce results that are collections of mesh cells
of various sizes, positions and contents. Similarly post-processing codes such as
halo finders produce “halos” and “semi-analytical” galaxy formation codes
produce galaxies.
In general a single result can contain objects of different types. For example a
Smooth Particle Hydrodynamics (SPH) simulation may contain dark matter
particles, star particles and gas particles. And in general the codes allow one to
configure which of these exactly are chosen in a given experiment.
One aspect of the experiment that is not determined by the experimental protocol
is why the experiment was performed. In the model we introduce the Target
concept for this, which represents real world objects or processes that are being
simulated. For example, with the same N-body simulator one may simulate a
galaxy merger or the evolution of large scale structure of the universe.
As discussed above, the actual way in which results are stored in files or
databases is hard, if not impossible to model. Instead we assume that
Webservices of various kinds may be used to access the results of simulations
and other SimDB products.
Some of these will be standardised in the SimDAL specification, but custom
services may also be introduced. The model allows one to describe the
experiments and their results, which should allow users to discover results of
interest, after which the web services can be called for actually accessing these.

3 Logical model overview
The actual data model that we propose here is a logical model in the sense of
[33] based on the domain model described in 2.4. This reflects its origin as a
model for the Simulation Database (SimDB), an application for searching for
interesting simulations and related concepts. An actual SimDB specification will
be created, but the logical model has value beyond that application. In particular
the SimDAL protocol will use it in its queryData phase (SimTAP), albeit in a form
customised for ease of querying for simulations of a limited set of experimental
protocols.
SimDM is still implementation neutral, but it is fully detailed and represented in
UML. It has a human readable HTML representation which contains the detailed
description of all elements [5]. That document should be consulted for the details
of the model.
Here we introduce the main concepts and motivate the main design decisions.
Where possible we try to add a hyperlink from a concept‟s name pointing into the
HTML document the first time we use the name. The link will consist of a root

14

URL to the location of the HTML document, followed by a #<UTYPE> that
identifies the description of the actual concept in the HTML document. This we
feel is very much in the spirit of the use cases of UTYPEs. Later references to
the concepts will in general not contain the link. Then class names will be
capitalised. Abstract classes will be in italics. Names of packages, attributes,
references or collections will be preceded by the class name where necessary, or
it will be assumed to be clear from the concept what is intended.

3.1 Packages

UML Packages are subsets of classes and data types that are deemed to belong
together. Whilst not essential to the model, we have used them to provide some
level of modularity. Their main role is played in the XML schemas derived from
the model. Each package has its own type-schema (see 4.2) which provides a
somewhat finer level of reuse.
The diagram in Figure 2 shows the packages we use and their dependencies.
This hierarchy is reflected in the UTYPEs, see section 4.1. The colours assigned
to the packages correspond to the colours of classes in the diagrams in later
sections. The subdivision in the one parent and three child packages follows the
resource class hierarchy described next.

Figure 2: The packages of the SimDM and their relationships. These are related to each
other through directed dependency links indicated by the dashed arrows.

3.2 Resource

The SimDM aims to describe simulations and related concepts. The current
model does so with of the order of 40 separate object types, or classes. Most of
these classes themselves represent parts of other classes. They group together
properties or relationships used in the definition of their “parent”. The composition
relation is used to represent these kinds of parent-child.

15

But among the classes in the model there are some that are not used like this.
These classes represent concepts that can stand on their own, are not use to
describe part of a larger concept. These we will call “root entity classes”. In the
model they can be identified by the fact that neither they, nor any of their sub or
base classes are part of another class, a child in a parent-child relation.
These are the classes that represent the model‟s core concepts and their
identification is a first important choice in the modelling effort. In the current
model there actually two separate collections of classes that are root entities.
The Party class represents an individual or organisation. It is used for indicating
who/what wrote simulation codes or ran simulations. The main focus in this
document is on the root entity classes in the Resource hierarchy, illustrated in
Figure 3.

Figure 3: Root entity classes for SimDM.

From the top down we start with the ultimate root entity class, Resource, which
defines components common to all the main classes. The layer below it contains
Protocol12, Experiment, Service and Project. Protocol is the base class of the
concrete classes Simulator and PostProcessor. Experiment is the base class of
Simulation and PostProcessing. Service is the base class of CustomService and
SimDALService. Project has no subclasses and is concrete.

12

 The use of the name Protocol for the concept we introduce here has led to comments by some
reviewers who feared confusion with the use of the same name in for example DAL protocols. In
this document, the capitalised term Protocol will refer to the class in the model. When confusion
with other usages might arise we may add use the phrase “(experimental) Protocol”.

http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/html/SimDM.html#SimDM:/resource/Party
http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/html/SimDM.html#SimDM:/resource/Resource
http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/html/SimDM.html#SimDM:/resource/Resource
http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/html/SimDM.html#SimDM:/resource/protocol/Protocol
http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/html/SimDM.html#SimDM:/resource/experiment/Experiment
http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/html/SimDM.html#SimDM:/resource/dal/Service
http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/html/SimDM.html#SimDM:/resource/Project
http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/html/SimDM.html#SimDM:/resource/protocol/Simulator
http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/html/SimDM.html#SimDM:/resource/protocol/PostProcessor
http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/html/SimDM.html#SimDM:/resource/experiment/Simulation
http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/html/SimDM.html#SimDM:/resource/experiment/PostProcessing
http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/html/SimDM.html#SimDM:/resource/dal/CustomService
http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/html/SimDM.html#SimDM:/resource/dal/SimDALService

16

Our choice for the root entities follows the domain model in concentrating on the
scientific experiments as a whole. The Experiment class contains, amongst other
components, classes representing the actual results (represented by the
OutputDataset class) that people may wish to access. Those are not the core
concepts in our model. This is in contrast for example to the spectrum data
model [10] which focuses on the representation of the spectrum, and has the
provenance and other metadata as sub-components.
One reason is that an experiment can exist without having (yet) produced any
results, but to have results (as defined here) one always needs an experiment.
This is a clear example of a parent-child dependency, where the child‟s life-cycle
depends on that of the parent. The standard way to model such relationships is
using a composition relation and that is how we have modelled it. More about the
way we model results below in 3.7.
The separation between Protocol and Experiment is an important feature that we
directly take over from the domain model. This design was already motivated in
Section 2.4 and is related to the Measurement-Protocol pattern in [26]. That
pattern says that when one does a measurement (of some property) it is
important to remember the protocol by which the measurement was made ([26],
p65). In [11] this was extended to experiments, which in general consist of large
numbers of “measurements”, all done in similar ways. Whereas the term
measurement seems to be more applicable to observations, it is simple to
generalise the concept a bit and apply it to the calculation of properties during a
simulation. Actually this is similar to the CalculatedMeasurement in [26],
An important reason to keep this separation between Experiment and Protocol
also in our logical model is to avoid having to redefine the parameters and other
aspects of a simulation code each time a simulation is run.
The Service class did not appear in the original domain model in [11], but we
introduced it in the model in 2.4 under the name WebService. In our model it
represents a way to provide access to results of experiments. We could have
tried modelling the way results are stored in files etc., but deemed it too complex
to do so. This is in contrast for example to the spectrum data model, where we
can model the data directly and even can predefine the representation of the
data. There an access reference to the data files can be given to download a
result. For simulations this is in general not possible. In many cases simulation
codes have their particular proprietary formats, often storing single results over
multiple files. Hence we merely allow users to describe services by which one
can access results. Here bwe only make a separation between custom services
and services following the SimDAL service specification thata is under
construction in the IVOA in a collaboration between the theory interest group and
the data access layer working group.
The Project class represents a scientific project, acknowledging that these in
general use one or more experimental protocols to perform multiple experiments.
This class is introduced to allow for example publishers to group simulations and
post-processing runs that were produced with a common goal. It was inspired by
a discussion on whether some of the SimDM/Resources could be registered as

http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/html/SimDM.html#SimDM:/resource/experiment/OutputDataset

17

Registry Resources as well13. Many of the simulations registered in a SimDB will
not qualify for the same reasons that individual images do not qualify to be
registered. Resources in an IVOA compatible registry are relatively coarse
grained; correspond to archives full of images published through a SIAP service
for example. A Project can be used to define such collections also in SimDM.
And indeed one may wish to register such collections separately in a registry.
In a data model one can use aggregations of the corresponding concepts to build
such relations. In fact we have the single aggregation between Project and
Resource, providing the user the freedom to include Service-s and even other
Project-s.
The root of the hierarchy of entities is formed by the Resource class. This class is
introduced as a convenience to hold on to information common to all its sub
classes. Its name is obviously inspired by the Registry‟s Resource [12] and it also
holds on to curation information. It “is not a” Registry Resource though in the
strict OO modelling sense. For example it does not inherit all features of that
class. But this is mainly because, as mentioned above, most SimDM Resources
will not qualify as Registry Resources.

3.3 Physics, models and algorithms

An important characteristic of simulation codes is what physical systems and
processes can be modelled and how these are represented in the program. The
Simulator class represents computer codes that create numerical models of the
world. Simulators do so by representing physical processes using numerical
algorithms that act on model representations of real world objects. In our model,
see Figure 4, physical processes are represented by the Physics class. It is
contained in the Simulator class, not in the more general Protocol. In effect a
simulation protocol is distinguished from other experimental protocols in that it
models and implements physical processes.
Physical processes are implemented using particular Algorithms. Algorithms ore
contained in Protocol, as also PostProcessors use them. In that case they
implement the processing of existing results, and do not model physical
processes. Examples of these are particular algorithms for extracting clusters
from results of N-body simulations.

13

 Thanks to Ray Plante for his contributions to this discussion.

http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/html/SimDM.html#SimDM:/resource/protocol/Physics
http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/html/SimDM.html#SimDM:/resource/protocol/Algorithm

18

Figure 4: Modelling the representation of physical processes and objects.

Finally, experimental protocols need objects to represent the structure of the
physical systems they model. For example, N-body simulations need particles
that represent mass moving around. The model uses the OutputDataObjectType
for this. This class allows one to define a hierarchy of data objects, from
container objects like catalogues, data cubes or images down to the smallest
objects such as particles or pixels

http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/html/SimDM.html#SimDM:/resource/protocol/OutputDataObjectType

19

3.4 Parameters: definition and values

Figure 5: Modelling the parameters: definition under (experimental) Protocol, values under
Experiment.

Software codes generally require some level of configuration before they are
executed. In many cases this translates into a collection of parameters that must
be given values. The parameters are defined by the code and we model this by
an InputParameter class that is contained by Protocol. Assigning values to these
parameters however is the responsibility of the experimenter and is explicitly
modelled as a ParameterSetting class contained by Experiment.
Input parameters are defined by a attributes name, datatype, label and other
properties familiar for example from the PARAM field in VOTable14. Most of these
are inherited from the Field class, which will be discussed in Section 3.6 below.
Because the details of the parameter are defined on the InputParameter class,
the ParameterSetting needs only a pointer (the inputParameter reference) to the
appropriate input parameter and a value. A problem for this model though is what
data type to assign to a possible value attribute. We have no knowledge in
advance on the data type of the input parameter for which a value is set. This is
only known at the instance level, not at the model level. We do not know whether

14

 We generalize the ucd attribute on VOTable‟s PARAM and FIELD to a label attribute with
stereotype <<skosconcept>>.

http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/html/SimDM.html#SimDM:/resource/protocol/InputParameter
http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/html/SimDM.html#SimDM:/resource/experiment/ParameterSetting
http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/html/SimDM.html#SimDM:/object/Field.name
http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/html/SimDM.html#SimDM:/object/Field.datatype
http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/html/SimDM.html#SimDM:/resource/protocol/InputParameter.label
http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/html/SimDM.html#SimDM:/object/Field
http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/html/SimDM.html#SimDM:/resource/experiment/ParameterSetting.inputParameter

20

a certain parameter will be integer, or real, or maybe a string. Our current
solution is to allow two different representations of a value, namely a
numericValue, of type real and a stringValue of type string.
This issue and the usability problems it causes will need to be discussed and
handled at the IVOA protocol level15. One approach is the SimTAP approach
detailed in the SimDAL document [22].

3.5 Target: Goal of experiment

Figure 6: Modelling the goal, or target of a generic resource as objects and/or processes.

Generally the first piece of information that the scientists we polled were
interested in regarding simulations was what was simulated. I.e. what type of
object: a galaxy merger, a galaxy cluster, the large scale structure of the
universe? This information in general says something about the goal that the
scientists running the simulation had.
In certain cases the simulation code itself may completely prescribe the type of
objects and physical processes that are modelled. As example take population
synthesis models such as the Galaxev library16, producing spectra of galaxies.
But many simulation codes allow many different types of objects to be modelled,
and even allow one to vary which processes are actually modelled. Also in many
cases the actual object that is being simulated is not an intrinsic property of the
simulation code, but is a derived property of the actual simulation. For example
an N-Body code in general does not contain “galaxy particles”. But one can use it
to follow the evolution of millions of low mass particles that are in a particular
configuration that together model a galaxy. But it can also be a globular cluster,
or a filament in the large scale structure.
To cover the concept of the target of an experiment or protocol, or the goal of a
project, we add two classes, TargetObjectType and TargetProcess. A

15

 Statistical summary has the same problem, see 3.7
16

 Bruzual and Charlot, 2003: http://www.cida.ve/~bruzual/bc2003

http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/html/SimDM.html#SimDM:/resource/experiment/ParameterSetting.numericValue
http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/html/SimDM.html#SimDM:/resource/experiment/ParameterSetting.stringValue
http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/html/SimDM.html#SimDM:/resource/TargetObjectType
http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/html/SimDM.html#SimDM:/resource/TargetProcess
http://www.cida.ve/~bruzual/bc2003

21

TargetObjectType represents an object, or a physical system in the real world,
such as a galaxy, a star etc. TargetProcess represents a physical process such
as gravitational clustering or turbulence. This recognises the fact that some
simulations are run with the goal of investigating a process, rather than producing
a model of a physical system.
Both these classes are subclasses of Target, which itself is again a subclass of
ObjectType defined in the next section. Target is contained by Resource so that
by inheritance they are available to all sub classes. We do not model the Target
objects in full possible detail. That we leave to future astronomical ontologies. We
restrict ourselves to a description (inherited from ObjectType) and a semantic
label attribute which identifies the intended concept using a standardised name
from a SKOS vocabulary (see 5.2 below).

http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/html/SimDM.html#SimDM:/resource/Target
http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/html/SimDM.html#SimDM:/object/ObjectType
http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/html/SimDM.html#SimDM:/object/ObjectType.description
http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/html/SimDM.html#SimDM:/resource/Target.label

22

3.6 Object types: real and simulated

Figure 7: The model needs to describe the types of objects that are being simulated/used.
We model this in quite some detail in a hierarchy of object types, with properties, grouping
of properties and child objects corresponding to nested objects.

In a few places in the model we need to represent the fact that different
simulation codes and other experimental protocols, or different experiments,
need to describe the types of objects they use or produce. For example, the
Protocol must be able to describe the building blocks of the model world it
represents. We have encountered this need in the OutputDataObjectType in 3.3
and the Target (ObjectType and Process) in 3.5.
The building blocks required to describe a model world are entities with
properties and relations. In SimDM we support this with a limited version of an
object oriented meta-model

23

The core concept is the abstract ObjectType class. An ObjectType contains a
collection of Property-s that corresponds to the simple attributes used to describe
an object. Property is a subclass of Field which defines its main attributes such
as name, description and data type. Also a Protocol’s InputParameter is a Field,
similar to the way a VOTable‟s PARAM and FIELD share a common structure.
Another similarity with the VOTable structure is the possibility to group Property-s
in a PropertyGroup.
To model (hierarchical) relations between different objects an ObjectType has a
collection of Relationship-s, which can be used to define an aggregation or
composition of other ObjectType-s. For example one can define that a simulation
produces snapshots consisting of particles of different types, halo catalogues,
containing halos, which themselves consist of particles, or images consisting of
pixels.

3.7 Results: data sets and their statistical summary

We assume users of a Simulation Database will want to gain access to results of
simulations and related experiments. This is the same as we assume of users of
Simple Image Access or Simple Spectral Access services. For those services the
user knows what to expect, a FITS image in one, a spectrum serialised according
to the spectrum data model in the other.
Such expectations are not realistic for simulations though. The main problem is
that we have no a priori knowledge about the contents of their results. Arguably
somewhat simplistically one may claim that images and spectra contain pixels
with known properties (space, wavelength, flux). Results of simulations, even
when constrained to 3+1D simulations, can contain as their fundamental
constituents: point particles, particles with size and structure, mesh cells of fixed
or varying size, Voronoi cells17, structured halos, galaxies, radiation fields, galaxy
merger trees etc. And any of these object types can come with any collection of
properties: position, velocity, mass, temperature, chemical composition, entropy
etc.

17

 http://www.mpa-garching.mpg.de/~volker/arepo/

http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/html/SimDM.html#SimDM:/object/ObjectType
http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/html/SimDM.html#SimDM:/object/Property
http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/html/SimDM.html#SimDM:/object/Field
http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/html/SimDM.html#SimDM:/object/PropertyGroup
http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/html/SimDM.html#SimDM:/object/Relationship
http://www.mpa-garching.mpg.de/~volker/arepo/

24

Figure 8: Domain model for results.

Precisely for this reason users will want to gain knowledge about the contents of
simulation results to decide which simulations might be of interest to them.
Hence the model must support description of the results explicitly.
Figure 8 illustrates how this is achieved in the domain model: Experiments
produce Results that consist of Objects (pixel, N-Body particle etc) of a particular
ObjectType. The ObjectType defines the structure of Object as a collection of
Properties (position, velocity, flux etc), and an Object, being an instance of the
ObjectType, assigns values to these properties. Which ObjectTypes and
Properties are available is defined by the (experimental) Protocol according to
which the Experiment is run.

SimDM deviates from the domain model in that it does not include the Object and
ValueAssignment classes. Including these would imply that positions, velocities
etc for all particles in a simulation are added to the metadata description. For the
purposes of SimDB, i.e. discovery of potentially interesting simulations, this
would be overkill. It is certainly possible to include data as in the domain model,
the spectrum data model is a case in point. But that model has a different
purpose, namely providing a serialisation of spectra in a standard manner. Also,
individual spectra are generally relatively small and have a well-defined structure.

25

Figure 9: Modelling Output data sets and their contents.

How we model results and their contents in SimDM is shown in Figure 9. We
model results as OutputDataset-s. An OutputDataset represents a collection of
objects of a particular ObjectType produced by the Protocol during the
Experiment, implemented using the objectType reference. In the typical case the
referenced object will be an OutputDataObjectType defined for the given Protocol.
But in principle it could also be for example a TargetObjectType, if a user wishes
to describe properties of the astronomical objects that have been simulated.

http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/html/SimDM.html#SimDM:/resource/experiment/OutputDataset
http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/html/SimDM.html#SimDM:/resource/experiment/OutputDataset.objectType

26

The class hierarchy that users can define with ObjectType can be reflected in the
definition of the OutputDataset. There the parent reference indicates the
container object, corresponding to the container of the corresponding
Relationship object in the ObjectType hierarachy18.
It is in certain cases useful to have some more quantitative information about the
results of an experiment. For example, apart from the fact that a simulation has
N-Body particles with properties position, velocity and mass, it might be of
interest to know that the typical mass of the particles is 1010 solar masses.
We support this by allowing users to describe properties of the collections of
objects in an OutputDataset using a class we call StatisticalSummary. This
reflects our belief that statistics is the appropriate way to introduce some
quantitative aspects of these large collections of objects. StatisticalSummary is
contained in Product. It assigns statistical values such as a mean or a min/max
value to Properties of the OutputDataset.objectType. Which statistic is used is
described by the statistic attribute.
What data type to assign to a possible value attribute is again a problem, similar
to that discussed for the value attribute in ParameterSetting. It is here solved in a
similar way by introducing numericalValue and stringValue attributes. Whereas
for a general SimDB a cumbersome solution such as this is necessary, the
SimDAL protocol will allow for a more user friendly solution through its SimTAP
query component (see [22]).
Extensions of this statistical summary to more detailed summaries such as
histograms can be easily imagined, but have been left out for the model as they
will have less relevance for discovery, which is the main use case for the model.
One further feature is important and is represented by the boolean aPriori
attribute. This attribute describes whether the statistic that is used in the
summary is an a priori or an a posteriori statistic. An a posteriori statistic is
calculated using the results after they have been obtained during the running of
the experiment. For example an a posteriori mean will likely correspond to the
usual expression,

N

i

ia
N

1
,

where the ia are the values of some property.

In contrast a priori statistics characterise the possible values of the observables
before the experiment is run. In certain cases a priori knowledge is available that
restricts the possible values that certain properties may obtain in an experiment.
An example is a lower bound set on the number of particles that a cluster must
contain to be included in the result of a cluster extraction of an N-Body
simulation. This can be indicated by a StatisticalSummary object with
statistic=min and aPriori=true.
Knowledge about the a priori statistics is important in the interpretation of the
results. In the previous example, when interpreting the mass multiplicity function

18

 The assumption is that we generally do not need very complex relationships so that the simple
parent reference is sufficient to infer which relationship is intended.

http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/html/SimDM.html#SimDM:/resource/experiment/OutputDataset.parent
http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/html/SimDM.html#SimDM:/resource/experiment/StatisticalSummary
http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/html/SimDM.html#SimDM:/object/Property
http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/html/SimDM.html#SimDM:/resource/experiment/OutputDataset.objectType
http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/html/SimDM.html#SimDM:/resource/experiment/StatisticalSummary.statistic
http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/html/SimDM.html#SimDM:/resource/experiment/StatisticalSummary.numericalValue
http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/html/SimDM.html#SimDM:/resource/experiment/StatisticalSummary.stringValue
http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/html/SimDB.html#SimDB:simdb/experiment/Product.aPriori

27

of a cluster catalogue extracted from an N-Body simulation, it is clearly important
to know what the lower limit was on the mass of clusters.
In general a priori statistics are the result of, and may often be derived from the
input parameters. However this derivation may not be obvious and will in general
require intimate knowledge of the parameters of a (experimental) protocol. The a
priori statistic may then facilitate the discovery of catalogues that should contain
halos of a certain mass.

3.8 Data access services

Figure 10: The model for (web) services giving access to SimDB resources.

The goal of the Simulation Database is to allow scientists to find simulations of
possible interest. Once these are found the question is what can be done with
them. Clearly knowledge of their existence will be useless if the researcher will
not be able to somehow gain access to the results. The usual way this is done in
the IVOA, for example in the simple image and spectral access protocols, is that
the result of a discovery query contains an access URL that may be used to
download the actual image or spectrum, where moreover the format of the
returned resource, FITS, VOTable or XML document will be known beforehand.
It was perceived from the beginning of the SNAP project even that for the type of
simulations that were supposed to be described a simple download would be
unfeasible simply based on the size of many of the typical N-Body or AMR
simulations. This assumption still holds and the SimDAL protocol is designed to

28

define special purpose services for retrieving parts of such simulations for
example.
Also in the data model we want to indicate how the relation is between the results
and services. This part may be used in the SimDB specification to allow users to
register services and the Resources they give access to.
In the model the Service class, already introduced in 3.2, represents such access
services (see Figure 10). This class can be explicitly linked to the Resources it
gives access to through a collection of AccessibleResource-s. The class has
concrete subclass SimDALService. This represents services providing access to
the results of a limited set of Protocols through the SimDAL protocol. The
CustomService is introduced so that users can also publish non-standard
services. This part of the model is still rather summarily treated and may need to
be updated depending on developments in the SimDAL specification.

4 Serialisations
According to policies of the data modelling working group, first decided in
Cambridge, 2003, a data model should be presented using a UML diagram, a
corresponding XML schema and a list of UTYPEs. We have created these both
using rules that derive the products directly from the XMI serialisation of the UML
data model.

4.1 SimDM/UTYPE

The original goal of the data model presented here was to define the structure of
a relational database supporting the Simulation Database service specification. A
first draft of a note proposing that spec can be found in [21]. SimDB will use TAP
[9] to define the IVOA protocol for querying this database using ADQL. The
results of such queries will be tabular and serialised as VOTables. Such a
VOTable will contain a filtered subset of the information in the database, but in
general in a different form compared to the structure of the data model. To
indicate the meaning of data elements in such a VOTable, the IVOA has invented
the concept of UTYPEs.
A UTYPE is a “pointer into a data model” 19 . The VOTable XML schema
implements this concept as attributes on various elements, e.g. FIELD and
TABLE and many other elements. The value of such a UTYPE attribute should
identify an element in a data model that is represented by the element itself. For
example a table might point to a class definition in a data model, and a column
(FIELD) to an attribute.
It has become common practice to provide for an IVOA data model a list of
UTYPEs. The Spectrum data model (see [10]) was the first to add explicit
UTYPE-s for each of the attributes in its model and the Characterisation data
model [15]has followed that example. We follow these examples by assigning
UTYPE-s explicitly to all elements in the model.

19

 See 5.3.3 for our position on the discussion that is still going on regarding UTYPEs.

http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/html/SimDM.html#SimDM:/resource/dal/Service
http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/html/SimDM.html#SimDM:/resource/dal/AccessibleResource
http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/html/SimDM.html#SimDM:/resource/dal/SimDALService
http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/html/SimDM.html#SimDM:/resource/dal/CustomService

29

Our goal was not to have to make this a separate effort, but if possible to
generate the list of UTYPEs directly from the model. Our goal was to assign
UTYPEs to all identifiable elements in our model and these should be unique.
To this end we define a set of production rules phrased using the special names
in our UML profile. We have made a guess as to what the format for UTYPEs will
be. In the previous data models a UTYPE existed of a word consisting of dot-
separated “atoms”, similar to UCDs, but without the “;”. We use a slightly different
format to make the distinction between different syntactic elements from the
profile somewhat clearer and also to guarantee uniqueness of each UTYPE
within the data model context. Once (if?) a format is settled on within the IVOA
we will easily be able to adjust our definitions.
The important point we want to make is that it is possible to define simple rules
that can automatically produce unique UTYPE-like words for all elements of a
data model, i.e. the only discussion that may be required is on the rules for doing
so IF a fixed format is preferred (see Norman Gray‟s ideas20 on why this might
not be necessary).
The following BNF-like expressions define the particular rules we have used for
deriving the UTYPEs from the UML model:

utype := [model-utype | package-utype | class-utype |

 attribute-utype | collection-utype |

 reference-utype | container-utype

model-utype := <model-name>

package-utype := model-utype “:/” package-hierarchy

package-hierarchy := <package-name> [“/” <package-name>]*

class-utype := package-utype “/” <class-name>

attribute-utype := class-utype “.” attribute

attribute := [primitive-attr | struct-attr]

primitive-attr := <attribute-name>

struct-attr := <attribute-name> “.” attribute
collection-utype := class-utype “.” <collection-name>

reference-utype := class-utype “.” <reference-name>

container-utype := class-utype “.” “CONTAINER”

identifier-utype := class-utype “.” “ID”

For the SimDM these rules produce a list of UTYPEs for the model. For each
model element we provide the UTYPE in the HTML documentation in [5] and we
provide a complete list at the end of that document21. Note also that a URL of the
type

<URL-to-HTML-doc>#<utype>

will link one directly to the documentation for the corresponding data model
element. This is in conformance with a suggestion made by Norman Gray20.

20

 http://nxg.me.uk/note/2009/utype-proposals/
21

http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/html/SimDM.html#ut
ypes

http://nxg.me.uk/note/2009/utype-proposals/
http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/html/SimDM.html#utypes
http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/html/SimDM.html#utypes

30

When representing components of the data model in a VOTable (for example),
these UTYPEs SHOULD be used, in particular when the VOTable contains
results of ADQL queries to a SimDB/TAP implementation (see SimDB Services)..
Alternative views and representations of the SimDM, for example in SimDAP,
SHOULD use these UTYPEs to refer to elements in the model.

4.2 XML

A specification for an IVOA data model should (must?22) contain an XML schema
that defines how to serialise data model instances as XML documents. Similar to
the case of UTYPEs we did not want to make the design of these schemas a
separate effort; instead we want to derive the schema from the model. To do so
we have defined rules for relating XML Schema constructs to our UML model.
These rules are a completion of those described in [36]. It is based also on a
view of what such schemas should look like, restricting the possible set of
constructs to be used in schemas representing data models. These design rules
have earlier been discussed with and accepted by the Registry and VOTable
working groups.
We give here only a short description of these rules. First of all we define two
different types of schemas. First we define “type schemas”, XSD documents
containing only type definitions. For each object type(class) and value type we
generate a corresponding complexType or simpleType. Attributes map to
elements of a corresponding data type (simple or complex), collections to
elements of a type corresponding to the class. References are harder to
represent and will be discussed below.
We next generate a “document schema” containing root elements. The elements
in the document schema define the valid XML documents one can write and we
choose only “root-entity classes” for their type. That is, only classes at the root of
collection trees can be represented as a document. Fragments of these are not
allowed. For example, only a complete Simulator or Simulation can be
represented in a document, not only a single result, or parameter setting.
Note that this is a choice made for the Simulation Database service specification.
The document schema depends on the type schemas through XML schema
import declarations. This separation allows flexible usage of the type schemas,
for example other services might make a different choice from the types to serve
as valid root elements.
The root schema for the SimDM/XSD representation can be found here23. The
type schemas and a predefined base schema can be found in the same directory
and subdirectories of it. We refer to the SimDB Services document for more
details on the XML schema serialisation and their use in the SimDB service
protocol.

22

 See “Rules” on http://www.ivoa.net/cgi-bin/twiki/bin/view/IVOA/HowToParticipate This
“decision” was made in the Cambridge 2003 interoperability meeting together with the
requirement that data models must be specified in UML.
23

http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/xsd/SimDM_root.xsd

http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/xsd/SimDB_root.xsd
http://www.ivoa.net/cgi-bin/twiki/bin/view/IVOA/HowToParticipate
http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/xsd/SimDM_root.xsd

31

Only the mapping of references deserves special attention. Our choice of
mapping from UML to XSD elements and our definition of root elements imply
that many references must be able to link between different XML documents. For
example the (experimental) protocol reference24 in an XML document describing
an Experiment must be able to identify a (experimental) Protocol that is defined
in a different XML document. To do this identification we assume we must rely on
an agent that can interpret a serialisation of a reference and use it to look up a
corresponding document. Therefore we map references to elements of a
particular complexType that we define in a base schema25. That same schema
defines a type to be used for representing identifiers of objects and the reference
serialisation must be able to reproduce such an identifier.
Further technical details of this mapping will be described in the appropriate
service definition document.

5 Dependencies on other IVOA efforts

IVOA documents are assumed to specify dependencies on other IVOA efforts.
We have from the beginning realised that the SimDB effort touches upon various
other specifications and general efforts of other working groups [21]. Here we
discuss these relations as far as they pertain to the Simulation data model.

5.1 Registry

The correspondence between the full Simulation Database specification and the
IVOA Registry will be discussed in the SimDB Service note [21]. Here we will
address the relation between the SimDM and the Registry Data Model as defined
in [13].

24

 UTYPE: SimDM:/resource/experiment/Experiment.protocol or
http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/html/SimDM.html#Si
mDM:/resource/experiment/Experiment.protocol
25

 http://vo-urp.googlecode.com/svn/trunk/xsd/base.xsd

http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/html/SimDM.html#SimDM:/resource/experiment/Experiment.protocol
http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/html/SimDM.html#SimDM:/resource/experiment/Experiment.protocol
http://vo-urp.googlecode.com/svn/trunk/xsd/base.xsd

32

Figure 11: UML rendering of the Resource complexType from [13].

In Figure 11 we present a UML rendering of the Resource complexType as
inferred from the Resource Registry VOResource XML Schema [13]. Comparing
that model to SimDM/Resource we can see that these two models for Resource
are related, but not identical. In data modelling terms, it is not true that a
SimDM/Resource is a Registry/Resource (or vice versa). Curation is modelled
differently and arguably with less detail in SimDM, but the main difference is in
the Content. SimDM provides a very detailed and specialised model for the
Content of Simulations and related resources, by modelling provenance,
motivation and results characterisation. This higher level of detail gives rise to a
higher level of granularity in the types of resources stored in a SimDB, which in
general will be to fine grained for registration in a Registry. This is similar to the
case of a single image, which is not a Registry/Resource, whereas a SIAP-
compatible service, providing access to many images, is.
A SimDB service itself will have to be registered, i.e. a SimDB service is a
Registry/Resource. In discussion with Ray Plante (IVOA Interoperability meeting
May 2007, Beijing) on this issue it was proposed that some part of the contents
could also be registered in a Registry directly, i.e. we should be able to identify
Registry/Resource-s in SimDB. Considerations to decide on how to make this
identification would be for example that all data products resulting from a well-

33

defined (and published) scientific project could qualify. To represent such a
possibility for now we have introduced another subclass of SimDM/Resource:
SimDM/Project. This is not much more than an annotated aggregation of other
SimDM/Resources, with some additional attributes describing the motivation etc.
The metadata of a SimDM/Project is not the same as that of a Registry/Resource,
however we propose that we should be able to define a transformation (possibly
implemented again in XSLT) to transform a SimDM/Project and produce a
Registry/XML representation.

5.2 Semantics: Use of SKOS Concepts

In the SimDM, observables, object types, properties, parameters that play a role
in a given simulation have to be defined explicitly, for the world of simulations is
too large to define all possibilities explicitly in the model itself. This in contrast for
example to the spectrum data model [10] where we know that a flux is
determined for a wavelength interval, or a model for images where a flux is
determined for a spatial pixel. In principle the publisher of a SimDM/Resource
has all freedom to name and describe these entities. For other users to
understand the meaning of them, we have where appropriate, added an attribute
corresponding to a semantic label. This is similar to the situation in VOTable,
where FIELD-s can be given a UCD (or UTYPE) that allows users to understand
the meaning of a column in the table.
In SimDM we need to generalise this concept as UCDs are not sufficient for our
purpose. For example target object types are not covered by the list of UCDs and
the same for other elements in our model. The Semantics WG has specified that
such vocabularies should follow the SKOS specification [24]. They have also
defined a number of such semantic vocabularies in the SKOS format, for
example of astronomical objects. We try to anticipate their results by introducing
a special type of attribute in our UML profile that corresponds to a concept in a
given ontology.
Technically, in the UML profile we have defined a stereotype <<skosconcept>>
that can be assigned to an attribute in the UML model. Attributes with this
stereotype must define a value for the tag "broadestSKOSConcept".
The intent of this is as follows (thanks to Norman Gray for providing the original
text with this formal definition):
<<skosconcept>> attributes take a skos:Concept as their value. In each case,
the value is given as a single skos:Concept: such attributes may take any
skos:Concept which is a narrower concept than this single typing concept. To be
precise, for a typing concept T, any concept c is a valid value for this property, if
either:

 c skos:broaderTransitive T

or if there exists a concept X such that

 c skos:broaderTransitive X. X skos:broadMatch T

34

This just means that, if c is in the same vocabulary as T, then it's connected by a
chain of any number of skos:broader, and if it's in a different vocabulary, then
there is some X which is in the same vocabulary as c, with a cross-vocabulary
link between X and T.

In several cases -- particularly those vocabularies which have been created for
SimDM -- there will be a single top concept which everything is narrower than. In
other vocabularies -- such as the AstroObject in the thesaurus version of the
ontology of object types -- the natural typing concept is not a top concept, or is
not the only top concept. This definition also does indicate that it's legitimate for
concept c to come from a different vocabulary from T: the fact that c has been
declared to be narrower than T, either implicitly or explicitly, is to be taken to be
the expression of the vocabulary designer's intention that this be a legitimate
value for this property.

5.3 Data Model

5.3.1 UML Profile

The data model proposed in this document is fully defined in all detail through a
UML model. UML is a large language and we have consciously restricted
ourselves to a subset of the possible modelling elements. We have also added a
few modelling elements using the extension mechanisms UML provides through
stereotypes, tags and predefined data types. This combination of restriction and
extensions is referred to as a UML Profile. The details of our profile are described
in a separate document Erreur ! Source du renvoi introuvable., added as an
Appendix to the current WD.
One reason to put so much emphasis on the UML model is that it allows us to
derive various products of this specification automatically. To this end we use the
modelling frame work under development in the VO-URP project26, which is a
spin-off of the SimDB effort. Using XSLT scripts developed in VO-URP we can
generate HTML documentation (including UTYPE lists) [5], XML schema
definitions [6] etc directly from the XMI representation of the UML model.

5.3.2 Characterisation data model

As described in section 3.7, the model allows one to characterise the results of
experiments statistically using the StatisticalSummary class. This part of the
model addresses similar problems for simulations as does the Characterisation
Data Model for observations. We have not followed that model in detail, but have
tried to incorporate its main ideas, giving a new interpretation to some of these27.
We believe the best way to reconcile the two approaches is to see both as
specialisations of a more abstract model defining statistical characterisations of

26

 http://code.google.com/p/vo-urp/
27

 This follows ideas presented in China 2007, see
http://www.ivoa.net/internal/IVOA/InterOpMay2007DataModel/CharacterisationInTheDomain.ppt

http://www.ivoa.net/internal/IVOA/InterOpMay2007DataModel/CharacterisationInTheDomain.ppt

35

data products. A proposal for such a “domain model for characterisation was
given in [31].

5.3.3 UTYPE

Section 4.1 describes how we generate UTYPEs for the different elements in our
data model. The rules we use to do so have been subsumed in a draft for a Note
on UTYPE-s by [16]. One problem we have with that Note is that the concepts
used in the grammar, and that are direct reflections of syntactic modelling
elements in our UML profile, have not been defined. For models defined with
different UML syntax the grammar does not help.
Some have argued against any semantic meaning to a UTYPE string. It should
not be necessary to parse it to find out what its meaning is. Instead one should
be able to follow it, but could/should be opaque. It should simply be assigned to
the modelling elements. In that case the only requirement would be that a unique
list of strings is created and that
Our assumption has been that a UTYPE should allow one to uniquely identify a
concept in a data model. We do not assume that our particular form to do so
need to be taken over. But, as we describe in 4.1, if one wants to simply derive a
list of unique strings to be associated to concepts that play a role in data models
designed with our UML profile, these rules may help. Clearly if the syntax were to
change we can accept that.
The effort on understanding what UTYPEs really are, how they are to be used, or
defined is in our opinion not completed. But we feel that our approach is
compatible with any possible interpretation, and sufficiently flexible to proposed
changes in precise syntax, were they required.

6 References

6.1 Accompanying documents
[1] This document, at web address

http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/PR-
SimulationDataModel-v.1.00-20111019.doc

[2] SimDM UML diagram obtained from MagicDraw :
http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/uml/Si
mDM_DM.xml

[3] A PNG representation of the main diagram, „all‟, in the model, extracted from
MagicDraw in
http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/uml/Si
mDM_DM.png

[4] “Intermediate representation” of the model. An XML document containing all
relevant information from the model in a more readable format than XMI. This
document is generated from the XMI and is itself the source of all other generated
products.

http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/PR-SimulationDataModel-v.1.00-20111019.doc
http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/PR-SimulationDataModel-v.1.00-20111019.doc
http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/uml/SimDM_DM.xml
http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/uml/SimDM_DM.xml
http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/uml/SimDM_DM.png
http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/uml/SimDM_DM.png

36

http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/uml/Si
mDM_INTERMEDIATE.xml28

[5] HTML representation of the SimDM in
http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/html/Si
mDM.html

[6] XML schema documents derived from the data model and defining the
representation of data model instances in XML. Divided over various documents.
The “element schema” document defining all root elements can be found here:
http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/xsd/Si
mDM_root.xsd . All type schemas can be found in the same folder,
http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/xsd
and sub-folders of it.

6.2 Relevant IVOA documents
[7] Claudio Gheller,Rick Wagner et al, Simulation Data Access Protocol (SimDAP),

http://code.google.com/p/volute/source/browse/trunk/projects/theory/snap/SimDAP.
html

[8] Bob Hanisch, IVOA Document Standards,
http://www.ivoa.net/Documents/latest/DocStd.html

[9] Pat Dowler, Guy Rixon, Doug Tody, Table Access Protocol
http://ivoa.net/Documents/TAP/

[10] Jonathan McDowell et al (2007) IVOA Spectral Data Model
http://www.ivoa.net/Documents/latest/SpectrumDM.html

[11] Gerard Lemson, Pat Dowler, A.J. Banday, 2004 A Unified Domain Model for
Astronomy
http://www.aspbooks.org/a/volumes/article_details/?paper_id=861 see also
http://www.ivoa.net/internal/IVOA/IvoaDataModel/DomainModelv0.9.1.doc

[12] Bob Hanisch et al, Resource metadata for the virtual observatory
http://www.ivoa.net/Documents/latest/RM.html

[13] Ray Plante et al 2008, VOResource : an XML Encoding Schema for Resource
Metadata
http://www.ivoa.net/Documents/REC/ReR/VOResource-20080222.html

[14] Carlos Rodrigo et al, S3 : proposal for a simple protocol to handle theoretical data
(microsimulations)
http://www.ivoa.net/Documents/latest/S3TheoreticalData.html

[15] Mireille Louys et al (2008) Data Model for Astronomical Data Set Characterisation
Version
http://www.ivoa.net/Documents/latest/CharacterisationDM.html

[16] Mireille Louys et al (2009) Utype : A data model field name convention Version 0.3
http://www.ivoa.net/internal/IVOA/Utypes/WD-Utypes-0.3-20090522.pdf

[17] Paul Harrison et al, Simple Image Access specification Version 1.0
http://www.ivoa.net/Documents/SIA/

[18] Doug Tody et al, Simple Spectral Access specification version 1.04
http://www.ivoa.net/Documents/latest/SSA.html

[19] Theoretical Spectral Access Protocol
http://www.ivoa.net/cgi-bin/twiki/bin/view/IVOA/IVOATheoryTSAP

28

 The XML schema file defining the structure of the representation in [4] can be found in the VO-
URP project: http://vo-urp.googlecode.com/svn/trunk/xsd/intermediateModel.xsd

http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/uml/SimDM_INTERMEDIATE.xml
http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/uml/SimDM_INTERMEDIATE.xml
http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/html/SimDM.html
http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/html/SimDM.html
http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/xsd/SimDM_root.xsd
http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/xsd/SimDM_root.xsd
http://volute.googlecode.com/svn/trunk/projects/theory/snapdm/specification/xsd
http://code.google.com/p/volute/source/browse/trunk/projects/theory/snap/SimDAP.html
http://code.google.com/p/volute/source/browse/trunk/projects/theory/snap/SimDAP.html
http://www.ivoa.net/Documents/latest/DocStd.html
http://ivoa.net/Documents/TAP/
http://www.ivoa.net/Documents/latest/SpectrumDM.html
http://www.aspbooks.org/a/volumes/article_details/?paper_id=861
http://www.ivoa.net/internal/IVOA/IvoaDataModel/DomainModelv0.9.1.doc
http://www.ivoa.net/Documents/latest/RM.html
http://www.ivoa.net/Documents/REC/ReR/VOResource-20080222.html
http://www.ivoa.net/Documents/latest/S3TheoreticalData.html
http://www.ivoa.net/Documents/latest/CharacterisationDM.html
http://www.ivoa.net/internal/IVOA/Utypes/WD-Utypes-0.3-20090522.pdf
http://www.ivoa.net/Documents/SIA/
http://www.ivoa.net/Documents/latest/SSA.html
http://www.ivoa.net/cgi-bin/twiki/bin/view/IVOA/IVOATheoryTSAP
http://vo-urp.googlecode.com/svn/trunk/xsd/intermediateModel.xsd

37

[20] Theory in the VO
G. Lemson and J. Colberg (2003)
http://www.ivoa.net/pub/papers/TheoryInTheVO.pdf

[21] Gerard Lemson et al (2008) Proposal for a Simulation Database Standard,
IVOA Note 11 July 2008
http://www.ivoa.net/Documents/latest/SimDBTrack.html

[22] Franck Le Petit et al (2011) Simulation Data Access Layer (in preparation)
https://volute.googlecode.com/svn/trunk/projects/theory/simdal/Simdal_draft.doc

[23] Inaki Ortiz etal (2008) IVOA Astronomical Data Query Language
http://www.ivoa.net/Documents/latest/ADQL.html

[24] Sébastien Derriere et al (2009)Vocabularies in the Virtual Observatory
http://www.ivoa.net/Documents/latest/Vocabularies.html

6.3 Other sources
[25] Santi Cassisi et al (2008) Framework for the inclusion of theory data and services

in the VObs
http://cds.u-strasbg.fr/twikiDCA/pub/EuroVODCA/Deliverables/EuroVO-
DCA_D11_MPG_Final.pdf

[26] Martin Fowler (1997) Analysis Patterns
Addison Wesley Longman, Inc

[27] Terry Halpin (2001) Information Modeling and Relational Databases: From
Conceptual Analysis to Logical Design
Morgan Kauffmann Publishers

[28] XML schema, http://www.w3.org/XML/Schema
[29] MOF 2.0/XMI Mapping, V2.1.1

http://www.omg.org/spec/XMI/2.1/PDF
[30] OMG Unified Modeling Language (OMG UML), Infrastructure Version 2.2

http://www.omg.org/docs/formal/09-02-04.pdf
[31] Gerard Lemson (2007) Characterisation in the domain

Presentation at IVOA interoperability meeting Bejing 2007.
http://www.ivoa.net/internal/IVOA/InterOpMay2007DataModel/CharacterisationInTh
eDomain.ppt

[32] http://en.wikipedia.org/wiki/Conceptual_data_model
[33] http://en.wikipedia.org/wiki/Logical_data_model
[34] http://en.wikipedia.org/wiki/Physical_data_model
[35] Jim Gray et al (2002) Data Mining the SDSS SkyServer Database

http://www.sdss.jhu.edu/ScienceArchive/pubs/msr-tr-2002-01.pdf
[36] Gerard Lemson (2004) Model Based Schema

PPT presented during Registry video conference 2004-05-13
http://www.g-
vo.org/www/uploads/Documentation/Registry_XSD_videocon20040513-14.ppt

http://www.ivoa.net/pub/papers/TheoryInTheVO.pdf
http://www.ivoa.net/Documents/latest/SimDBTrack.html
https://volute.googlecode.com/svn/trunk/projects/theory/simdal/Simdal_draft.doc
http://www.ivoa.net/Documents/latest/ADQL.html
http://www.ivoa.net/Documents/latest/Vocabularies.html
http://cds.u-strasbg.fr/twikiDCA/pub/EuroVODCA/Deliverables/EuroVO-DCA_D11_MPG_Final.pdf
http://cds.u-strasbg.fr/twikiDCA/pub/EuroVODCA/Deliverables/EuroVO-DCA_D11_MPG_Final.pdf
http://www.w3.org/XML/Schema
http://www.omg.org/spec/XMI/2.1/PDF
http://www.omg.org/docs/formal/09-02-04.pdf
http://www.ivoa.net/internal/IVOA/InterOpMay2007DataModel/CharacterisationInTheDomain.ppt
http://www.ivoa.net/internal/IVOA/InterOpMay2007DataModel/CharacterisationInTheDomain.ppt
http://en.wikipedia.org/wiki/Conceptual_data_model
http://en.wikipedia.org/wiki/Logical_data_model
http://en.wikipedia.org/wiki/Physical_data_model
http://www.sdss.jhu.edu/ScienceArchive/pubs/msr-tr-2002-01.pdf
http://www.g-vo.org/www/uploads/Documentation/Registry_XSD_videocon20040513-14.ppt
http://www.g-vo.org/www/uploads/Documentation/Registry_XSD_videocon20040513-14.ppt

38

Appendix A History
Numerical computer simulations form an increasingly important component of
astrophysical research. Such simulations are used to model astrophysical
processes whose complexity precludes an analytical treatment. The subject of
these simulations includes every possible astrophysical phenomenon, from the
structure of stellar atmospheres, the formation of solar systems, the structure of
galaxies and the description of their constituents, to the formation of the largest
structures in the universe.

The simulations often result in predictions that can be compared to observations,
but in general are much richer, including “observables” that can only be derived
by indirect means from observations. These results can be very large, rivalling
and often exceeding in size the largest observational catalogues. But they can
also be relatively small, consisting of individual spectra of say a white dwarf,
though often in collections resulting from parameter studies.

The design and execution of these simulations has become a specialised field of
astrophysics, and is these days often performed in large collaborations. And
while it is still true that their results are studied by these groups only, more and
more of these theoretical data are being published online (see for instance the
Appendix B of [25]).

Apart from limited support for publishing theoretical spectra in SSAP, there is as
yet no IVOA standard dealing with the publication of simulations and their results.
In earlier documents we have described the issues for defining such standards
compared to the arguably simpler case of observational data sets (see for
example [20] and [25]).

The proposal for a standard way of publishing simulations was formulated during
a workshop in Cambridge, February 2006. The original idea was to create an
analogue of the simple image access protocol (SIAP, [17]) for N-Body
simulations: SNAP, the Simple Numerical Access Protocol. During the following
interoperability meeting in Victoria, May 2006, the scope was expanded to
include other types of simulation algorithms, and rephrased to something like
“simulations that reproduce 3+1dimensional space time”. It was felt furthermore
that not only simulations themselves should be included, but also certain types of
post-processing such as cluster finders, as long as their results are still aimed at
producing a description of 3D space at one or more points in time. Over time
requests have come in to generalise this scope even more, basically to enable
any type of astrophysical simulation to be handled.
An important change that was decided in Victoria 2006 was that instead of the
SIA protocol, the newer simple spectral access protocol (SSAP, [18]) should be
followed as an example. This protocol‟s main difference with respect to SIAP was
the explicit data model that was created for spectra and was used as motivation
for the queryData metadata and the getData data format. Hence SNAP from the

39

beginning had a double focus on a data model plus related query protocol on the
one hand, and a data access and delivery specification on the other hand.
Shortly before the Trieste interop in the spring of 2008, it was decided to split
SNAP up along these lines in two separate specifications: a specification for a
Simulation Database (SimDB) which would support searching for interesting
simulations and services providing access to them, and a Simulation Data
Access Protocol (SimDAP) providing a specification for accessing simulation
results.

SimDB on its own is still a rather complex specification. It has overlap with the
efforts and results of many working groups, Data Model (DM), Registry, Data
Access Layer (DAL), Semantics as well as being an integral part of the Theory
Interest Group (TIG). This issue has been discussed in the Baltimore and
Strasbourg interops, as it causes a potential problem for the standardisation
process: an interest group cannot promote a document to a standard, but which
a working group (WG) could do so. It was decided in Baltimore to postpone that
decision by creating a focus group led by the TIG and with participation form the
various WGs.

The current document is the result of a split in original Note that was written for
SimDB. Such a split was proposed to simplify the standardisation process and
after some refactoring was performed mid-2009. This current document is the
first of these and deals exclusively with the data model (SimDM) and
consequently has a natural place in the DM WG. The second document deals
with the use of the data model for defining the model for a relational database
and its related TAP query implementation as well as a service interface for
uploading simulation descriptions to this database. It is not yet clear whether it
can find a place in a single WG.

A parallel effort has been the proposal for a simpler access standard for small
scale simulation, the Simple Self-describing Service protocol (S3, [14]). This was
a result of an investigation started in the Cambridge 2007 interoperability meeting
whether “micro-physics” simulations as they are sometimes called require special
attention. For some time this was covered by SSA, at least as far as theory
spectra were concerned. S3 is actually a direct reworking of an older Theoretical
Spectral Access Protocol [19].

There were questions in the TIG whether S3 might be incorporated in SimDB
and/or SimDAP. In the interoperability meeting in Victoria 2010 the decision was
made that indeed this should be possible. The SimDM was shown to be able to
incorporate the metadata for S3-like services, and indeed proposes extensions of
that. It was decided that the S3 protocol should be merged with the SimDAP
protocol, which from then on will be known by the name Simulation Data Access
Layer (SimDAL). The implementation note addresses this question from a formal
point of view, namely by defining how S3-like services can be described by the
data model.

40

Appendix B UML Profile29

The Simulation Data Model uses UML as the language for its specification. This
is in accordance with decisions of the IVOA data model working group. One
advantage of UML is that it is implementation neutral. It is a graphical language,
consisting of “boxes and lines” that is very suitable for whiteboard discussions
but allows one to model the concepts and relations in a static data model. It is
also rich enough to allow one to describe all important data elements and
relations.

In fact, UML is almost too rich. It is easy to become overwhelmed by the large
number of possible syntactic elements to choose from for modelling a particular
structure. Luckily UML allows one to formally define a subset of its language
where one restricts oneself to a subset of the syntactic elements. Such a subset
is called a UML Profile. Apart from creating a more restricted language, a Profile
also allows on to assign new meanings to existing elements by defining
stereotypes with associated properties (tag definitions). It is also possible to
predefine classes and data types (see below) that can be reused by the data
modeller.

In our modelling effort we have defined an initial implementation of a UML profile
as created by MagicDraw. The profile30 is contained in the UML file containing
the SimDM data model. Here we give a list of the main elements that we use and
give a short motivation for their inclusion in the language. It is our opinion that the
DM working group should be ultimately responsible for a profile such as this, as it
gives the possibility of defining a domain specific language for all IVOA data
modelling efforts, thus giving some uniformity to those disparate efforts.

B.1 Element

All elements mentioned below are specialisations of UML Element.
Stereotypes

 <<modelelement>>: This stereotype can be assigned to any UML Element
and is used to define the utype tag on.
Tags:

o utype [string]: this holds the actual UTYPE that points to the other
modelling element that is represented here.

B.2 Model

29

 This Appendix could eventually be replaced by a Note on UML profiles if the DM WG is
interested in organising such an effort. As this does currently not exist we have kept it in here to
make the specification as self-contained as possible.
30

 Available under http://vo-urp.googlecode.com/svn/trunk/uml/IVOA%20UML%20Profile%20v-
3.xml

http://vo-urp.googlecode.com/svn/trunk/uml/IVOA%20UML%20Profile%20v-3.xml
http://vo-urp.googlecode.com/svn/trunk/uml/IVOA%20UML%20Profile%20v-3.xml

41

This is the root of the complete model, contains all packages, classes etc. Also
contains any imported profile.

Stereotypes

 <<model>>
If the designer wants to annotate the model with the tags in this stereotype
(s)he must explicitly associate this stereotype to the Model.
Tags:

o author : Indicates the author(s) of the model.
o title : provides a long title to the model. The name of the model is

assumed to be short.
o subject: 0..* list of subjects in the sense of the Registry‟s subject

attribute.

B.3 Package

Figure 12: This figure shows a package "simdb" that contains two other packages. Of
these the experiment package depends on the protocol packages, which is indicated by
the dashed arrow. See Figure 2 for the somewhat more complex package structure used in
SimDM.

A package groups related elements such as class definitions and possibly sub
packages. Packages can depend on each other (indicated by the dashed line),
which means that elements in one package can use elements in the target
package in their definition. This relation is transitive. A package is similar to an
XML namespace and in fact we map UML packages to XML namespaces in the
XML schema mapping for the model described in 4.2.

B.4 Class

42

Figure 13: A Class is a rectangular box, with the name of the class in boldface.

Classes are the fundamental building blocks of a data model. A Class represents
a full-fledged concept and is built up from properties and relations to other
Classes. An important feature of Classes as opposed to DataTypes (see below)
is that instances of Classes, i.e. objects, have their own, explicit identity31. That is
we want to assign an explicit identifier to each concept so that

Properties:

 isAbstract
Indicated by italicised name of the object. Implies that no instances can be
made of the class, only of concrete (=non abstract) sub classes.

B.5 ValueType

A ValueType represents a simple concept that is used to describe/define more
complex concepts such as Classes. ValueType-s are, in contrast to Classes not
separately identified. They are identified by their value. For example an integer is
a value type; all instances of the integer value 3 represent the same integer.
In this profile ValueType-s are only represented using specialised examples.
Attributes (see below) must have a ValueType as their datatype.

B.6 PrimitiveType

PrimitiveTypes are the simplest examples of ValueTypes. They are represented
by a single value only. A set of PrimitiveTypes is predefined in the IVOA profile
(see Figure 14).

31

 This is admittedly a somewhat theoretical object-oriented concept,

43

Figure 14: The PrimitiveTypes that are predefined in the IVOA profile.

B.7 DataType

Figure 15: Example of a structured datatype:Pos3D represents a position in 3D space and
is defined using x, y and z attributes. The DataType symbol is distinguished form the
Class by the <<dataType>> stereotype.

A DataType is a ValueType that has more structure than a single value. This
structure is modelled using Attributes, just as on ObjectTypes.

B.8 Enumeration

44

Figure 16: An enumeration is indicated by a box with the name of the the enumeration and
the list of literals.

An Enumeration is a ValueType that is defined by a list of valid values. These are
the only values that instances of this data type can assume.

B.9 Attribute

Figure 17: An attribute is indicated by a line with a name, a datatype, an indication of the
multiplicity and possibly a stereotype.

An Attribute is a Property of a type (object type as well as structured data type).
An attribute‟s data type is always a Value type, not an object type. For object
type properties one should use References

Properties

 data type

 multiplicity/cardinality: indicates the cardinality of the attribute (assumed to be
0..1, or 1. This is a relational bias based on normal form and the assumption
that most databases do not allow storage of arrays in single columns.)

Stereotypes

 <<attribute>>
To assign further properties such as the tags this stereotype attribute must
be explicitly assigned.
Tag definitions

o length [integer]: Constraint indicating that an attribute must have a
specific fixed length. Is relevant only for attributes of type string.

uml/DataModel_Profile.doc#_References

45

o maxLength [integer]: Constraint indicating that an attribute may at
most have the indicated length. Is relevant only for attributes of type
string. Is used in mappings to TAP to indicate the length of the
corresponding column. Thist would seem to be very much an
application specific feature and therefore belong to logical
modelling. But this profile can be used for that purpose, hence it is
included.

o uniqueGlobally: Constraint indicating that only one instance of the
type of the Class owning this attribute can have a given value.
Globally should be read to mean globally in a given instance of the
model, i.e. a database for example that stores instances of the
model.

o uniqueInCollection [boolean]: If true, indicates that the value of the
attribute can not be shared by the same attribute of any other
instance of the Class owning this attribute that is in the same
collection, i.e. has the same container object. In SimDB/DM an
example is given by the name attribute of the InputParameter class.
For a given Protocol

 <<ontologyterm>>
There are many instances in the data model where we need to describe
elements of the SimDB/Resource-s explicitly, because we do not have
implicit information based on the context. Examples are the various
properties of object types, the target objects and processes etc. Apart from a
name and a description we then frequently add an attribute which is
supposed to "label" the element according to an assumed standard list of
terms.
We model this using the <<ontologyterm>> stereotype. Attributes with this
stereotype are assumed to take their values form such a predefined
"ontology" 32 .
Tag definitions:

o ontologyURI
A URL locating a standard (RDF|SKOS|OWL|???) document
containing a list of terms from which the value for this attribute may
be obtained. It is our opinion that the Semantics working group
should be responsible for the definition of relevant ontologies (or
semantic vocabularies, or thesauri, or ...) required for a given
application domain, though the contents should be decided in
cooperation with domain experts.

B.10 Inheritance

32

 Possibly this should be a vocabulary, that at least is intended, and the stereotype might have to
be called <<skosterm.., with tag definition named skosVocabulary.

46

Figure 18: Inheritance is indicated by a line with an open arrow from a subclass to its base
class.

Indicates the typical “is a” relation between the sub-class and its base-class (the
one pointed at). In this profile we do not support multiple inheritance.

B.11 Collection

Figure 19: The line with the closed circle on one end and an arrow on the other indicates a
composition relation, or collection, between the parent (on the side of the circle) and the
child, on the other side.

This relation indicates a composition relation between one, parent object and 0 or
more child objects. The life cycles of the child objects are governed by that of the
parent.
In UML a composition relation is represented by a binary association end.

B.12 Reference

47

Figure 20: A Reference is represented by a line connecting a class with another,
referenced, class with an arrow on the referenced class. Note, the <<reference>> sterotype
indication is not required.

This is a relation that indicates a kind of usage, or dependency of one object on
another. It is in general shared, i.e. many objects may reference a single other
object. Accordingly the referenced object is independent of the "referee". In our
profile the cardinality can not be > 1.
For implementing the Reference in UML we use a shared, navigable binary
association end.

B.13 Subsets

Figure 21: The subsets property can only be assigned to a relation between two objects
that are both subclasses of Classes that have an equivalent relation. It is indicated by the
{subsets ...} annotation to the relevant association end.

The “subsets” property, when associated to a Reference or Collection (in UML to
the corresponding association end), indicates that a relation overrides the
definition of a relation of the same name defined on a base class. It does so by
specifying that the class at the end point of the relation should be a subclass of
the class at the endpoint of the original, sub-setted relation.

48

Appendix C Issues
We identify and discuss here several issues with the SimDM that need to be
discussed further.

C.1 Normalisation

The current version of the SimDB/DM is rather more normalised [9] than most of
the other data models in the IVOA. We explain this concept based on a particular
choice we made during the modelling process, and then we discuss the
consequences of particular choices.

Figure 22: Non-normalised model for experiments and parameters.

At an earlier stage, the model was less normalised in the design of the input
parameters of an experiment, as is illustrated in Figure 22. There was no
separate protocol class, only an attribute protocolName on the Experiment class
indicated the protocol by which the experiment was run. Also, the input
parameters on the experiment were completely contained in a collection of
Parameter-s. The Parameter class contained all the details, including name of
the parameter, description, ucd etc. It also contained the value of the parameter
in the experiment.

Figure 23: Normalised modelling of experiments, protocols and their parameters.

Currently the model treats parameter definitions and settings as in Figure 23. In
this normalised design, the Protocol is given a class of its own, and it contains
the input parameter collection. The InputParameter class does not contain a

49

value, only the definition of the parameter: name, datatype, ucd, description. The
values assigned to parameters in a given experiment are captured with the
ParameterSetting class, contained in a collection off Experiment.
The motivation for this change of model was that a SimDB instance will in
general contain many simulations (experiments) run with the same simulator
code (protocol). In the old model, each experiment has to define the collection of
input parameters with all details. In the new design this only has to be defined
once, on the appropriate protocol. This clearly is less redundant, which is one
important design goal of a normalised modelling approach. At the same time it
provides an explicit identity to input parameters, which allows us to ask explicit
questions about all parameter settings for a given, identified parameter. In the old
model this is only indirectly possible, using equality of the name of input
parameters for all experiments having the same protocolName. Now we can ask
for all experiments with the same protocol reference, and look for parameter
settings with the same input parameter reference. This is arguably a more
"correct" model of reality.

There are therefore advantages to normalisation, but there are also
disadvantages. We need to realise these and make choices that optimise the
usability of the data model. One of the main disadvantages is that references,
which naturally have to be introduced when normalising a model, are more
difficult to deal with than most of the other modelling elements, particularly in
some physical representations (see below). When defining a new experiment,
one will have to find the input parameter that one needs to set, and instead of
simply giving name/value, one needs to represent the reference to the parameter.
For this one may have to extract the protocol as stored in the SimDB and find the
appropriate identifiers of the input parameters. In this sense an Experiment
definition becomes less self-contained. It depends on the details of the registered
Protocol. This protocol is registered separately and necessarily at an earlier point
in time.
This puts strong requirements on SimDB implementations to maintain referential
integrity, something which will be even harder to achieve if we were to allow
cross-SimDB referencing. In one advanced usage scenario the UC San Diego
version of SimDB registers the Enzo33 simulator, whilst the Italian SimDB allows
registration of simulations that used it and reference the remote protocol34.
Similarly a query language needs to be able to handle with this level of
indirection. For example in a relational database one needs to write joins
between ParameterSetting and InputParameter. For expert SQL users this is not
a problem, but is something to get used to. For simpler query languages, those
not allowing joins, like TAP/Param, asking meaningful queries becomes very
difficult. One way around this problem could be to add some view definitions to
the model. In relational databases, views are predefined, named SQL queries
that can be treated as if they were tables when querying the database. It is quite
straightforward to define some SQL queries that as it were denormalise the

33

 http://lca.ucsd.edu/portal/software/enzo
34

 We actually do not support this scenario in the current version of SimDB.

http://lca.ucsd.edu/portal/software/enzo

50

model and put the input parameter definition back under the experiment together
with the value. This way one may protect users of the database from the high
level of normalisation.

C.2 Quantities and Units

At various locations in the SimDM data model numerical values can be defined,
for example in parameter settings or the characterisation of properties of
representation object type collections. Often these numerical values will need to
have a unit. The IVOA has two ways of dealing with units. Either units are fixed
explicitly for properties/parameters in protocol or data model, sometimes
depending on the small list of possible UCDs. Alternatively units are epxlicitly
stated, for example in VOTable. At the moment we suppport the second mode,
especially because, as is true for VOTable, we do not know what kind of property

is being used. To this end we introduce a value type in the model, Quantity,
which contains a value and a unit, and which is the data type of various value
attributes, for example in NumericalParameterSetting or Characterisation. In the
XML schema this is translated to a complexType with 2 elements, in the
relational database schema to two columns, one with the value, one with the unit.
It is in the use of the relational schema that we anticipate problems with this
approach, especially in the query protocol to SimDB. Consider the typical science
question: return all N-body simulations with particle mass roughly 1010Msun. In
SimDB this would be need to be translated in an ADQL query which contains the
unit column explicitly. Allowing users‟ freedom of registering SimDB resources
using any units they desire can lead to resource containing, for the same
observable "N-body particle mass", values with a whole range of units. To
provide reasonable support to users requires the SimDB implementation to be
able to do the automated transformation. But in the We propose in SimDB to use
ADQL/TAP as the query interface. If units are stored explicitly users can phrase
queries using these,
An alternative approach is to mandate stating values for properties with a given
UCD (or other semantic label) always with the same units. This would solve the
query problem but poses others. For one it may be very (too?) unnatural for
users to be forced to use meters for cosmological simulations, or megaparsec for
simulations in the solar system. Related to this is the probably contentious
discussion of what units to assign to what UCD. One might choose SI or cgs
units, but these are not always very useful or natural.

C.3 Linking services, experiments and other resources.

When studying the SimDM and comparing it to the explanation in 2.4, one will
notice that there is no concept of storage for the results in the proposed model.
The reason is that whereas we can define the concept of a Result as collections
of Objects quite satisfactory, we have shied away of trying to model the precise
way these results are actually stored in files or a database. There are simply too

51

many possible and actual ways in which results can be stored in a file system. In
general, a result, or snapshot in our model, cannot be modelled with a simple
reference to a file or table in which it is stored. Large results may be split up over
many files, stored as structs, or in arrays. We have therefore decided not to open
this can of worms (or reopen it, see the Quantity data model
http://www.ivoa.net/internal/IVOA/IvoaDataModel/qty23.pdf).

Instead we assume the existence of web services that allow users access to the
results of SimDB experiments. Some of these services may implement a
standard protocol as defined by SimDAP, or they may be custom services. The
precise way to relate experiments to services and what can be inferred about
how to call them is the task of the SimDAP protocol.

In the model actually web services are related to resources in general. This can
be used to represent services that gives access to a set of experimental results
from some project, or that can for example visualise any result of experiments
performed according to a fixed protocol, for example generic Gadget-format
visualisers.

http://www.ivoa.net/internal/IVOA/IvoaDataModel/qty23.pdf

52

Appendix D Use of SimDB data model
Here we present our views on how the data model presented in this and
accompanying documents could/should be used. We first discuss the usage in
the SimDB service protocol for which it was originally intended. We then discuss
the possible usage in SimDAP that was assumed to use the model in some form
as well, though the link has been weakened after the SNAP proposal was
separated in SimDB and SimDAP. We then propose how also the S3 proposal
[14] could use the model, thus tying that specification closer to the other
developments in the theory interest group. Finally we discuss how one might
identify Registry Resource-s in the model, and how one might extract these, in
effect creating a specialised Registry implementation on top of the Simulation
Database.

D.1 SimDB

As will be discussed in the SimDB Services Note [in preparation], the current
proposal is that a Simulation Database uses the SimDB data model exactly as
described here, in all its details. With one proviso though. The data model
presented here is in UML form, which is not usable in protocols, databases etc.
Hence one or more physical representations must be created. The XML Schema
representation was shortly discussed in section 4.2 and will be more detailed in
the SimDB note. But the main emphasis in the SimDB protocol is on a
TAP/ADQL interface, which requires a relational database and hence a relational
model. In the SimDB note we therefore provide a relational mapping of the data
model together with its representation in metadata formats prescribed by the TAP
specification.
This means that, in the current proposal, the data model only needs a
transformation to a physical representation, without any loss of information.
However as we have discussed in section C.1, the highly normalised nature of
the model complicates its usage, whatever the representation. There we
proposed a solution using “denormalised representations” of the model. These
representations could be created in UML and used exactly as the current model
as the basis for UTYPEs, XML schema, TAP metadata etc.
We believe that in principle it is up to applications35 how to use the data model,
but we feel that it would be good if some more or less formal transformation were
given that could express the application model into the SimDB model, vice versa
transform the SimDB model into the application specific representation.

D.2 SimDAL/SimTAP

The Simulation Data Access Layer (SimDAL) “… defines a protocol for retrieving
data coming from numerical simulations.” When SNAP was split into two

35

 This includes Protocols such as SimDAP and S3, but also SimDB itself. And it includes anyone
who wishes to give an custom web (service) interface to their SimDB installation.

53

separate efforts, SimDAP was supposed to be the data access component,
complementing the discovery functionality from SimDB. The main tasks of
SimDAP were how to handle accessing the possibly very large data sets
resulting form 3+1D simulations. In the subsequent generalisation to other types
of simulations and models, SimDAP was transformed to SimDAL.
This should be a “regular” DAL-type protocol, with a queryData component. That
component is supposed to be basically a TAP service on a data model derived
from SimDM. The details how this transformation is accomplished are described
in the SimDAL document [22]

	1 Introduction
	2 SimDM: application, approach and outline
	2.1 Application(s) of the model
	2.2 Modelling approach
	2.3 Phase 1: analysis
	2.4 Phase 2: domain model

	3 Logical model overview
	3.1 Packages
	3.2 Resource
	3.3 Physics, models and algorithms
	3.4 Parameters: definition and values
	3.5 Target: Goal of experiment
	3.6 Object types: real and simulated
	3.7 Results: data sets and their statistical summary
	3.8 Data access services

	4 Serialisations
	4.1 SimDM/UTYPE
	4.2 XML

	5 Dependencies on other IVOA efforts
	5.1 Registry
	5.2 Semantics: Use of SKOS Concepts
	5.3 Data Model
	5.3.1 UML Profile
	5.3.2 Characterisation data model
	5.3.3 UTYPE

	6 References
	6.1 Accompanying documents
	6.2 Relevant IVOA documents
	6.3 Other sources
	Appendix A History
	Appendix B UML Profile
	B.1 Element
	B.2 Model
	B.3 Package
	B.4 Class
	B.5 ValueType
	B.6 PrimitiveType
	B.7 DataType
	B.8 Enumeration
	B.9 Attribute
	B.10 Inheritance
	B.11 Collection
	B.12 Reference
	B.13 Subsets

	Appendix C Issues
	C.1 Normalisation
	C.2 Quantities and Units
	C.3 Linking services, experiments and other resources.

	Appendix D Use of SimDB data model
	D.1 SimDB
	D.2 SimDAL/SimTAP

